diff --git a/modules/images.py b/modules/images.py index b62c48f8c..a30643337 100644 --- a/modules/images.py +++ b/modules/images.py @@ -274,7 +274,7 @@ def apply_filename_pattern(x, p, seed, prompt): x = x.replace("[height]", str(p.height)) x = x.replace("[sampler]", sd_samplers.samplers[p.sampler_index].name) - x = x.replace("[model_hash]", shared.sd_model_hash) + x = x.replace("[model_hash]", shared.sd_model.sd_model_hash) x = x.replace("[date]", datetime.date.today().isoformat()) if cmd_opts.hide_ui_dir_config: diff --git a/modules/processing.py b/modules/processing.py index 81c83f062..3a4ff224b 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -227,7 +227,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: "Seed": all_seeds[index], "Face restoration": (opts.face_restoration_model if p.restore_faces else None), "Size": f"{p.width}x{p.height}", - "Model hash": (None if not opts.add_model_hash_to_info or not shared.sd_model_hash else shared.sd_model_hash), + "Model hash": (None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Batch size": (None if p.batch_size < 2 else p.batch_size), "Batch pos": (None if p.batch_size < 2 else position_in_batch), "Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]), diff --git a/modules/sd_models.py b/modules/sd_models.py new file mode 100644 index 000000000..036af0e4f --- /dev/null +++ b/modules/sd_models.py @@ -0,0 +1,148 @@ +import glob +import os.path +import sys +from collections import namedtuple +import torch +from omegaconf import OmegaConf + + +from ldm.util import instantiate_from_config + +from modules import shared + +CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash']) +checkpoints_list = {} + +try: + # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. + + from transformers import logging + + logging.set_verbosity_error() +except Exception: + pass + + +def list_models(): + checkpoints_list.clear() + + model_dir = os.path.abspath(shared.cmd_opts.ckpt_dir) + + def modeltitle(path, h): + abspath = os.path.abspath(path) + + if abspath.startswith(model_dir): + name = abspath.replace(model_dir, '') + else: + name = os.path.basename(path) + + if name.startswith("\\") or name.startswith("/"): + name = name[1:] + + return f'{name} [{h}]' + + cmd_ckpt = shared.cmd_opts.ckpt + if os.path.exists(cmd_ckpt): + h = model_hash(cmd_ckpt) + title = modeltitle(cmd_ckpt, h) + checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h) + elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: + print(f"Checkpoint in --ckpt argument not found: {cmd_ckpt}", file=sys.stderr) + + if os.path.exists(model_dir): + for filename in glob.glob(model_dir + '/**/*.ckpt', recursive=True): + h = model_hash(filename) + title = modeltitle(filename, h) + checkpoints_list[title] = CheckpointInfo(filename, title, h) + + +def model_hash(filename): + try: + with open(filename, "rb") as file: + import hashlib + m = hashlib.sha256() + + file.seek(0x100000) + m.update(file.read(0x10000)) + return m.hexdigest()[0:8] + except FileNotFoundError: + return 'NOFILE' + + +def select_checkpoint(): + model_checkpoint = shared.opts.sd_model_checkpoint + checkpoint_info = checkpoints_list.get(model_checkpoint, None) + if checkpoint_info is not None: + return checkpoint_info + + if len(checkpoints_list) == 0: + print(f"Checkpoint {model_checkpoint} not found and no other checkpoints found", file=sys.stderr) + return None + + checkpoint_info = next(iter(checkpoints_list.values())) + if model_checkpoint is not None: + print(f"Checkpoint {model_checkpoint} not found; loading fallback {checkpoint_info.title}", file=sys.stderr) + + return checkpoint_info + + +def load_model_weights(model, checkpoint_file, sd_model_hash): + print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") + + pl_sd = torch.load(checkpoint_file, map_location="cpu") + if "global_step" in pl_sd: + print(f"Global Step: {pl_sd['global_step']}") + sd = pl_sd["state_dict"] + + model.load_state_dict(sd, strict=False) + + if shared.cmd_opts.opt_channelslast: + model.to(memory_format=torch.channels_last) + + if not shared.cmd_opts.no_half: + model.half() + + model.sd_model_hash = sd_model_hash + model.sd_model_checkpint = checkpoint_file + + +def load_model(): + from modules import lowvram, sd_hijack + checkpoint_info = select_checkpoint() + + sd_config = OmegaConf.load(shared.cmd_opts.config) + sd_model = instantiate_from_config(sd_config.model) + load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash) + + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram) + else: + sd_model.to(shared.device) + + sd_hijack.model_hijack.hijack(sd_model) + + sd_model.eval() + + print(f"Model loaded.") + return sd_model + + +def reload_model_weights(sd_model): + from modules import lowvram, devices + checkpoint_info = select_checkpoint() + + if sd_model.sd_model_checkpint == checkpoint_info.filename: + return + + if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: + lowvram.send_everything_to_cpu() + else: + sd_model.to(devices.cpu) + + load_model_weights(sd_model, checkpoint_info.filename, checkpoint_info.hash) + + if not shared.cmd_opts.lowvram and not shared.cmd_opts.medvram: + sd_model.to(devices.device) + + print(f"Weights loaded.") + return sd_model diff --git a/modules/shared.py b/modules/shared.py index 4f877036e..3c3aa9b62 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -13,14 +13,15 @@ from modules.devices import get_optimal_device import modules.styles import modules.interrogate import modules.memmon +import modules.sd_models sd_model_file = os.path.join(script_path, 'model.ckpt') -if not os.path.exists(sd_model_file): - sd_model_file = "models/ldm/stable-diffusion-v1/model.ckpt" +default_sd_model_file = sd_model_file parser = argparse.ArgumentParser() parser.add_argument("--config", type=str, default=os.path.join(sd_path, "configs/stable-diffusion/v1-inference.yaml"), help="path to config which constructs model",) -parser.add_argument("--ckpt", type=str, default=os.path.join(sd_path, sd_model_file), help="path to checkpoint of model",) +parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; this checkpoint will be added to the list of checkpoints and loaded by default if you don't have a checkpoint selected in settings",) +parser.add_argument("--ckpt-dir", type=str, default=os.path.join(script_path, 'models'), help="path to directory with stable diffusion checkpoints",) parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=('./src/gfpgan' if os.path.exists('./src/gfpgan') else './GFPGAN')) parser.add_argument("--gfpgan-model", type=str, help="GFPGAN model file name", default='GFPGANv1.3.pth') parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats") @@ -88,13 +89,17 @@ interrogator = modules.interrogate.InterrogateModels("interrogate") face_restorers = [] +modules.sd_models.list_models() + + class Options: class OptionInfo: - def __init__(self, default=None, label="", component=None, component_args=None): + def __init__(self, default=None, label="", component=None, component_args=None, onchange=None): self.default = default self.label = label self.component = component self.component_args = component_args + self.onchange = onchange data = None hide_dirs = {"visible": False} if cmd_opts.hide_ui_dir_config else None @@ -150,6 +155,7 @@ class Options: "interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), "interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), "interrogate_clip_dict_limit": OptionInfo(1500, "Interrogate: maximum number of lines in text file (0 = No limit)"), + "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Radio, lambda: {"choices": [x.title for x in modules.sd_models.checkpoints_list.values()]}), } def __init__(self): @@ -180,6 +186,10 @@ class Options: with open(filename, "r", encoding="utf8") as file: self.data = json.load(file) + def onchange(self, key, func): + item = self.data_labels.get(key) + item.onchange = func + opts = Options() if os.path.exists(config_filename): @@ -188,7 +198,6 @@ if os.path.exists(config_filename): sd_upscalers = [] sd_model = None -sd_model_hash = '' progress_print_out = sys.stdout diff --git a/modules/ui.py b/modules/ui.py index 437bce66f..36e3c6645 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -758,7 +758,12 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo): if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False: continue + oldval = opts.data.get(key, None) opts.data[key] = value + + if oldval != value and opts.data_labels[key].onchange is not None: + opts.data_labels[key].onchange() + up.append(comp.update(value=value)) opts.save(shared.config_filename) diff --git a/webui.py b/webui.py index add721233..ff8997dbb 100644 --- a/webui.py +++ b/webui.py @@ -3,13 +3,8 @@ import threading from modules.paths import script_path -import torch -from omegaconf import OmegaConf - import signal -from ldm.util import instantiate_from_config - from modules.shared import opts, cmd_opts, state import modules.shared as shared import modules.ui @@ -24,6 +19,7 @@ import modules.extras import modules.lowvram import modules.txt2img import modules.img2img +import modules.sd_models modules.codeformer_model.setup_codeformer() @@ -33,31 +29,19 @@ shared.face_restorers.append(modules.face_restoration.FaceRestoration()) esrgan.load_models(cmd_opts.esrgan_models_path) realesrgan.setup_realesrgan() - -def load_model_from_config(config, ckpt, verbose=False): - print(f"Loading model [{shared.sd_model_hash}] from {ckpt}") - pl_sd = torch.load(ckpt, map_location="cpu") - if "global_step" in pl_sd: - print(f"Global Step: {pl_sd['global_step']}") - sd = pl_sd["state_dict"] - - model = instantiate_from_config(config.model) - m, u = model.load_state_dict(sd, strict=False) - if len(m) > 0 and verbose: - print("missing keys:") - print(m) - if len(u) > 0 and verbose: - print("unexpected keys:") - print(u) - if cmd_opts.opt_channelslast: - model = model.to(memory_format=torch.channels_last) - model.eval() - return model - - queue_lock = threading.Lock() +def wrap_queued_call(func): + def f(*args, **kwargs): + with queue_lock: + res = func(*args, **kwargs) + + return res + + return f + + def wrap_gradio_gpu_call(func): def f(*args, **kwargs): shared.state.sampling_step = 0 @@ -80,33 +64,8 @@ def wrap_gradio_gpu_call(func): modules.scripts.load_scripts(os.path.join(script_path, "scripts")) -try: - # this silences the annoying "Some weights of the model checkpoint were not used when initializing..." message at start. - - from transformers import logging - - logging.set_verbosity_error() -except Exception: - pass - -with open(cmd_opts.ckpt, "rb") as file: - import hashlib - m = hashlib.sha256() - - file.seek(0x100000) - m.update(file.read(0x10000)) - shared.sd_model_hash = m.hexdigest()[0:8] - -sd_config = OmegaConf.load(cmd_opts.config) -shared.sd_model = load_model_from_config(sd_config, cmd_opts.ckpt) -shared.sd_model = (shared.sd_model if cmd_opts.no_half else shared.sd_model.half()) - -if cmd_opts.lowvram or cmd_opts.medvram: - modules.lowvram.setup_for_low_vram(shared.sd_model, cmd_opts.medvram) -else: - shared.sd_model = shared.sd_model.to(shared.device) - -modules.sd_hijack.model_hijack.hijack(shared.sd_model) +shared.sd_model = modules.sd_models.load_model() +shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) def webui():