mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-29 19:05:05 +08:00
Re-implemented soft inpainting via a script. Also fixed some mistakes with the previous hooks, removed unnecessary formatting changes, removed code that I had forgotten to.
This commit is contained in:
parent
ac45789123
commit
2abc417834
@ -879,14 +879,13 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if p.scripts is not None:
|
||||
ps = scripts.PostSampleArgs(samples_ddim)
|
||||
p.scripts.post_sample(p, ps)
|
||||
samples_ddim = pp.samples
|
||||
samples_ddim = ps.samples
|
||||
|
||||
if getattr(samples_ddim, 'already_decoded', False):
|
||||
x_samples_ddim = samples_ddim
|
||||
else:
|
||||
if opts.sd_vae_decode_method != 'Full':
|
||||
p.extra_generation_params['VAE Decoder'] = opts.sd_vae_decode_method
|
||||
|
||||
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
|
||||
|
||||
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
||||
@ -944,7 +943,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if p.scripts is not None:
|
||||
ppmo = scripts.PostProcessMaskOverlayArgs(i, mask_for_overlay, overlay_image)
|
||||
p.scripts.postprocess_maskoverlay(p, ppmo)
|
||||
mask_for_overlay, overlay_image = pp.mask_for_overlay, pp.overlay_image
|
||||
mask_for_overlay, overlay_image = ppmo.mask_for_overlay, ppmo.overlay_image
|
||||
|
||||
if p.color_corrections is not None and i < len(p.color_corrections):
|
||||
if save_samples and opts.save_images_before_color_correction:
|
||||
@ -959,7 +958,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
original_denoised_image = image.copy()
|
||||
|
||||
if p.paste_to is not None:
|
||||
original_denoised_image = uncrop(original_denoised_image, (p.overlay_image.width, p.overlay_image.height), p.paste_to)
|
||||
original_denoised_image = uncrop(original_denoised_image, (overlay_image.width, overlay_image.height), p.paste_to)
|
||||
|
||||
image = apply_overlay(image, p.paste_to, overlay_image)
|
||||
|
||||
@ -1512,9 +1511,6 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
if self.overlay_images is not None:
|
||||
self.overlay_images = self.overlay_images * self.batch_size
|
||||
|
||||
if self.masks_for_overlay is not None:
|
||||
self.masks_for_overlay = self.masks_for_overlay * self.batch_size
|
||||
|
||||
if self.color_corrections is not None and len(self.color_corrections) == 1:
|
||||
self.color_corrections = self.color_corrections * self.batch_size
|
||||
|
||||
@ -1565,14 +1561,15 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
|
||||
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning, image_conditioning=self.image_conditioning)
|
||||
|
||||
blended_samples = samples * self.nmask + self.init_latent * self.mask
|
||||
if self.mask is not None:
|
||||
blended_samples = samples * self.nmask + self.init_latent * self.mask
|
||||
|
||||
if self.scripts is not None:
|
||||
mba = scripts.MaskBlendArgs(self, samples, self.nmask, self.init_latent, self.mask, blended_samples, sigma=None, is_final_blend=True)
|
||||
self.scripts.on_mask_blend(self, mba)
|
||||
blended_samples = mba.blended_latent
|
||||
if self.scripts is not None:
|
||||
mba = scripts.MaskBlendArgs(samples, self.nmask, self.init_latent, self.mask, blended_samples)
|
||||
self.scripts.on_mask_blend(self, mba)
|
||||
blended_samples = mba.blended_latent
|
||||
|
||||
samples = blended_samples
|
||||
samples = blended_samples
|
||||
|
||||
del x
|
||||
devices.torch_gc()
|
||||
|
@ -12,12 +12,12 @@ from modules import shared, paths, script_callbacks, extensions, script_loading,
|
||||
AlwaysVisible = object()
|
||||
|
||||
class MaskBlendArgs:
|
||||
def __init__(self, current_latent, nmask, init_latent, mask, blended_samples, denoiser=None, sigma=None):
|
||||
def __init__(self, current_latent, nmask, init_latent, mask, blended_latent, denoiser=None, sigma=None):
|
||||
self.current_latent = current_latent
|
||||
self.nmask = nmask
|
||||
self.init_latent = init_latent
|
||||
self.mask = mask
|
||||
self.blended_samples = blended_samples
|
||||
self.blended_latent = blended_latent
|
||||
|
||||
self.denoiser = denoiser
|
||||
self.is_final_blend = denoiser is None
|
||||
|
@ -1,308 +0,0 @@
|
||||
class SoftInpaintingSettings:
|
||||
def __init__(self, mask_blend_power, mask_blend_scale, inpaint_detail_preservation):
|
||||
self.mask_blend_power = mask_blend_power
|
||||
self.mask_blend_scale = mask_blend_scale
|
||||
self.inpaint_detail_preservation = inpaint_detail_preservation
|
||||
|
||||
def add_generation_params(self, dest):
|
||||
dest[enabled_gen_param_label] = True
|
||||
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
|
||||
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale
|
||||
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
|
||||
|
||||
|
||||
# ------------------- Methods -------------------
|
||||
|
||||
|
||||
def latent_blend(soft_inpainting, a, b, t):
|
||||
"""
|
||||
Interpolates two latent image representations according to the parameter t,
|
||||
where the interpolated vectors' magnitudes are also interpolated separately.
|
||||
The "detail_preservation" factor biases the magnitude interpolation towards
|
||||
the larger of the two magnitudes.
|
||||
"""
|
||||
import torch
|
||||
|
||||
# NOTE: We use inplace operations wherever possible.
|
||||
|
||||
# [4][w][h] to [1][4][w][h]
|
||||
t2 = t.unsqueeze(0)
|
||||
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
|
||||
t3 = t[0].unsqueeze(0).unsqueeze(0)
|
||||
|
||||
one_minus_t2 = 1 - t2
|
||||
one_minus_t3 = 1 - t3
|
||||
|
||||
# Linearly interpolate the image vectors.
|
||||
a_scaled = a * one_minus_t2
|
||||
b_scaled = b * t2
|
||||
image_interp = a_scaled
|
||||
image_interp.add_(b_scaled)
|
||||
result_type = image_interp.dtype
|
||||
del a_scaled, b_scaled, t2, one_minus_t2
|
||||
|
||||
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
|
||||
# 64-bit operations are used here to allow large exponents.
|
||||
current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(torch.float64).add_(0.00001)
|
||||
|
||||
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
|
||||
a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * one_minus_t3
|
||||
b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(torch.float64).pow_(soft_inpainting.inpaint_detail_preservation) * t3
|
||||
desired_magnitude = a_magnitude
|
||||
desired_magnitude.add_(b_magnitude).pow_(1 / soft_inpainting.inpaint_detail_preservation)
|
||||
del a_magnitude, b_magnitude, t3, one_minus_t3
|
||||
|
||||
# Change the linearly interpolated image vectors' magnitudes to the value we want.
|
||||
# This is the last 64-bit operation.
|
||||
image_interp_scaling_factor = desired_magnitude
|
||||
image_interp_scaling_factor.div_(current_magnitude)
|
||||
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type)
|
||||
image_interp_scaled = image_interp
|
||||
image_interp_scaled.mul_(image_interp_scaling_factor)
|
||||
del current_magnitude
|
||||
del desired_magnitude
|
||||
del image_interp
|
||||
del image_interp_scaling_factor
|
||||
del result_type
|
||||
|
||||
return image_interp_scaled
|
||||
|
||||
|
||||
def get_modified_nmask(soft_inpainting, nmask, sigma):
|
||||
"""
|
||||
Converts a negative mask representing the transparency of the original latent vectors being overlayed
|
||||
to a mask that is scaled according to the denoising strength for this step.
|
||||
|
||||
Where:
|
||||
0 = fully opaque, infinite density, fully masked
|
||||
1 = fully transparent, zero density, fully unmasked
|
||||
|
||||
We bring this transparency to a power, as this allows one to simulate N number of blending operations
|
||||
where N can be any positive real value. Using this one can control the balance of influence between
|
||||
the denoiser and the original latents according to the sigma value.
|
||||
|
||||
NOTE: "mask" is not used
|
||||
"""
|
||||
import torch
|
||||
# todo: Why is sigma 2D? Both values are the same.
|
||||
return torch.pow(nmask, (sigma[0] ** soft_inpainting.mask_blend_power) * soft_inpainting.mask_blend_scale)
|
||||
|
||||
|
||||
def apply_adaptive_masks(
|
||||
latent_orig,
|
||||
latent_processed,
|
||||
overlay_images,
|
||||
masks_for_overlay,
|
||||
width, height,
|
||||
paste_to):
|
||||
import torch
|
||||
import numpy as np
|
||||
import modules.processing as proc
|
||||
import modules.images as images
|
||||
from PIL import Image, ImageOps, ImageFilter
|
||||
|
||||
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
|
||||
# latent_mask = p.nmask[0].float().cpu()
|
||||
# convert the original mask into a form we use to scale distances for thresholding
|
||||
# mask_scalar = 1-(torch.clamp(latent_mask, min=0, max=1) ** (p.mask_blend_scale / 2))
|
||||
# mask_scalar = mask_scalar / (1.00001-mask_scalar)
|
||||
# mask_scalar = mask_scalar.numpy()
|
||||
|
||||
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1)
|
||||
|
||||
kernel, kernel_center = images.get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
|
||||
|
||||
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)):
|
||||
converted_mask = distance_map.float().cpu().numpy()
|
||||
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.9, percentile_max=1, min_width=1)
|
||||
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.25, percentile_max=0.75, min_width=1)
|
||||
|
||||
# The distance at which opacity of original decreases to 50%
|
||||
# half_weighted_distance = 1 # * mask_scalar
|
||||
# converted_mask = converted_mask / half_weighted_distance
|
||||
|
||||
converted_mask = 1 / (1 + converted_mask ** 2)
|
||||
converted_mask = images.smootherstep(converted_mask)
|
||||
converted_mask = 1 - converted_mask
|
||||
converted_mask = 255. * converted_mask
|
||||
converted_mask = converted_mask.astype(np.uint8)
|
||||
converted_mask = Image.fromarray(converted_mask)
|
||||
converted_mask = images.resize_image(2, converted_mask, width, height)
|
||||
converted_mask = proc.create_binary_mask(converted_mask, round=False)
|
||||
|
||||
# Remove aliasing artifacts using a gaussian blur.
|
||||
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
||||
|
||||
# Expand the mask to fit the whole image if needed.
|
||||
if paste_to is not None:
|
||||
converted_mask = proc. uncrop(converted_mask,
|
||||
(overlay_image.width, overlay_image.height),
|
||||
paste_to)
|
||||
|
||||
masks_for_overlay[i] = converted_mask
|
||||
|
||||
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
||||
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
||||
mask=ImageOps.invert(converted_mask.convert('L')))
|
||||
|
||||
overlay_images[i] = image_masked.convert('RGBA')
|
||||
|
||||
def apply_masks(
|
||||
soft_inpainting,
|
||||
nmask,
|
||||
overlay_images,
|
||||
masks_for_overlay,
|
||||
width, height,
|
||||
paste_to):
|
||||
import torch
|
||||
import numpy as np
|
||||
import modules.processing as proc
|
||||
import modules.images as images
|
||||
from PIL import Image, ImageOps, ImageFilter
|
||||
|
||||
converted_mask = nmask[0].float()
|
||||
converted_mask = torch.clamp(converted_mask, min=0, max=1).pow_(soft_inpainting.mask_blend_scale / 2)
|
||||
converted_mask = 255. * converted_mask
|
||||
converted_mask = converted_mask.cpu().numpy().astype(np.uint8)
|
||||
converted_mask = Image.fromarray(converted_mask)
|
||||
converted_mask = images.resize_image(2, converted_mask, width, height)
|
||||
converted_mask = proc.create_binary_mask(converted_mask, round=False)
|
||||
|
||||
# Remove aliasing artifacts using a gaussian blur.
|
||||
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
||||
|
||||
# Expand the mask to fit the whole image if needed.
|
||||
if paste_to is not None:
|
||||
converted_mask = proc.uncrop(converted_mask,
|
||||
(width, height),
|
||||
paste_to)
|
||||
|
||||
for i, overlay_image in enumerate(overlay_images):
|
||||
masks_for_overlay[i] = converted_mask
|
||||
|
||||
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
||||
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
||||
mask=ImageOps.invert(converted_mask.convert('L')))
|
||||
|
||||
overlay_images[i] = image_masked.convert('RGBA')
|
||||
|
||||
|
||||
# ------------------- Constants -------------------
|
||||
|
||||
|
||||
default = SoftInpaintingSettings(1, 0.5, 4)
|
||||
|
||||
enabled_ui_label = "Soft inpainting"
|
||||
enabled_gen_param_label = "Soft inpainting enabled"
|
||||
enabled_el_id = "soft_inpainting_enabled"
|
||||
|
||||
ui_labels = SoftInpaintingSettings(
|
||||
"Schedule bias",
|
||||
"Preservation strength",
|
||||
"Transition contrast boost")
|
||||
|
||||
ui_info = SoftInpaintingSettings(
|
||||
"Shifts when preservation of original content occurs during denoising.",
|
||||
"How strongly partially masked content should be preserved.",
|
||||
"Amplifies the contrast that may be lost in partially masked regions.")
|
||||
|
||||
gen_param_labels = SoftInpaintingSettings(
|
||||
"Soft inpainting schedule bias",
|
||||
"Soft inpainting preservation strength",
|
||||
"Soft inpainting transition contrast boost")
|
||||
|
||||
el_ids = SoftInpaintingSettings(
|
||||
"mask_blend_power",
|
||||
"mask_blend_scale",
|
||||
"inpaint_detail_preservation")
|
||||
|
||||
|
||||
# ------------------- UI -------------------
|
||||
|
||||
|
||||
def gradio_ui():
|
||||
import gradio as gr
|
||||
from modules.ui_components import InputAccordion
|
||||
|
||||
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled:
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
"""
|
||||
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity.
|
||||
**High _Mask blur_** values are recommended!
|
||||
""")
|
||||
|
||||
result = SoftInpaintingSettings(
|
||||
gr.Slider(label=ui_labels.mask_blend_power,
|
||||
info=ui_info.mask_blend_power,
|
||||
minimum=0,
|
||||
maximum=8,
|
||||
step=0.1,
|
||||
value=default.mask_blend_power,
|
||||
elem_id=el_ids.mask_blend_power),
|
||||
gr.Slider(label=ui_labels.mask_blend_scale,
|
||||
info=ui_info.mask_blend_scale,
|
||||
minimum=0,
|
||||
maximum=8,
|
||||
step=0.05,
|
||||
value=default.mask_blend_scale,
|
||||
elem_id=el_ids.mask_blend_scale),
|
||||
gr.Slider(label=ui_labels.inpaint_detail_preservation,
|
||||
info=ui_info.inpaint_detail_preservation,
|
||||
minimum=1,
|
||||
maximum=32,
|
||||
step=0.5,
|
||||
value=default.inpaint_detail_preservation,
|
||||
elem_id=el_ids.inpaint_detail_preservation))
|
||||
|
||||
with gr.Accordion("Help", open=False):
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.mask_blend_power}
|
||||
|
||||
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas).
|
||||
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step.
|
||||
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation.
|
||||
|
||||
- **Below 1**: Stronger preservation near the end (with low sigma)
|
||||
- **1**: Balanced (proportional to sigma)
|
||||
- **Above 1**: Stronger preservation in the beginning (with high sigma)
|
||||
""")
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.mask_blend_scale}
|
||||
|
||||
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content.
|
||||
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength.
|
||||
|
||||
- **Low values**: Favors generated content.
|
||||
- **High values**: Favors original content.
|
||||
""")
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.inpaint_detail_preservation}
|
||||
|
||||
This parameter controls how the original latent vectors and denoised latent vectors are interpolated.
|
||||
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors.
|
||||
This can prevent the loss of contrast that occurs with linear interpolation.
|
||||
|
||||
- **Low values**: Softer blending, details may fade.
|
||||
- **High values**: Stronger contrast, may over-saturate colors.
|
||||
""")
|
||||
|
||||
return (
|
||||
[
|
||||
soft_inpainting_enabled,
|
||||
result.mask_blend_power,
|
||||
result.mask_blend_scale,
|
||||
result.inpaint_detail_preservation
|
||||
],
|
||||
[
|
||||
(soft_inpainting_enabled, enabled_gen_param_label),
|
||||
(result.mask_blend_power, gen_param_labels.mask_blend_power),
|
||||
(result.mask_blend_scale, gen_param_labels.mask_blend_scale),
|
||||
(result.inpaint_detail_preservation, gen_param_labels.inpaint_detail_preservation)
|
||||
]
|
||||
)
|
401
scripts/soft_inpainting.py
Normal file
401
scripts/soft_inpainting.py
Normal file
@ -0,0 +1,401 @@
|
||||
import gradio as gr
|
||||
from modules.ui_components import InputAccordion
|
||||
import modules.scripts as scripts
|
||||
|
||||
|
||||
class SoftInpaintingSettings:
|
||||
def __init__(self, mask_blend_power, mask_blend_scale, inpaint_detail_preservation):
|
||||
self.mask_blend_power = mask_blend_power
|
||||
self.mask_blend_scale = mask_blend_scale
|
||||
self.inpaint_detail_preservation = inpaint_detail_preservation
|
||||
|
||||
def add_generation_params(self, dest):
|
||||
dest[enabled_gen_param_label] = True
|
||||
dest[gen_param_labels.mask_blend_power] = self.mask_blend_power
|
||||
dest[gen_param_labels.mask_blend_scale] = self.mask_blend_scale
|
||||
dest[gen_param_labels.inpaint_detail_preservation] = self.inpaint_detail_preservation
|
||||
|
||||
|
||||
# ------------------- Methods -------------------
|
||||
|
||||
|
||||
def latent_blend(soft_inpainting, a, b, t):
|
||||
"""
|
||||
Interpolates two latent image representations according to the parameter t,
|
||||
where the interpolated vectors' magnitudes are also interpolated separately.
|
||||
The "detail_preservation" factor biases the magnitude interpolation towards
|
||||
the larger of the two magnitudes.
|
||||
"""
|
||||
import torch
|
||||
|
||||
# NOTE: We use inplace operations wherever possible.
|
||||
|
||||
# [4][w][h] to [1][4][w][h]
|
||||
t2 = t.unsqueeze(0)
|
||||
# [4][w][h] to [1][1][w][h] - the [4] seem redundant.
|
||||
t3 = t[0].unsqueeze(0).unsqueeze(0)
|
||||
|
||||
one_minus_t2 = 1 - t2
|
||||
one_minus_t3 = 1 - t3
|
||||
|
||||
# Linearly interpolate the image vectors.
|
||||
a_scaled = a * one_minus_t2
|
||||
b_scaled = b * t2
|
||||
image_interp = a_scaled
|
||||
image_interp.add_(b_scaled)
|
||||
result_type = image_interp.dtype
|
||||
del a_scaled, b_scaled, t2, one_minus_t2
|
||||
|
||||
# Calculate the magnitude of the interpolated vectors. (We will remove this magnitude.)
|
||||
# 64-bit operations are used here to allow large exponents.
|
||||
current_magnitude = torch.norm(image_interp, p=2, dim=1, keepdim=True).to(torch.float64).add_(0.00001)
|
||||
|
||||
# Interpolate the powered magnitudes, then un-power them (bring them back to a power of 1).
|
||||
a_magnitude = torch.norm(a, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
|
||||
soft_inpainting.inpaint_detail_preservation) * one_minus_t3
|
||||
b_magnitude = torch.norm(b, p=2, dim=1, keepdim=True).to(torch.float64).pow_(
|
||||
soft_inpainting.inpaint_detail_preservation) * t3
|
||||
desired_magnitude = a_magnitude
|
||||
desired_magnitude.add_(b_magnitude).pow_(1 / soft_inpainting.inpaint_detail_preservation)
|
||||
del a_magnitude, b_magnitude, t3, one_minus_t3
|
||||
|
||||
# Change the linearly interpolated image vectors' magnitudes to the value we want.
|
||||
# This is the last 64-bit operation.
|
||||
image_interp_scaling_factor = desired_magnitude
|
||||
image_interp_scaling_factor.div_(current_magnitude)
|
||||
image_interp_scaling_factor = image_interp_scaling_factor.to(result_type)
|
||||
image_interp_scaled = image_interp
|
||||
image_interp_scaled.mul_(image_interp_scaling_factor)
|
||||
del current_magnitude
|
||||
del desired_magnitude
|
||||
del image_interp
|
||||
del image_interp_scaling_factor
|
||||
del result_type
|
||||
|
||||
return image_interp_scaled
|
||||
|
||||
|
||||
def get_modified_nmask(soft_inpainting, nmask, sigma):
|
||||
"""
|
||||
Converts a negative mask representing the transparency of the original latent vectors being overlayed
|
||||
to a mask that is scaled according to the denoising strength for this step.
|
||||
|
||||
Where:
|
||||
0 = fully opaque, infinite density, fully masked
|
||||
1 = fully transparent, zero density, fully unmasked
|
||||
|
||||
We bring this transparency to a power, as this allows one to simulate N number of blending operations
|
||||
where N can be any positive real value. Using this one can control the balance of influence between
|
||||
the denoiser and the original latents according to the sigma value.
|
||||
|
||||
NOTE: "mask" is not used
|
||||
"""
|
||||
import torch
|
||||
return torch.pow(nmask, (sigma ** soft_inpainting.mask_blend_power) * soft_inpainting.mask_blend_scale)
|
||||
|
||||
|
||||
def apply_adaptive_masks(
|
||||
latent_orig,
|
||||
latent_processed,
|
||||
overlay_images,
|
||||
width, height,
|
||||
paste_to):
|
||||
import torch
|
||||
import numpy as np
|
||||
import modules.processing as proc
|
||||
import modules.images as images
|
||||
from PIL import Image, ImageOps, ImageFilter
|
||||
|
||||
# TODO: Bias the blending according to the latent mask, add adjustable parameter for bias control.
|
||||
# latent_mask = p.nmask[0].float().cpu()
|
||||
# convert the original mask into a form we use to scale distances for thresholding
|
||||
# mask_scalar = 1-(torch.clamp(latent_mask, min=0, max=1) ** (p.mask_blend_scale / 2))
|
||||
# mask_scalar = mask_scalar / (1.00001-mask_scalar)
|
||||
# mask_scalar = mask_scalar.numpy()
|
||||
|
||||
latent_distance = torch.norm(latent_processed - latent_orig, p=2, dim=1)
|
||||
|
||||
kernel, kernel_center = images.get_gaussian_kernel(stddev_radius=1.5, max_radius=2)
|
||||
|
||||
masks_for_overlay = []
|
||||
|
||||
for i, (distance_map, overlay_image) in enumerate(zip(latent_distance, overlay_images)):
|
||||
converted_mask = distance_map.float().cpu().numpy()
|
||||
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.9, percentile_max=1, min_width=1)
|
||||
converted_mask = images.weighted_histogram_filter(converted_mask, kernel, kernel_center,
|
||||
percentile_min=0.25, percentile_max=0.75, min_width=1)
|
||||
|
||||
# The distance at which opacity of original decreases to 50%
|
||||
# half_weighted_distance = 1 # * mask_scalar
|
||||
# converted_mask = converted_mask / half_weighted_distance
|
||||
|
||||
converted_mask = 1 / (1 + converted_mask ** 2)
|
||||
converted_mask = images.smootherstep(converted_mask)
|
||||
converted_mask = 1 - converted_mask
|
||||
converted_mask = 255. * converted_mask
|
||||
converted_mask = converted_mask.astype(np.uint8)
|
||||
converted_mask = Image.fromarray(converted_mask)
|
||||
converted_mask = images.resize_image(2, converted_mask, width, height)
|
||||
converted_mask = proc.create_binary_mask(converted_mask, round=False)
|
||||
|
||||
# Remove aliasing artifacts using a gaussian blur.
|
||||
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
||||
|
||||
# Expand the mask to fit the whole image if needed.
|
||||
if paste_to is not None:
|
||||
converted_mask = proc.uncrop(converted_mask,
|
||||
(overlay_image.width, overlay_image.height),
|
||||
paste_to)
|
||||
|
||||
masks_for_overlay.append(converted_mask)
|
||||
|
||||
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
||||
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
||||
mask=ImageOps.invert(converted_mask.convert('L')))
|
||||
|
||||
overlay_images[i] = image_masked.convert('RGBA')
|
||||
|
||||
return masks_for_overlay
|
||||
|
||||
|
||||
def apply_masks(
|
||||
soft_inpainting,
|
||||
nmask,
|
||||
overlay_images,
|
||||
width, height,
|
||||
paste_to):
|
||||
import torch
|
||||
import numpy as np
|
||||
import modules.processing as proc
|
||||
import modules.images as images
|
||||
from PIL import Image, ImageOps, ImageFilter
|
||||
|
||||
converted_mask = nmask[0].float()
|
||||
converted_mask = torch.clamp(converted_mask, min=0, max=1).pow_(soft_inpainting.mask_blend_scale / 2)
|
||||
converted_mask = 255. * converted_mask
|
||||
converted_mask = converted_mask.cpu().numpy().astype(np.uint8)
|
||||
converted_mask = Image.fromarray(converted_mask)
|
||||
converted_mask = images.resize_image(2, converted_mask, width, height)
|
||||
converted_mask = proc.create_binary_mask(converted_mask, round=False)
|
||||
|
||||
# Remove aliasing artifacts using a gaussian blur.
|
||||
converted_mask = converted_mask.filter(ImageFilter.GaussianBlur(radius=4))
|
||||
|
||||
# Expand the mask to fit the whole image if needed.
|
||||
if paste_to is not None:
|
||||
converted_mask = proc.uncrop(converted_mask,
|
||||
(width, height),
|
||||
paste_to)
|
||||
|
||||
masks_for_overlay = []
|
||||
|
||||
for i, overlay_image in enumerate(overlay_images):
|
||||
masks_for_overlay[i] = converted_mask
|
||||
|
||||
image_masked = Image.new('RGBa', (overlay_image.width, overlay_image.height))
|
||||
image_masked.paste(overlay_image.convert("RGBA").convert("RGBa"),
|
||||
mask=ImageOps.invert(converted_mask.convert('L')))
|
||||
|
||||
overlay_images[i] = image_masked.convert('RGBA')
|
||||
|
||||
return masks_for_overlay
|
||||
|
||||
|
||||
# ------------------- Constants -------------------
|
||||
|
||||
|
||||
default = SoftInpaintingSettings(1, 0.5, 4)
|
||||
|
||||
enabled_ui_label = "Soft inpainting"
|
||||
enabled_gen_param_label = "Soft inpainting enabled"
|
||||
enabled_el_id = "soft_inpainting_enabled"
|
||||
|
||||
ui_labels = SoftInpaintingSettings(
|
||||
"Schedule bias",
|
||||
"Preservation strength",
|
||||
"Transition contrast boost")
|
||||
|
||||
ui_info = SoftInpaintingSettings(
|
||||
"Shifts when preservation of original content occurs during denoising.",
|
||||
"How strongly partially masked content should be preserved.",
|
||||
"Amplifies the contrast that may be lost in partially masked regions.")
|
||||
|
||||
gen_param_labels = SoftInpaintingSettings(
|
||||
"Soft inpainting schedule bias",
|
||||
"Soft inpainting preservation strength",
|
||||
"Soft inpainting transition contrast boost")
|
||||
|
||||
el_ids = SoftInpaintingSettings(
|
||||
"mask_blend_power",
|
||||
"mask_blend_scale",
|
||||
"inpaint_detail_preservation")
|
||||
|
||||
|
||||
class Script(scripts.Script):
|
||||
|
||||
def __init__(self):
|
||||
self.masks_for_overlay = None
|
||||
self.overlay_images = None
|
||||
|
||||
def title(self):
|
||||
return "Soft Inpainting"
|
||||
|
||||
def show(self, is_img2img):
|
||||
return scripts.AlwaysVisible if is_img2img else False
|
||||
|
||||
def ui(self, is_img2img):
|
||||
if not is_img2img:
|
||||
return
|
||||
|
||||
with InputAccordion(False, label=enabled_ui_label, elem_id=enabled_el_id) as soft_inpainting_enabled:
|
||||
with gr.Group():
|
||||
gr.Markdown(
|
||||
"""
|
||||
Soft inpainting allows you to **seamlessly blend original content with inpainted content** according to the mask opacity.
|
||||
**High _Mask blur_** values are recommended!
|
||||
""")
|
||||
|
||||
result = SoftInpaintingSettings(
|
||||
gr.Slider(label=ui_labels.mask_blend_power,
|
||||
info=ui_info.mask_blend_power,
|
||||
minimum=0,
|
||||
maximum=8,
|
||||
step=0.1,
|
||||
value=default.mask_blend_power,
|
||||
elem_id=el_ids.mask_blend_power),
|
||||
gr.Slider(label=ui_labels.mask_blend_scale,
|
||||
info=ui_info.mask_blend_scale,
|
||||
minimum=0,
|
||||
maximum=8,
|
||||
step=0.05,
|
||||
value=default.mask_blend_scale,
|
||||
elem_id=el_ids.mask_blend_scale),
|
||||
gr.Slider(label=ui_labels.inpaint_detail_preservation,
|
||||
info=ui_info.inpaint_detail_preservation,
|
||||
minimum=1,
|
||||
maximum=32,
|
||||
step=0.5,
|
||||
value=default.inpaint_detail_preservation,
|
||||
elem_id=el_ids.inpaint_detail_preservation))
|
||||
|
||||
with gr.Accordion("Help", open=False):
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.mask_blend_power}
|
||||
|
||||
The blending strength of original content is scaled proportionally with the decreasing noise level values at each step (sigmas).
|
||||
This ensures that the influence of the denoiser and original content preservation is roughly balanced at each step.
|
||||
This balance can be shifted using this parameter, controlling whether earlier or later steps have stronger preservation.
|
||||
|
||||
- **Below 1**: Stronger preservation near the end (with low sigma)
|
||||
- **1**: Balanced (proportional to sigma)
|
||||
- **Above 1**: Stronger preservation in the beginning (with high sigma)
|
||||
""")
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.mask_blend_scale}
|
||||
|
||||
Skews whether partially masked image regions should be more likely to preserve the original content or favor inpainted content.
|
||||
This may need to be adjusted depending on the {ui_labels.mask_blend_power}, CFG Scale, prompt and Denoising strength.
|
||||
|
||||
- **Low values**: Favors generated content.
|
||||
- **High values**: Favors original content.
|
||||
""")
|
||||
gr.Markdown(
|
||||
f"""
|
||||
### {ui_labels.inpaint_detail_preservation}
|
||||
|
||||
This parameter controls how the original latent vectors and denoised latent vectors are interpolated.
|
||||
With higher values, the magnitude of the resulting blended vector will be closer to the maximum of the two interpolated vectors.
|
||||
This can prevent the loss of contrast that occurs with linear interpolation.
|
||||
|
||||
- **Low values**: Softer blending, details may fade.
|
||||
- **High values**: Stronger contrast, may over-saturate colors.
|
||||
""")
|
||||
|
||||
self.infotext_fields = [(soft_inpainting_enabled, enabled_gen_param_label),
|
||||
(result.mask_blend_power, gen_param_labels.mask_blend_power),
|
||||
(result.mask_blend_scale, gen_param_labels.mask_blend_scale),
|
||||
(result.inpaint_detail_preservation, gen_param_labels.inpaint_detail_preservation)]
|
||||
|
||||
self.paste_field_names = []
|
||||
for _, field_name in self.infotext_fields:
|
||||
self.paste_field_names.append(field_name)
|
||||
|
||||
return [soft_inpainting_enabled,
|
||||
result.mask_blend_power,
|
||||
result.mask_blend_scale,
|
||||
result.inpaint_detail_preservation]
|
||||
|
||||
def process(self, p, enabled, power, scale, detail_preservation):
|
||||
if not enabled:
|
||||
return
|
||||
|
||||
# Shut off the rounding it normally does.
|
||||
p.mask_round = False
|
||||
|
||||
settings = SoftInpaintingSettings(power, scale, detail_preservation)
|
||||
|
||||
# p.extra_generation_params["Mask rounding"] = False
|
||||
settings.add_generation_params(p.extra_generation_params)
|
||||
|
||||
def on_mask_blend(self, p, mba: scripts.MaskBlendArgs, enabled, power, scale, detail_preservation):
|
||||
if not enabled:
|
||||
return
|
||||
|
||||
if mba.sigma is None:
|
||||
mba.blended_latent = mba.current_latent
|
||||
return
|
||||
|
||||
settings = SoftInpaintingSettings(power, scale, detail_preservation)
|
||||
|
||||
# todo: Why is sigma 2D? Both values are the same.
|
||||
mba.blended_latent = latent_blend(settings,
|
||||
mba.init_latent,
|
||||
mba.current_latent,
|
||||
get_modified_nmask(settings, mba.nmask, mba.sigma[0]))
|
||||
|
||||
def post_sample(self, p, ps: scripts.PostSampleArgs, enabled, power, scale, detail_preservation):
|
||||
if not enabled:
|
||||
return
|
||||
|
||||
settings = SoftInpaintingSettings(power, scale, detail_preservation)
|
||||
|
||||
from modules import images
|
||||
from modules.shared import opts
|
||||
|
||||
# since the original code puts holes in the existing overlay images,
|
||||
# we have to rebuild them.
|
||||
self.overlay_images = []
|
||||
for img in p.init_images:
|
||||
|
||||
image = images.flatten(img, opts.img2img_background_color)
|
||||
|
||||
if p.paste_to is None and p.resize_mode != 3:
|
||||
image = images.resize_image(p.resize_mode, image, p.width, p.height)
|
||||
|
||||
self.overlay_images.append(image.convert('RGBA'))
|
||||
|
||||
if getattr(ps.samples, 'already_decoded', False):
|
||||
self.masks_for_overlay = apply_masks(soft_inpainting=settings,
|
||||
nmask=p.nmask,
|
||||
overlay_images=self.overlay_images,
|
||||
width=p.width,
|
||||
height=p.height,
|
||||
paste_to=p.paste_to)
|
||||
else:
|
||||
self.masks_for_overlay = apply_adaptive_masks(latent_orig=p.init_latent,
|
||||
latent_processed=ps.samples,
|
||||
overlay_images=self.overlay_images,
|
||||
width=p.width,
|
||||
height=p.height,
|
||||
paste_to=p.paste_to)
|
||||
|
||||
|
||||
def postprocess_maskoverlay(self, p, ppmo: scripts.PostProcessMaskOverlayArgs, enabled, power, scale, detail_preservation):
|
||||
if not enabled:
|
||||
return
|
||||
|
||||
ppmo.mask_for_overlay = self.masks_for_overlay[ppmo.index]
|
||||
ppmo.overlay_image = self.overlay_images[ppmo.index]
|
Loading…
Reference in New Issue
Block a user