diff --git a/modules/shared.py b/modules/shared.py index faede8214..2c6341f75 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -254,6 +254,10 @@ options_templates.update(options_section(('training', "Training"), { "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"), + "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."), + "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."), + "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."), + })) options_templates.update(options_section(('sd', "Stable Diffusion"), { diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 3be69562b..c57d3aced 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -7,9 +7,11 @@ import tqdm import html import datetime import csv +import numpy as np +import torchvision.transforms from PIL import Image, PngImagePlugin - +from torch.utils.tensorboard import SummaryWriter from modules import shared, devices, sd_hijack, processing, sd_models import modules.textual_inversion.dataset from modules.textual_inversion.learn_schedule import LearnRateScheduler @@ -199,6 +201,19 @@ def write_loss(log_directory, filename, step, epoch_len, values): **values, }) +def tensorboard_add_scaler(tensorboard_writer, tag, value, step): + if shared.opts.training_enable_tensorboard: + tensorboard_writer.add_scalar(tag=tag, + scalar_value=value, global_step=step) + +def tensorboard_add_image(tensorboard_writer, tag, pil_image, step): + if shared.opts.training_enable_tensorboard: + # Convert a pil image to a torch tensor + img_tensor = torch.as_tensor(np.array(pil_image, copy=True)) + img_tensor = img_tensor.view(pil_image.size[1], pil_image.size[0], len(pil_image.getbands())) + img_tensor = img_tensor.permute((2, 0, 1)) + + tensorboard_writer.add_image(tag, img_tensor, global_step=step) def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_directory, training_width, training_height, steps, create_image_every, save_embedding_every, template_file, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height): assert embedding_name, 'embedding not selected' @@ -252,6 +267,12 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc scheduler = LearnRateScheduler(learn_rate, steps, ititial_step) optimizer = torch.optim.AdamW([embedding.vec], lr=scheduler.learn_rate) + if shared.opts.training_enable_tensorboard: + os.makedirs(os.path.join(log_directory, "tensorboard"), exist_ok=True) + tensorboard_writer = SummaryWriter( + log_dir=os.path.join(log_directory, "tensorboard"), + flush_secs=shared.opts.training_tensorboard_flush_every) + pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) for i, entries in pbar: embedding.step = i + ititial_step @@ -270,6 +291,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc del x losses[embedding.step % losses.shape[0]] = loss.item() + optimizer.zero_grad() loss.backward() @@ -285,6 +307,12 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc embedding.save(last_saved_file) embedding_yet_to_be_embedded = True + if shared.opts.training_enable_tensorboard: + tensorboard_add_scaler(tensorboard_writer, "Loss/train", losses.mean(), embedding.step) + tensorboard_add_scaler(tensorboard_writer, f"Loss/train/epoch-{epoch_num}", losses.mean(), epoch_step) + tensorboard_add_scaler(tensorboard_writer, "Learn rate/train", scheduler.learn_rate, embedding.step) + tensorboard_add_scaler(tensorboard_writer, f"Learn rate/train/epoch-{epoch_num}", scheduler.learn_rate, epoch_step) + write_loss(log_directory, "textual_inversion_loss.csv", embedding.step, len(ds), { "loss": f"{losses.mean():.7f}", "learn_rate": scheduler.learn_rate @@ -349,6 +377,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, data_root, log_direc embedding_yet_to_be_embedded = False image.save(last_saved_image) + tensorboard_add_image(tensorboard_writer, f"Validation at epoch {epoch_num}", image, embedding.step) last_saved_image += f", prompt: {preview_text}"