From 259d33c3c8e27557cb9bab9b3a1dd7fc7450d16c Mon Sep 17 00:00:00 2001 From: CodeHatchling Date: Mon, 4 Dec 2023 01:57:21 -0700 Subject: [PATCH] Enables the original functionality to be toggled on and off. --- modules/processing.py | 91 +++++++++++++++++++++++++++++++------------ 1 file changed, 66 insertions(+), 25 deletions(-) diff --git a/modules/processing.py b/modules/processing.py index b209c84a3..b40b1a40d 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -88,9 +88,12 @@ def apply_overlay(image, paste_loc, index, overlays): return image -def create_binary_mask(image): +def create_binary_mask(image, round=True): if image.mode == 'RGBA' and image.getextrema()[-1] != (255, 255): - image = image.split()[-1].convert("L") + if round: + image = image.split()[-1].convert("L").point(lambda x: 255 if x > 128 else 0) + else: + image = image.split()[-1].convert("L") else: image = image.convert('L') return image @@ -316,7 +319,7 @@ class StableDiffusionProcessing: c_adm = torch.cat((c_adm, noise_level_emb), 1) return c_adm - def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None): + def inpainting_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True): self.is_using_inpainting_conditioning = True # Handle the different mask inputs @@ -327,6 +330,11 @@ class StableDiffusionProcessing: conditioning_mask = np.array(image_mask.convert("L")) conditioning_mask = conditioning_mask.astype(np.float32) / 255.0 conditioning_mask = torch.from_numpy(conditioning_mask[None, None]) + + if round_image_mask: + # Caller is requesting a discretized mask as input, so we round to either 1.0 or 0.0 + conditioning_mask = torch.round(conditioning_mask) + else: conditioning_mask = source_image.new_ones(1, 1, *source_image.shape[-2:]) @@ -350,7 +358,7 @@ class StableDiffusionProcessing: return image_conditioning - def img2img_image_conditioning(self, source_image, latent_image, image_mask=None): + def img2img_image_conditioning(self, source_image, latent_image, image_mask=None, round_image_mask=True): source_image = devices.cond_cast_float(source_image) # HACK: Using introspection as the Depth2Image model doesn't appear to uniquely @@ -362,7 +370,10 @@ class StableDiffusionProcessing: return self.edit_image_conditioning(source_image) if self.sampler.conditioning_key in {'hybrid', 'concat'}: - return self.inpainting_image_conditioning(source_image, latent_image, image_mask=image_mask) + return self.inpainting_image_conditioning(source_image, + latent_image, + image_mask=image_mask, + round_image_mask=round_image_mask) if self.sampler.conditioning_key == "crossattn-adm": return self.unclip_image_conditioning(source_image) @@ -878,8 +889,9 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: else: if opts.sd_vae_decode_method != 'Full': p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method + # Generate the mask(s) based on similarity between the original and denoised latent vectors - if getattr(p, "image_mask", None) is not None: + if getattr(p, "image_mask", None) is not None and getattr(p, "soft_inpainting", None) is not None: # latent_mask = p.nmask[0].float().cpu() # convert the original mask into a form we use to scale distances for thresholding @@ -911,7 +923,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: converted_mask = converted_mask.astype(np.uint8) converted_mask = Image.fromarray(converted_mask) converted_mask = images.resize_image(2, converted_mask, p.width, p.height) - converted_mask = create_binary_mask(converted_mask) + converted_mask = create_binary_mask(converted_mask, round=False) # Remove aliasing artifacts using a gaussian blur. converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4)) @@ -1010,23 +1022,33 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: if opts.enable_pnginfo: image.info["parameters"] = text output_images.append(image) - if save_samples and hasattr(p, 'masks_for_overlay') and p.masks_for_overlay and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]): - image_mask = p.masks_for_overlay[i].convert('RGB') - image_mask_composite = Image.composite( - original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), - images.resize_image(2, p.masks_for_overlay[i], image.width, image.height).convert('L')).convert('RGBA') + if save_samples and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]): + if hasattr(p, 'masks_for_overlay') and p.masks_for_overlay: + image_mask = p.masks_for_overlay[i].convert('RGB') + image_mask_composite = Image.composite( + original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), + images.resize_image(2, p.masks_for_overlay[i], image.width, image.height).convert('L')).convert('RGBA') + elif hasattr(p, 'mask_for_overlay') and p.mask_for_overlay: + image_mask = p.mask_for_overlay.convert('RGB') + image_mask_composite = Image.composite( + original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), + images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA') + else: + image_mask = None + image_mask_composite = None - if opts.save_mask: - images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask") + if image_mask is not None and image_mask_composite is not None: + if opts.save_mask: + images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask") - if opts.save_mask_composite: - images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite") + if opts.save_mask_composite: + images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite") - if opts.return_mask: - output_images.append(image_mask) + if opts.return_mask: + output_images.append(image_mask) - if opts.return_mask_composite: - output_images.append(image_mask_composite) + if opts.return_mask_composite: + output_images.append(image_mask_composite) del x_samples_ddim @@ -1439,6 +1461,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): nmask: torch.Tensor = field(default=None, init=False) image_conditioning: torch.Tensor = field(default=None, init=False) init_img_hash: str = field(default=None, init=False) + mask_for_overlay: Image = field(default=None, init=False) init_latent: torch.Tensor = field(default=None, init=False) def __post_init__(self): @@ -1471,7 +1494,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): if image_mask is not None: # image_mask is passed in as RGBA by Gradio to support alpha masks, # but we still want to support binary masks. - image_mask = create_binary_mask(image_mask) + image_mask = create_binary_mask(image_mask, round=(self.soft_inpainting is None)) if self.inpainting_mask_invert: image_mask = ImageOps.invert(image_mask) @@ -1489,6 +1512,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image_mask = Image.fromarray(np_mask) if self.inpaint_full_res: + self.mask_for_overlay = image_mask if self.soft_inpainting is None else None mask = image_mask.convert('L') crop_region = masking.get_crop_region(np.array(mask), self.inpaint_full_res_padding) crop_region = masking.expand_crop_region(crop_region, self.width, self.height, mask.width, mask.height) @@ -1500,7 +1524,12 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): else: image_mask = images.resize_image(self.resize_mode, image_mask, self.width, self.height) - self.masks_for_overlay = [] + if self.soft_inpainting is None: + np_mask = np.array(image_mask) + np_mask = np.clip((np_mask.astype(np.float32)) * 2, 0, 255).astype(np.uint8) + self.mask_for_overlay = Image.fromarray(np_mask) + + self.masks_for_overlay = [] if self.soft_inpainting is not None else None self.overlay_images = [] latent_mask = self.latent_mask if self.latent_mask is not None else image_mask @@ -1522,8 +1551,15 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): image = images.resize_image(self.resize_mode, image, self.width, self.height) if image_mask is not None: - self.overlay_images.append(image) - self.masks_for_overlay.append(image_mask) + if self.soft_inpainting is not None: + # We apply the masks AFTER to adjust mask based on changed content. + self.overlay_images.append(image) + self.masks_for_overlay.append(image_mask) + else: + image_masked = Image.new('RGBa', (image.width, image.height)) + image_masked.paste(image.convert("RGBA").convert("RGBa"), + mask=ImageOps.invert(self.mask_for_overlay.convert('L'))) + self.overlay_images.append(image_masked.convert('RGBA')) # crop_region is not None if we are doing inpaint full res if crop_region is not None: @@ -1576,6 +1612,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): latmask = init_mask.convert('RGB').resize((self.init_latent.shape[3], self.init_latent.shape[2])) latmask = np.moveaxis(np.array(latmask, dtype=np.float32), 2, 0) / 255 latmask = latmask[0] + if self.soft_inpainting is None: + latmask = np.around(latmask) latmask = np.tile(latmask[None], (4, 1, 1)) self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype) @@ -1587,7 +1625,10 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): elif self.inpainting_fill == 3: self.init_latent = self.init_latent * self.mask - self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, self.init_latent, image_mask) + self.image_conditioning = self.img2img_image_conditioning(image * 2 - 1, + self.init_latent, + image_mask, + self.soft_inpainting is None) def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): x = self.rng.next()