Update hypernetwork.py

This commit is contained in:
AngelBottomless 2022-10-23 01:57:58 +09:00 committed by AUTOMATIC1111
parent 321bacc6a9
commit 24694e5983

View File

@ -16,6 +16,7 @@ from modules.textual_inversion import textual_inversion
from modules.textual_inversion.learn_schedule import LearnRateScheduler from modules.textual_inversion.learn_schedule import LearnRateScheduler
from torch import einsum from torch import einsum
from statistics import stdev, mean
class HypernetworkModule(torch.nn.Module): class HypernetworkModule(torch.nn.Module):
multiplier = 1.0 multiplier = 1.0
@ -268,6 +269,32 @@ def stack_conds(conds):
return torch.stack(conds) return torch.stack(conds)
def log_statistics(loss_info:dict, key, value):
if key not in loss_info:
loss_info[key] = [value]
else:
loss_info[key].append(value)
if len(loss_info) > 1024:
loss_info.pop(0)
def statistics(data):
total_information = f"loss:{mean(data):.3f}"+u"\u00B1"+f"({stdev(data)/ (len(data)**0.5):.3f})"
recent_data = data[-32:]
recent_information = f"recent 32 loss:{mean(recent_data):.3f}"+u"\u00B1"+f"({stdev(recent_data)/ (len(recent_data)**0.5):.3f})"
return total_information, recent_information
def report_statistics(loss_info:dict):
keys = sorted(loss_info.keys(), key=lambda x: sum(loss_info[x]) / len(loss_info[x]))
for key in keys:
info, recent = statistics(loss_info[key])
print("Loss statistics for file " + key)
print(info)
print(recent)
def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_hypernetwork_every, template_file, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
# images allows training previews to have infotext. Importing it at the top causes a circular import problem. # images allows training previews to have infotext. Importing it at the top causes a circular import problem.
from modules import images from modules import images
@ -310,7 +337,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
for weight in weights: for weight in weights:
weight.requires_grad = True weight.requires_grad = True
losses = torch.zeros((32,)) size = len(ds.indexes)
loss_dict = {}
losses = torch.zeros((size,))
previous_mean_loss = 0
print("Mean loss of {} elements".format(size))
last_saved_file = "<none>" last_saved_file = "<none>"
last_saved_image = "<none>" last_saved_image = "<none>"
@ -329,7 +360,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step)
for i, entries in pbar: for i, entries in pbar:
hypernetwork.step = i + ititial_step hypernetwork.step = i + ititial_step
if loss_dict and i % size == 0:
previous_mean_loss = sum(i[-1] for i in loss_dict.values()) / len(loss_dict)
scheduler.apply(optimizer, hypernetwork.step) scheduler.apply(optimizer, hypernetwork.step)
if scheduler.finished: if scheduler.finished:
break break
@ -346,7 +379,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
del c del c
losses[hypernetwork.step % losses.shape[0]] = loss.item() losses[hypernetwork.step % losses.shape[0]] = loss.item()
for entry in entries:
log_statistics(loss_dict, entry.filename, loss.item())
optimizer.zero_grad() optimizer.zero_grad()
weights[0].grad = None weights[0].grad = None
loss.backward() loss.backward()
@ -359,10 +394,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
optimizer.step() optimizer.step()
mean_loss = losses.mean() if torch.isnan(losses[hypernetwork.step % losses.shape[0]]):
if torch.isnan(mean_loss):
raise RuntimeError("Loss diverged.") raise RuntimeError("Loss diverged.")
pbar.set_description(f"loss: {mean_loss:.7f}") pbar.set_description(f"dataset loss: {previous_mean_loss:.7f}")
if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0: if hypernetwork.step > 0 and hypernetwork_dir is not None and hypernetwork.step % save_hypernetwork_every == 0:
# Before saving, change name to match current checkpoint. # Before saving, change name to match current checkpoint.
@ -371,7 +405,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
hypernetwork.save(last_saved_file) hypernetwork.save(last_saved_file)
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), { textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
"loss": f"{mean_loss:.7f}", "loss": f"{previous_mean_loss:.7f}",
"learn_rate": scheduler.learn_rate "learn_rate": scheduler.learn_rate
}) })
@ -420,14 +454,15 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
shared.state.textinfo = f""" shared.state.textinfo = f"""
<p> <p>
Loss: {mean_loss:.7f}<br/> Loss: {previous_mean_loss:.7f}<br/>
Step: {hypernetwork.step}<br/> Step: {hypernetwork.step}<br/>
Last prompt: {html.escape(entries[0].cond_text)}<br/> Last prompt: {html.escape(entries[0].cond_text)}<br/>
Last saved hypernetwork: {html.escape(last_saved_file)}<br/> Last saved hypernetwork: {html.escape(last_saved_file)}<br/>
Last saved image: {html.escape(last_saved_image)}<br/> Last saved image: {html.escape(last_saved_image)}<br/>
</p> </p>
""" """
report_statistics(loss_dict)
checkpoint = sd_models.select_checkpoint() checkpoint = sd_models.select_checkpoint()
hypernetwork.sd_checkpoint = checkpoint.hash hypernetwork.sd_checkpoint = checkpoint.hash
@ -438,5 +473,3 @@ Last saved image: {html.escape(last_saved_image)}<br/>
hypernetwork.save(filename) hypernetwork.save(filename)
return hypernetwork, filename return hypernetwork, filename