Re-implemented soft inpainting via a script. Also fixed some mistakes with the previous hooks, removed unnecessary formatting changes, removed code that I had forgotten to.

This commit is contained in:
CodeHatchling 2023-12-06 22:25:53 -07:00
parent ac45789123
commit 2abc417834
4 changed files with 413 additions and 323 deletions

View File

@ -879,14 +879,13 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.scripts is not None:
ps = scripts.PostSampleArgs(samples_ddim)
p.scripts.post_sample(p, ps)
samples_ddim = pp.samples
samples_ddim = ps.samples
if getattr(samples_ddim, 'already_decoded', False):
x_samples_ddim = samples_ddim
else:
if opts.sd_vae_decode_method != 'Full':
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
x_samples_ddim = torch.stack(x_samples_ddim).float()
@ -944,7 +943,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if p.scripts is not None:
ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
p.scripts.postprocess_maskoverlay(p, ppmo)
mask_for_overlay, overlay_image = pp.mask_for_overlay, pp.overlay_image
mask_for_overlay, overlay_image = ppmo.mask_for_overlay, ppmo.overlay_image
if p.color_corrections is not None and i < len(p.color_corrections):
if save_samples and opts.save_images_before_color_correction:
@ -959,7 +958,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
original_denoised_image = image.copy()
if p.paste_to is not None:
original_denoised_image = uncrop(original_denoised_image, (p.overlay_image.width, p.overlay_image.height), p.paste_to)
original_denoised_image = uncrop(original_denoised_image, (overlay_image.width, overlay_image.height), p.paste_to)
image = apply_overlay(image, p.paste_to, overlay_image)
@ -1512,9 +1511,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
if self.overlay_images is not None:
self.overlay_images = self.overlay_images * self.batch_size
if self.masks_for_overlay is not None:
self.masks_for_overlay = self.masks_for_overlay * self.batch_size
if self.color_corrections is not None and len(self.color_corrections) == 1:
self.color_corrections = self.color_corrections * self.batch_size
@ -1565,14 +1561,15 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
blended_samples = samples * self.nmask + self.init_latent * self.mask
if self.mask is not None:
blended_samples = samples * self.nmask + self.init_latent * self.mask
if self.scripts is not None:
mba = scripts.MaskBlendArgs(self, samples, self.nmask, self.init_latent, self.mask, blended_samples, sigma=None, is_final_blend=True)
self.scripts.on_mask_blend(self, mba)
blended_samples = mba.blended_latent
if self.scripts is not None:
mba = scripts.MaskBlendArgs(samples, self.nmask, self.init_latent, self.mask, blended_samples)
self.scripts.on_mask_blend(self, mba)
blended_samples = mba.blended_latent
samples = blended_samples
samples = blended_samples
del x
devices.torch_gc()

View File

@ -12,12 +12,12 @@ from modules import shared, paths, script_callbacks, extensions, script_loading,
AlwaysVisible = object()
class MaskBlendArgs:
def __init__(self, current_latent, nmask, init_latent, mask, blended_samples, denoiser=None, sigma=None):
def __init__(self, current_latent, nmask, init_latent, mask, blended_latent, denoiser=None, sigma=None):
self.current_latent = current_latent
self.nmask = nmask
self.init_latent = init_latent
self.mask = mask
self.blended_samples = blended_samples
self.blended_latent = blended_latent
self.denoiser = denoiser
self.is_final_blend = denoiser is None

View File

@ -1,308 +0,0 @@
class SoftInpaintingSettings:
def __init__(self, mask_blend_power, mask_blend_scale, inpaint_detail_preservation):
self.mask_blend_power = mask_blend_power
self.mask_blend_scale = mask_blend_scale
self.inpaint_detail_preservation = inpaint_detail_preservation
def add_generation_params(self, dest):
dest[enabled_gen_param_label] = True
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
# ------------------- Methods -------------------
def latent_blend(soft_inpainting, a, b, t):
"""
Interpolates two latent image representations according to the parameter t,
where the interpolated vectors' magnitudes are also interpolated separately.
The "detail_preservation" factor biases the magnitude interpolation towards
the larger of the two magnitudes.
"""
import torch
# NOTE: We use inplace operations wherever possible.
# [4][w][h] to [1][4][w][h]
t2 = t.unsqueeze(0)
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
t3 = t[0].unsqueeze(0).unsqueeze(0)
one_minus_t2 = 1 - t2
one_minus_t3 = 1 - t3
# Linearly interpolate the image vectors.
a_scaled = a * one_minus_t2
b_scaled = b * t2
image_interp = a_scaled
image_interp.add_(b_scaled)
result_type = image_interp.dtype
del a_scaled, b_scaled, t2, one_minus_t2
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
# 64-bit operations are used here to allow large exponents.
current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(torch.float64).add_(0.00001)
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * one_minus_t3
b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * t3
desired_magnitude = a_magnitude
desired_magnitude.add_(b_magnitude).pow_(1 / soft_inpainting.inpaint_detail_preservation)
del a_magnitude, b_magnitude, t3, one_minus_t3
# Change the linearly interpolated image vectors' magnitudes to the value we want.
# This is the last 64-bit operation.
image_interp_scaling_factor = desired_magnitude
image_interp_scaling_factor.div_(current_magnitude)
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type)
image_interp_scaled = image_interp
image_interp_scaled.mul_(image_interp_scaling_factor)
del current_magnitude
del desired_magnitude
del image_interp
del image_interp_scaling_factor
del result_type
return image_interp_scaled
def get_modified_nmask(soft_inpainting, nmask, sigma):
"""
Converts a negative mask representing the transparency of the original latent vectors being overlayed
to a mask that is scaled according to the denoising strength for this step.
Where:
0 = fully opaque, infinite density, fully masked
1 = fully transparent, zero density, fully unmasked
We bring this transparency to a power, as this allows one to simulate N number of blending operations
where N can be any positive real value. Using this one can control the balance of influence between
the denoiser and the original latents according to the sigma value.
NOTE: "mask" is not used
"""
import torch
# todo: Why is sigma 2D? Both values are the same.
return torch.pow(nmask, (sigma[0] ** soft_inpainting.mask_blend_power) * soft_inpainting.mask_blend_scale)
def apply_adaptive_masks(
latent_orig,
latent_processed,
overlay_images,
masks_for_overlay,
width, height,
paste_to):
import torch
import numpy as np
import modules.processing as proc
import modules.images as images
from PIL import Image, ImageOps, ImageFilter
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
# latent_mask = p.nmask[0].float().cpu()
# convert the original mask into a form we use to scale distances for thresholding
# mask_scalar = 1-(torch.clamp(latent_mask, min=0, max=1) ** (p.mask_blend_scale / 2))
# mask_scalar = mask_scalar / (1.00001-mask_scalar)
# mask_scalar = mask_scalar.numpy()
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1)
kernel, kernel_center = images.get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)):
converted_mask = distance_map.float().cpu().numpy()
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
percentile_min=0.9, percentile_max=1, min_width=1)
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
percentile_min=0.25, percentile_max=0.75, min_width=1)
# The distance at which opacity of original decreases to 50%
# half_weighted_distance = 1 # * mask_scalar
# converted_mask = converted_mask / half_weighted_distance
converted_mask = 1 / (1 + converted_mask ** 2)
converted_mask = images.smootherstep(converted_mask)
converted_mask = 1 - converted_mask
converted_mask = 255. * converted_mask
converted_mask = converted_mask.astype(np.uint8)
converted_mask = Image.fromarray(converted_mask)
converted_mask = images.resize_image(2, converted_mask, width, height)
converted_mask = proc.create_binary_mask(converted_mask, round=False)
# Remove aliasing artifacts using a gaussian blur.
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
# Expand the mask to fit the whole image if needed.
if paste_to is not None:
converted_mask = proc. uncrop(converted_mask,
(overlay_image.width, overlay_image.height),
paste_to)
masks_for_overlay[i] = converted_mask
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
mask=ImageOps.invert(converted_mask.convert('L')))
overlay_images[i] = image_masked.convert('RGBA')
def apply_masks(
soft_inpainting,
nmask,
overlay_images,
masks_for_overlay,
width, height,
paste_to):
import torch
import numpy as np
import modules.processing as proc
import modules.images as images
from PIL import Image, ImageOps, ImageFilter
converted_mask = nmask[0].float()
converted_mask = torch.clamp(converted_mask, min=0, max=1).pow_(soft_inpainting.mask_blend_scale / 2)
converted_mask = 255. * converted_mask
converted_mask = converted_mask.cpu().numpy().astype(np.uint8)
converted_mask = Image.fromarray(converted_mask)
converted_mask = images.resize_image(2, converted_mask, width, height)
converted_mask = proc.create_binary_mask(converted_mask, round=False)
# Remove aliasing artifacts using a gaussian blur.
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
# Expand the mask to fit the whole image if needed.
if paste_to is not None:
converted_mask = proc.uncrop(converted_mask,
(width, height),
paste_to)
for i, overlay_image in enumerate(overlay_images):
masks_for_overlay[i] = converted_mask
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
mask=ImageOps.invert(converted_mask.convert('L')))
overlay_images[i] = image_masked.convert('RGBA')
# ------------------- Constants -------------------
default = SoftInpaintingSettings(1, 0.5, 4)
enabled_ui_label = "Soft inpainting"
enabled_gen_param_label = "Soft inpainting enabled"
enabled_el_id = "soft_inpainting_enabled"
ui_labels = SoftInpaintingSettings(
"Schedule bias",
"Preservation strength",
"Transition contrast boost")
ui_info = SoftInpaintingSettings(
"Shifts when preservation of original content occurs during denoising.",
"How strongly partially masked content should be preserved.",
"Amplifies the contrast that may be lost in partially masked regions.")
gen_param_labels = SoftInpaintingSettings(
"Soft inpainting schedule bias",
"Soft inpainting preservation strength",
"Soft inpainting transition contrast boost")
el_ids = SoftInpaintingSettings(
"mask_blend_power",
"mask_blend_scale",
"inpaint_detail_preservation")
# ------------------- UI -------------------
def gradio_ui():
import gradio as gr
from modules.ui_components import InputAccordion
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled:
with gr.Group():
gr.Markdown(
"""
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity.
**High _Mask blur_** values are recommended!
""")
result = SoftInpaintingSettings(
gr.Slider(label=ui_labels.mask_blend_power,
info=ui_info.mask_blend_power,
minimum=0,
maximum=8,
step=0.1,
value=default.mask_blend_power,
elem_id=el_ids.mask_blend_power),
gr.Slider(label=ui_labels.mask_blend_scale,
info=ui_info.mask_blend_scale,
minimum=0,
maximum=8,
step=0.05,
value=default.mask_blend_scale,
elem_id=el_ids.mask_blend_scale),
gr.Slider(label=ui_labels.inpaint_detail_preservation,
info=ui_info.inpaint_detail_preservation,
minimum=1,
maximum=32,
step=0.5,
value=default.inpaint_detail_preservation,
elem_id=el_ids.inpaint_detail_preservation))
with gr.Accordion("Help", open=False):
gr.Markdown(
f"""
### {ui_labels.mask_blend_power}
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas).
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step.
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation.
- **Below 1**: Stronger preservation near the end (with low sigma)
- **1**: Balanced (proportional to sigma)
- **Above 1**: Stronger preservation in the beginning (with high sigma)
""")
gr.Markdown(
f"""
### {ui_labels.mask_blend_scale}
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content.
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength.
- **Low values**: Favors generated content.
- **High values**: Favors original content.
""")
gr.Markdown(
f"""
### {ui_labels.inpaint_detail_preservation}
This parameter controls how the original latent vectors and denoised latent vectors are interpolated.
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors.
This can prevent the loss of contrast that occurs with linear interpolation.
- **Low values**: Softer blending, details may fade.
- **High values**: Stronger contrast, may over-saturate colors.
""")
return (
[
soft_inpainting_enabled,
result.mask_blend_power,
result.mask_blend_scale,
result.inpaint_detail_preservation
],
[
(soft_inpainting_enabled, enabled_gen_param_label),
(result.mask_blend_power, gen_param_labels.mask_blend_power),
(result.mask_blend_scale, gen_param_labels.mask_blend_scale),
(result.inpaint_detail_preservation, gen_param_labels.inpaint_detail_preservation)
]
)

401
scripts/soft_inpainting.py Normal file
View File

@ -0,0 +1,401 @@
import gradio as gr
from modules.ui_components import InputAccordion
import modules.scripts as scripts
class SoftInpaintingSettings:
def __init__(self, mask_blend_power, mask_blend_scale, inpaint_detail_preservation):
self.mask_blend_power = mask_blend_power
self.mask_blend_scale = mask_blend_scale
self.inpaint_detail_preservation = inpaint_detail_preservation
def add_generation_params(self, dest):
dest[enabled_gen_param_label] = True
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
# ------------------- Methods -------------------
def latent_blend(soft_inpainting, a, b, t):
"""
Interpolates two latent image representations according to the parameter t,
where the interpolated vectors' magnitudes are also interpolated separately.
The "detail_preservation" factor biases the magnitude interpolation towards
the larger of the two magnitudes.
"""
import torch
# NOTE: We use inplace operations wherever possible.
# [4][w][h] to [1][4][w][h]
t2 = t.unsqueeze(0)
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
t3 = t[0].unsqueeze(0).unsqueeze(0)
one_minus_t2 = 1 - t2
one_minus_t3 = 1 - t3
# Linearly interpolate the image vectors.
a_scaled = a * one_minus_t2
b_scaled = b * t2
image_interp = a_scaled
image_interp.add_(b_scaled)
result_type = image_interp.dtype
del a_scaled, b_scaled, t2, one_minus_t2
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
# 64-bit operations are used here to allow large exponents.
current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(torch.float64).add_(0.00001)
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
soft_inpainting.inpaint_detail_preservation) * one_minus_t3
b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
soft_inpainting.inpaint_detail_preservation) * t3
desired_magnitude = a_magnitude
desired_magnitude.add_(b_magnitude).pow_(1 / soft_inpainting.inpaint_detail_preservation)
del a_magnitude, b_magnitude, t3, one_minus_t3
# Change the linearly interpolated image vectors' magnitudes to the value we want.
# This is the last 64-bit operation.
image_interp_scaling_factor = desired_magnitude
image_interp_scaling_factor.div_(current_magnitude)
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type)
image_interp_scaled = image_interp
image_interp_scaled.mul_(image_interp_scaling_factor)
del current_magnitude
del desired_magnitude
del image_interp
del image_interp_scaling_factor
del result_type
return image_interp_scaled
def get_modified_nmask(soft_inpainting, nmask, sigma):
"""
Converts a negative mask representing the transparency of the original latent vectors being overlayed
to a mask that is scaled according to the denoising strength for this step.
Where:
0 = fully opaque, infinite density, fully masked
1 = fully transparent, zero density, fully unmasked
We bring this transparency to a power, as this allows one to simulate N number of blending operations
where N can be any positive real value. Using this one can control the balance of influence between
the denoiser and the original latents according to the sigma value.
NOTE: "mask" is not used
"""
import torch
return torch.pow(nmask, (sigma ** soft_inpainting.mask_blend_power) * soft_inpainting.mask_blend_scale)
def apply_adaptive_masks(
latent_orig,
latent_processed,
overlay_images,
width, height,
paste_to):
import torch
import numpy as np
import modules.processing as proc
import modules.images as images
from PIL import Image, ImageOps, ImageFilter
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
# latent_mask = p.nmask[0].float().cpu()
# convert the original mask into a form we use to scale distances for thresholding
# mask_scalar = 1-(torch.clamp(latent_mask, min=0, max=1) ** (p.mask_blend_scale / 2))
# mask_scalar = mask_scalar / (1.00001-mask_scalar)
# mask_scalar = mask_scalar.numpy()
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1)
kernel, kernel_center = images.get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
masks_for_overlay = []
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)):
converted_mask = distance_map.float().cpu().numpy()
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
percentile_min=0.9, percentile_max=1, min_width=1)
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
percentile_min=0.25, percentile_max=0.75, min_width=1)
# The distance at which opacity of original decreases to 50%
# half_weighted_distance = 1 # * mask_scalar
# converted_mask = converted_mask / half_weighted_distance
converted_mask = 1 / (1 + converted_mask ** 2)
converted_mask = images.smootherstep(converted_mask)
converted_mask = 1 - converted_mask
converted_mask = 255. * converted_mask
converted_mask = converted_mask.astype(np.uint8)
converted_mask = Image.fromarray(converted_mask)
converted_mask = images.resize_image(2, converted_mask, width, height)
converted_mask = proc.create_binary_mask(converted_mask, round=False)
# Remove aliasing artifacts using a gaussian blur.
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
# Expand the mask to fit the whole image if needed.
if paste_to is not None:
converted_mask = proc.uncrop(converted_mask,
(overlay_image.width, overlay_image.height),
paste_to)
masks_for_overlay.append(converted_mask)
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
mask=ImageOps.invert(converted_mask.convert('L')))
overlay_images[i] = image_masked.convert('RGBA')
return masks_for_overlay
def apply_masks(
soft_inpainting,
nmask,
overlay_images,
width, height,
paste_to):
import torch
import numpy as np
import modules.processing as proc
import modules.images as images
from PIL import Image, ImageOps, ImageFilter
converted_mask = nmask[0].float()
converted_mask = torch.clamp(converted_mask, min=0, max=1).pow_(soft_inpainting.mask_blend_scale / 2)
converted_mask = 255. * converted_mask
converted_mask = converted_mask.cpu().numpy().astype(np.uint8)
converted_mask = Image.fromarray(converted_mask)
converted_mask = images.resize_image(2, converted_mask, width, height)
converted_mask = proc.create_binary_mask(converted_mask, round=False)
# Remove aliasing artifacts using a gaussian blur.
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
# Expand the mask to fit the whole image if needed.
if paste_to is not None:
converted_mask = proc.uncrop(converted_mask,
(width, height),
paste_to)
masks_for_overlay = []
for i, overlay_image in enumerate(overlay_images):
masks_for_overlay[i] = converted_mask
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
mask=ImageOps.invert(converted_mask.convert('L')))
overlay_images[i] = image_masked.convert('RGBA')
return masks_for_overlay
# ------------------- Constants -------------------
default = SoftInpaintingSettings(1, 0.5, 4)
enabled_ui_label = "Soft inpainting"
enabled_gen_param_label = "Soft inpainting enabled"
enabled_el_id = "soft_inpainting_enabled"
ui_labels = SoftInpaintingSettings(
"Schedule bias",
"Preservation strength",
"Transition contrast boost")
ui_info = SoftInpaintingSettings(
"Shifts when preservation of original content occurs during denoising.",
"How strongly partially masked content should be preserved.",
"Amplifies the contrast that may be lost in partially masked regions.")
gen_param_labels = SoftInpaintingSettings(
"Soft inpainting schedule bias",
"Soft inpainting preservation strength",
"Soft inpainting transition contrast boost")
el_ids = SoftInpaintingSettings(
"mask_blend_power",
"mask_blend_scale",
"inpaint_detail_preservation")
class Script(scripts.Script):
def __init__(self):
self.masks_for_overlay = None
self.overlay_images = None
def title(self):
return "Soft Inpainting"
def show(self, is_img2img):
return scripts.AlwaysVisible if is_img2img else False
def ui(self, is_img2img):
if not is_img2img:
return
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled:
with gr.Group():
gr.Markdown(
"""
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity.
**High _Mask blur_** values are recommended!
""")
result = SoftInpaintingSettings(
gr.Slider(label=ui_labels.mask_blend_power,
info=ui_info.mask_blend_power,
minimum=0,
maximum=8,
step=0.1,
value=default.mask_blend_power,
elem_id=el_ids.mask_blend_power),
gr.Slider(label=ui_labels.mask_blend_scale,
info=ui_info.mask_blend_scale,
minimum=0,
maximum=8,
step=0.05,
value=default.mask_blend_scale,
elem_id=el_ids.mask_blend_scale),
gr.Slider(label=ui_labels.inpaint_detail_preservation,
info=ui_info.inpaint_detail_preservation,
minimum=1,
maximum=32,
step=0.5,
value=default.inpaint_detail_preservation,
elem_id=el_ids.inpaint_detail_preservation))
with gr.Accordion("Help", open=False):
gr.Markdown(
f"""
### {ui_labels.mask_blend_power}
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas).
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step.
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation.
- **Below 1**: Stronger preservation near the end (with low sigma)
- **1**: Balanced (proportional to sigma)
- **Above 1**: Stronger preservation in the beginning (with high sigma)
""")
gr.Markdown(
f"""
### {ui_labels.mask_blend_scale}
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content.
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength.
- **Low values**: Favors generated content.
- **High values**: Favors original content.
""")
gr.Markdown(
f"""
### {ui_labels.inpaint_detail_preservation}
This parameter controls how the original latent vectors and denoised latent vectors are interpolated.
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors.
This can prevent the loss of contrast that occurs with linear interpolation.
- **Low values**: Softer blending, details may fade.
- **High values**: Stronger contrast, may over-saturate colors.
""")
self.infotext_fields = [(soft_inpainting_enabled, enabled_gen_param_label),
(result.mask_blend_power, gen_param_labels.mask_blend_power),
(result.mask_blend_scale, gen_param_labels.mask_blend_scale),
(result.inpaint_detail_preservation, gen_param_labels.inpaint_detail_preservation)]
self.paste_field_names = []
for _, field_name in self.infotext_fields:
self.paste_field_names.append(field_name)
return [soft_inpainting_enabled,
result.mask_blend_power,
result.mask_blend_scale,
result.inpaint_detail_preservation]
def process(self, p, enabled, power, scale, detail_preservation):
if not enabled:
return
# Shut off the rounding it normally does.
p.mask_round = False
settings = SoftInpaintingSettings(power, scale, detail_preservation)
# p.extra_generation_params["Mask rounding"] = False
settings.add_generation_params(p.extra_generation_params)
def on_mask_blend(self, p, mba: scripts.MaskBlendArgs, enabled, power, scale, detail_preservation):
if not enabled:
return
if mba.sigma is None:
mba.blended_latent = mba.current_latent
return
settings = SoftInpaintingSettings(power, scale, detail_preservation)
# todo: Why is sigma 2D? Both values are the same.
mba.blended_latent = latent_blend(settings,
mba.init_latent,
mba.current_latent,
get_modified_nmask(settings, mba.nmask, mba.sigma[0]))
def post_sample(self, p, ps: scripts.PostSampleArgs, enabled, power, scale, detail_preservation):
if not enabled:
return
settings = SoftInpaintingSettings(power, scale, detail_preservation)
from modules import images
from modules.shared import opts
# since the original code puts holes in the existing overlay images,
# we have to rebuild them.
self.overlay_images = []
for img in p.init_images:
image = images.flatten(img, opts.img2img_background_color)
if p.paste_to is None and p.resize_mode != 3:
image = images.resize_image(p.resize_mode, image, p.width, p.height)
self.overlay_images.append(image.convert('RGBA'))
if getattr(ps.samples, 'already_decoded', False):
self.masks_for_overlay = apply_masks(soft_inpainting=settings,
nmask=p.nmask,
overlay_images=self.overlay_images,
width=p.width,
height=p.height,
paste_to=p.paste_to)
else:
self.masks_for_overlay = apply_adaptive_masks(latent_orig=p.init_latent,
latent_processed=ps.samples,
overlay_images=self.overlay_images,
width=p.width,
height=p.height,
paste_to=p.paste_to)
def postprocess_maskoverlay(self, p, ppmo: scripts.PostProcessMaskOverlayArgs, enabled, power, scale, detail_preservation):
if not enabled:
return
ppmo.mask_for_overlay = self.masks_for_overlay[ppmo.index]
ppmo.overlay_image = self.overlay_images[ppmo.index]