diff --git a/modules/api/api.py b/modules/api/api.py index 248922d29..8a17017bc 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -195,22 +195,17 @@ class Api: script_args[0] = 0 # Now check for always on scripts - if request.alwayson_script_name and (len(request.alwayson_script_name) > 0): - # always on script with no arg should always run, but if you include their name in the api request, send an empty list for there args - if not request.alwayson_script_args: - raise HTTPException(status_code=422, detail=f"Script {request.alwayson_script_name} has no arg list") - if len(request.alwayson_script_name) != len(request.alwayson_script_args): - raise HTTPException(status_code=422, detail=f"Number of script names and number of script arg lists doesn't match") - - for alwayson_script_name, alwayson_script_args in zip(request.alwayson_script_name, request.alwayson_script_args): + if request.alwayson_scripts and (len(request.alwayson_scripts) > 0): + for alwayson_script_name in request.alwayson_scripts.keys(): alwayson_script = self.get_script(alwayson_script_name, script_runner) if alwayson_script == None: raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found") # Selectable script in always on script param check if alwayson_script.alwayson == False: raise HTTPException(status_code=422, detail=f"Cannot have a selectable script in the always on scripts params") - if alwayson_script_args != []: - script_args[alwayson_script.args_from:alwayson_script.args_to] = alwayson_script_args + # always on script with no arg should always run so you don't really need to add them to the requests + if "args" in request.alwayson_scripts[alwayson_script_name]: + script_args[alwayson_script.args_from:alwayson_script.args_to] = request.alwayson_scripts[alwayson_script_name]["args"] return script_args def text2imgapi(self, txt2imgreq: StableDiffusionTxt2ImgProcessingAPI): @@ -226,15 +221,13 @@ class Api: "do_not_save_grid": True } ) - if populate.sampler_name: populate.sampler_index = None # prevent a warning later on args = vars(populate) args.pop('script_name', None) args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them - args.pop('alwayson_script_name', None) - args.pop('alwayson_script_args', None) + args.pop('alwayson_scripts', None) script_args = self.init_script_args(txt2imgreq, selectable_scripts, selectable_script_idx, script_runner) @@ -279,7 +272,6 @@ class Api: "mask": mask } ) - if populate.sampler_name: populate.sampler_index = None # prevent a warning later on @@ -287,8 +279,7 @@ class Api: args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine. args.pop('script_name', None) args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them - args.pop('alwayson_script_name', None) - args.pop('alwayson_script_args', None) + args.pop('alwayson_scripts', None) script_args = self.init_script_args(img2imgreq, selectable_scripts, selectable_script_idx, script_runner) diff --git a/modules/api/models.py b/modules/api/models.py index 86c701780..e273469d2 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -100,13 +100,13 @@ class PydanticModelGenerator: StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingTxt2Img", StableDiffusionProcessingTxt2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}, {"key": "alwayson_script_name", "type": list, "default": []}, {"key": "alwayson_script_args", "type": list, "default": []}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}, {"key": "alwayson_scripts", "type": dict, "default": {}}] ).generate_model() StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator( "StableDiffusionProcessingImg2Img", StableDiffusionProcessingImg2Img, - [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}, {"key": "alwayson_script_name", "type": list, "default": []}, {"key": "alwayson_script_args", "type": list, "default": []}] + [{"key": "sampler_index", "type": str, "default": "Euler"}, {"key": "init_images", "type": list, "default": None}, {"key": "denoising_strength", "type": float, "default": 0.75}, {"key": "mask", "type": str, "default": None}, {"key": "include_init_images", "type": bool, "default": False, "exclude" : True}, {"key": "script_name", "type": str, "default": None}, {"key": "script_args", "type": list, "default": []}, {"key": "alwayson_scripts", "type": dict, "default": {}}] ).generate_model() class TextToImageResponse(BaseModel):