From 2aa485b5afb13fd6aab79777e4dfc488591b2f1c Mon Sep 17 00:00:00 2001 From: Kohaku-Blueleaf <59680068+KohakuBlueleaf@users.noreply.github.com> Date: Mon, 9 Oct 2023 22:52:09 +0800 Subject: [PATCH] add lora bundle system --- extensions-builtin/Lora/network.py | 1 + extensions-builtin/Lora/networks.py | 48 +++++++++++++++++++++++++++++ 2 files changed, 49 insertions(+) diff --git a/extensions-builtin/Lora/network.py b/extensions-builtin/Lora/network.py index d8e8dfb7f..6021fd8de 100644 --- a/extensions-builtin/Lora/network.py +++ b/extensions-builtin/Lora/network.py @@ -93,6 +93,7 @@ class Network: # LoraModule self.unet_multiplier = 1.0 self.dyn_dim = None self.modules = {} + self.bundle_embeddings = {} self.mtime = None self.mentioned_name = None diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index 315682b31..652b8ebed 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -15,6 +15,7 @@ import torch from typing import Union from modules import shared, devices, sd_models, errors, scripts, sd_hijack +from modules.textual_inversion.textual_inversion import Embedding module_types = [ network_lora.ModuleTypeLora(), @@ -149,9 +150,15 @@ def load_network(name, network_on_disk): is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping matched_networks = {} + bundle_embeddings = {} for key_network, weight in sd.items(): key_network_without_network_parts, network_part = key_network.split(".", 1) + if key_network_without_network_parts == "bundle_emb": + emb_name, vec_name = network_part.split(".", 1) + emb_dict = bundle_embeddings.get(emb_name, {}) + emb_dict[vec_name] = weight + bundle_embeddings[emb_name] = emb_dict key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2) sd_module = shared.sd_model.network_layer_mapping.get(key, None) @@ -195,6 +202,8 @@ def load_network(name, network_on_disk): net.modules[key] = net_module + net.bundle_embeddings = bundle_embeddings + if keys_failed_to_match: logging.debug(f"Network {network_on_disk.filename} didn't match keys: {keys_failed_to_match}") @@ -210,11 +219,14 @@ def purge_networks_from_memory(): def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None): + emb_db = sd_hijack.model_hijack.embedding_db already_loaded = {} for net in loaded_networks: if net.name in names: already_loaded[net.name] = net + for emb_name in net.bundle_embeddings: + emb_db.register_embedding_by_name(None, shared.sd_model, emb_name) loaded_networks.clear() @@ -257,6 +269,41 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0 loaded_networks.append(net) + for emb_name, data in net.bundle_embeddings.items(): + # textual inversion embeddings + if 'string_to_param' in data: + param_dict = data['string_to_param'] + param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11 + assert len(param_dict) == 1, 'embedding file has multiple terms in it' + emb = next(iter(param_dict.items()))[1] + vec = emb.detach().to(devices.device, dtype=torch.float32) + shape = vec.shape[-1] + vectors = vec.shape[0] + elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding + vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()} + shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1] + vectors = data['clip_g'].shape[0] + elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts + assert len(data.keys()) == 1, 'embedding file has multiple terms in it' + + emb = next(iter(data.values())) + if len(emb.shape) == 1: + emb = emb.unsqueeze(0) + vec = emb.detach().to(devices.device, dtype=torch.float32) + shape = vec.shape[-1] + vectors = vec.shape[0] + else: + raise Exception(f"Couldn't identify {emb_name} in lora: {name} as neither textual inversion embedding nor diffuser concept.") + + embedding = Embedding(vec, emb_name) + embedding.vectors = vectors + embedding.shape = shape + + if emb_db.expected_shape == -1 or emb_db.expected_shape == embedding.shape: + emb_db.register_embedding(embedding, shared.sd_model) + else: + emb_db.skipped_embeddings[name] = embedding + if failed_to_load_networks: sd_hijack.model_hijack.comments.append("Networks not found: " + ", ".join(failed_to_load_networks)) @@ -565,6 +612,7 @@ extra_network_lora = None available_networks = {} available_network_aliases = {} loaded_networks = [] +loaded_bundle_embeddings = {} networks_in_memory = {} available_network_hash_lookup = {} forbidden_network_aliases = {}