mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-29 02:45:05 +08:00
save image generation params into text chunks for png images
This commit is contained in:
parent
da96bbf485
commit
29f7e7ab89
40
webui.py
40
webui.py
@ -4,7 +4,7 @@ import torch.nn as nn
|
||||
import numpy as np
|
||||
import gradio as gr
|
||||
from omegaconf import OmegaConf
|
||||
from PIL import Image, ImageFont, ImageDraw
|
||||
from PIL import Image, ImageFont, ImageDraw, PngImagePlugin
|
||||
from itertools import islice
|
||||
from einops import rearrange, repeat
|
||||
from torch import autocast
|
||||
@ -49,11 +49,13 @@ parser.add_argument("--gfpgan-dir", type=str, help="GFPGAN directory", default=(
|
||||
parser.add_argument("--no-verify-input", action='store_true', help="do not verify input to check if it's too long")
|
||||
parser.add_argument("--no-half", action='store_true', help="do not switch the model to 16-bit floats")
|
||||
parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware accleration in browser)")
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
parser.add_argument("--save-format", type=str, default='png', help="file format for saved indiviual samples; can be png or jpg")
|
||||
parser.add_argument("--grid-format", type=str, default='png', help="file format for saved grids; can be png or jpg")
|
||||
parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI")
|
||||
parser.add_argument("--save-format", type=str, default='png', help="file format for saved indiviual samples; can be png or jpg")
|
||||
parser.add_argument("--grid-format", type=str, default='png', help="file format for saved grids; can be png or jpg")
|
||||
parser.add_argument("--grid-extended-filename", action='store_true', help="save grid images to filenames with extended info: seed, prompt")
|
||||
parser.add_argument("--jpeg-quality", type=int, default=80, help="quality for saved jpeg images")
|
||||
parser.add_argument("--jpeg-quality", type=int, default=80, help="quality for saved jpeg images")
|
||||
parser.add_argument("--disable-pnginfo", action='store_true', help="disable saving text information about generation parameters as chunks to png files")
|
||||
|
||||
opt = parser.parse_args()
|
||||
|
||||
GFPGAN_dir = opt.gfpgan_dir
|
||||
@ -141,7 +143,7 @@ def sanitize_filename_part(text):
|
||||
return text.replace(' ', '_').translate({ord(x): '' for x in invalid_filename_chars})[:128]
|
||||
|
||||
|
||||
def save_image(image, path, basename, seed, prompt, extension, short_filename=False):
|
||||
def save_image(image, path, basename, seed, prompt, extension, info=None, short_filename=False):
|
||||
prompt = sanitize_filename_part(prompt)
|
||||
|
||||
if short_filename:
|
||||
@ -149,7 +151,13 @@ def save_image(image, path, basename, seed, prompt, extension, short_filename=Fa
|
||||
else:
|
||||
filename = f"{basename}-{seed}-{prompt[:128]}.{extension}"
|
||||
|
||||
image.save(os.path.join(path, filename), quality=opt.jpeg_quality)
|
||||
if extension == 'png' and not opt.disable_pnginfo:
|
||||
pnginfo = PngImagePlugin.PngInfo()
|
||||
pnginfo.add_text("parameters", info)
|
||||
else:
|
||||
pnginfo = None
|
||||
|
||||
image.save(os.path.join(path, filename), quality=opt.jpeg_quality, pnginfo=pnginfo)
|
||||
|
||||
|
||||
def load_GFPGAN():
|
||||
@ -373,6 +381,11 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name,
|
||||
all_prompts = batch_size * n_iter * [prompt]
|
||||
all_seeds = [seed + x for x in range(len(all_prompts))]
|
||||
|
||||
info = f"""
|
||||
{prompt}
|
||||
Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
||||
""".strip() + "".join(["\n\n" + x for x in comments])
|
||||
|
||||
precision_scope = autocast if opt.precision == "autocast" else nullcontext
|
||||
output_images = []
|
||||
with torch.no_grad(), precision_scope("cuda"), model.ema_scope():
|
||||
@ -407,7 +420,7 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name,
|
||||
x_sample = restored_img
|
||||
|
||||
image = Image.fromarray(x_sample)
|
||||
save_image(image, sample_path, f"{base_count:05}", seeds[i], prompts[i], opt.save_format)
|
||||
save_image(image, sample_path, f"{base_count:05}", seeds[i], prompts[i], opt.save_format, info=info)
|
||||
|
||||
output_images.append(image)
|
||||
base_count += 1
|
||||
@ -426,16 +439,9 @@ def process_images(outpath, func_init, func_sample, prompt, seed, sampler_name,
|
||||
|
||||
output_images.insert(0, grid)
|
||||
|
||||
save_image(grid, outpath, f"grid-{grid_count:04}", seed, prompt, opt.grid_format, short_filename=not opt.grid_extended_filename)
|
||||
save_image(grid, outpath, f"grid-{grid_count:04}", seed, prompt, opt.grid_format, info=info, short_filename=not opt.grid_extended_filename)
|
||||
grid_count += 1
|
||||
|
||||
info = f"""
|
||||
{prompt}
|
||||
Steps: {steps}, Sampler: {sampler_name}, CFG scale: {cfg_scale}, Seed: {seed}{', GFPGAN' if use_GFPGAN and GFPGAN is not None else ''}
|
||||
""".strip()
|
||||
|
||||
for comment in comments:
|
||||
info += "\n\n" + comment
|
||||
torch_gc()
|
||||
return output_images, seed, info
|
||||
|
||||
@ -619,7 +625,7 @@ def img2img(prompt: str, init_img, ddim_steps: int, use_GFPGAN: bool, prompt_mat
|
||||
grid_count = len(os.listdir(outpath)) - 1
|
||||
grid = image_grid(history, batch_size, force_n_rows=1)
|
||||
|
||||
save_image(grid, outpath, f"grid-{grid_count:04}", initial_seed, prompt, opt.grid_format, short_filename=not opt.grid_extended_filename)
|
||||
save_image(grid, outpath, f"grid-{grid_count:04}", initial_seed, prompt, opt.grid_format, info=info, short_filename=not opt.grid_extended_filename)
|
||||
|
||||
output_images = history
|
||||
seed = initial_seed
|
||||
|
Loading…
Reference in New Issue
Block a user