diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index 3dcef5a6e..2ed1d2739 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -14,8 +14,11 @@ import modules.images def load_model(filename): # this code is adapted from https://github.com/xinntao/ESRGAN - - pretrained_net = torch.load(filename) + if torch.has_mps: + map_l = 'cpu' + else: + map_l = None + pretrained_net = torch.load(filename, map_location=map_l) crt_model = arch.RRDBNet(3, 3, 64, 23, gc=32) if 'conv_first.weight' in pretrained_net: diff --git a/modules/lowvram.py b/modules/lowvram.py index 4b78deab7..bd1174915 100644 --- a/modules/lowvram.py +++ b/modules/lowvram.py @@ -2,9 +2,12 @@ import torch module_in_gpu = None cpu = torch.device("cpu") -gpu = torch.device("cuda") -device = gpu if torch.cuda.is_available() else cpu - +if torch.has_cuda: + device = gpu = torch.device("cuda") +elif torch.has_mps: + device = gpu = torch.device("mps") +else: + device = gpu = torch.device("cpu") def setup_for_low_vram(sd_model, use_medvram): parents = {} diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index 2d26b5f71..1084e2484 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -232,7 +232,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): z = outputs.last_hidden_state # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise - batch_multipliers = torch.asarray(np.array(batch_multipliers)).to(device) + batch_multipliers = torch.asarray(batch_multipliers).to(device) original_mean = z.mean() z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape) new_mean = z.mean() diff --git a/modules/shared.py b/modules/shared.py index beb6f9bb0..e529ec27a 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -36,9 +36,12 @@ parser.add_argument("--opt-split-attention", action='store_true', help="enable o parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests") cmd_opts = parser.parse_args() -cpu = torch.device("cpu") -gpu = torch.device("cuda") -device = gpu if torch.cuda.is_available() else cpu +if torch.has_cuda: + device = torch.device("cuda") +elif torch.has_mps: + device = torch.device("mps") +else: + device = torch.device("cpu") batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram