mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
fix for flux
This commit is contained in:
parent
d38732efae
commit
2d1db1a2d0
4
configs/flux1-inference.yaml
Normal file
4
configs/flux1-inference.yaml
Normal file
@ -0,0 +1,4 @@
|
||||
model:
|
||||
target: modules.models.flux.FLUX1Inferencer
|
||||
params:
|
||||
state_dict: null
|
@ -22,7 +22,7 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
return out.float()
|
||||
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor) -> tuple[Tensor, Tensor]:
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
|
@ -1,9 +1,13 @@
|
||||
# original code from https://github.com/black-forest-labs/flux
|
||||
#
|
||||
from dataclasses import dataclass
|
||||
|
||||
import torch
|
||||
|
||||
from einops import rearrange, repeat
|
||||
from torch import Tensor, nn
|
||||
|
||||
from flux.modules.layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
||||
from .modules.layers import (DoubleStreamBlock, EmbedND, LastLayer,
|
||||
MLPEmbedder, SingleStreamBlock,
|
||||
timestep_embedding)
|
||||
|
||||
@ -18,7 +22,7 @@ class FluxParams:
|
||||
num_heads: int
|
||||
depth: int
|
||||
depth_single_blocks: int
|
||||
axes_dim: list[int]
|
||||
axes_dim: list
|
||||
theta: int
|
||||
qkv_bias: bool
|
||||
guidance_embed: bool
|
||||
@ -29,11 +33,13 @@ class Flux(nn.Module):
|
||||
Transformer model for flow matching on sequences.
|
||||
"""
|
||||
|
||||
def __init__(self, params: FluxParams):
|
||||
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, **kwargs):
|
||||
super().__init__()
|
||||
|
||||
self.dtype = dtype
|
||||
params = FluxParams(**kwargs)
|
||||
self.params = params
|
||||
self.in_channels = params.in_channels
|
||||
self.in_channels = params.in_channels * 2 * 2
|
||||
self.out_channels = self.in_channels
|
||||
if params.hidden_size % params.num_heads != 0:
|
||||
raise ValueError(
|
||||
@ -45,13 +51,13 @@ class Flux(nn.Module):
|
||||
self.hidden_size = params.hidden_size
|
||||
self.num_heads = params.num_heads
|
||||
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
|
||||
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size)
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size)
|
||||
self.img_in = nn.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
|
||||
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device)
|
||||
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
self.guidance_in = (
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size) if params.guidance_embed else nn.Identity()
|
||||
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device) if params.guidance_embed else nn.Identity()
|
||||
)
|
||||
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size)
|
||||
self.txt_in = nn.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.double_blocks = nn.ModuleList(
|
||||
[
|
||||
@ -60,6 +66,7 @@ class Flux(nn.Module):
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
dtype=dtype, device=device,
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
]
|
||||
@ -67,14 +74,15 @@ class Flux(nn.Module):
|
||||
|
||||
self.single_blocks = nn.ModuleList(
|
||||
[
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio)
|
||||
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device)
|
||||
for _ in range(params.depth_single_blocks)
|
||||
]
|
||||
)
|
||||
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels)
|
||||
if final_layer:
|
||||
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device)
|
||||
|
||||
def forward(
|
||||
def forward_orig(
|
||||
self,
|
||||
img: Tensor,
|
||||
img_ids: Tensor,
|
||||
@ -82,18 +90,18 @@ class Flux(nn.Module):
|
||||
txt_ids: Tensor,
|
||||
timesteps: Tensor,
|
||||
y: Tensor,
|
||||
guidance: Tensor | None = None,
|
||||
guidance: Tensor = None,
|
||||
) -> Tensor:
|
||||
if img.ndim != 3 or txt.ndim != 3:
|
||||
raise ValueError("Input img and txt tensors must have 3 dimensions.")
|
||||
|
||||
# running on sequences img
|
||||
img = self.img_in(img)
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256))
|
||||
vec = self.time_in(timestep_embedding(timesteps, 256).to(img.dtype))
|
||||
if self.params.guidance_embed:
|
||||
if guidance is None:
|
||||
raise ValueError("Didn't get guidance strength for guidance distilled model.")
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256))
|
||||
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
|
||||
vec = vec + self.vector_in(y)
|
||||
txt = self.txt_in(txt)
|
||||
|
||||
@ -108,5 +116,32 @@ class Flux(nn.Module):
|
||||
img = block(img, vec=vec, pe=pe)
|
||||
img = img[:, txt.shape[1] :, ...]
|
||||
|
||||
if self.final_layer:
|
||||
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
|
||||
return img
|
||||
|
||||
def forward(self, x, timestep, context, y, guidance, **kwargs):
|
||||
# from comfy/ldm/common_dit.py
|
||||
def pad_to_patch_size(img, patch_size=(2, 2), padding_mode="circular"):
|
||||
if padding_mode == "circular" and torch.jit.is_tracing() or torch.jit.is_scripting():
|
||||
padding_mode = "reflect"
|
||||
pad_h = (patch_size[0] - img.shape[-2] % patch_size[0]) % patch_size[0]
|
||||
pad_w = (patch_size[1] - img.shape[-1] % patch_size[1]) % patch_size[1]
|
||||
return torch.nn.functional.pad(img, (0, pad_w, 0, pad_h), mode=padding_mode)
|
||||
|
||||
bs, c, h, w = x.shape
|
||||
patch_size = 2
|
||||
x = pad_to_patch_size(x, (patch_size, patch_size))
|
||||
|
||||
img = rearrange(x, "b c (h ph) (w pw) -> b (h w) (c ph pw)", ph=patch_size, pw=patch_size)
|
||||
|
||||
h_len = ((h + (patch_size // 2)) // patch_size)
|
||||
w_len = ((w + (patch_size // 2)) // patch_size)
|
||||
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=bs)
|
||||
|
||||
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
|
||||
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance)
|
||||
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h,:w]
|
||||
|
@ -5,11 +5,11 @@ import torch
|
||||
from einops import rearrange
|
||||
from torch import Tensor, nn
|
||||
|
||||
from flux.math import attention, rope
|
||||
from ..math import attention, rope
|
||||
|
||||
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, dim: int, theta: int, axes_dim: list[int]):
|
||||
def __init__(self, dim: int, theta: int, axes_dim: list):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.theta = theta
|
||||
@ -36,9 +36,7 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
|
||||
"""
|
||||
t = time_factor * t
|
||||
half = dim // 2
|
||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half).to(
|
||||
t.device
|
||||
)
|
||||
freqs = torch.exp(-math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32, device=t.device) / half)
|
||||
|
||||
args = t[:, None].float() * freqs[None]
|
||||
embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
|
||||
@ -50,20 +48,20 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
|
||||
|
||||
|
||||
class MLPEmbedder(nn.Module):
|
||||
def __init__(self, in_dim: int, hidden_dim: int):
|
||||
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True)
|
||||
self.in_layer = nn.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.silu = nn.SiLU()
|
||||
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True)
|
||||
self.out_layer = nn.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor) -> Tensor:
|
||||
return self.out_layer(self.silu(self.in_layer(x)))
|
||||
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int):
|
||||
def __init__(self, dim: int, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.scale = nn.Parameter(torch.ones(dim))
|
||||
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
x_dtype = x.dtype
|
||||
@ -73,26 +71,26 @@ class RMSNorm(torch.nn.Module):
|
||||
|
||||
|
||||
class QKNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int):
|
||||
def __init__(self, dim: int, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.query_norm = RMSNorm(dim)
|
||||
self.key_norm = RMSNorm(dim)
|
||||
self.query_norm = RMSNorm(dim, dtype=dtype, device=device)
|
||||
self.key_norm = RMSNorm(dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple[Tensor, Tensor]:
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
|
||||
q = self.query_norm(q)
|
||||
k = self.key_norm(k)
|
||||
return q.to(v), k.to(v)
|
||||
|
||||
|
||||
class SelfAttention(nn.Module):
|
||||
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False):
|
||||
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.num_heads = num_heads
|
||||
head_dim = dim // num_heads
|
||||
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
||||
self.norm = QKNorm(head_dim)
|
||||
self.proj = nn.Linear(dim, dim)
|
||||
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device)
|
||||
self.proj = nn.Linear(dim, dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor, pe: Tensor) -> Tensor:
|
||||
qkv = self.qkv(x)
|
||||
@ -111,13 +109,13 @@ class ModulationOut:
|
||||
|
||||
|
||||
class Modulation(nn.Module):
|
||||
def __init__(self, dim: int, double: bool):
|
||||
def __init__(self, dim: int, double: bool, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.is_double = double
|
||||
self.multiplier = 6 if double else 3
|
||||
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True)
|
||||
self.lin = nn.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, vec: Tensor) -> tuple[ModulationOut, ModulationOut | None]:
|
||||
def forward(self, vec: Tensor) -> tuple:
|
||||
out = self.lin(nn.functional.silu(vec))[:, None, :].chunk(self.multiplier, dim=-1)
|
||||
|
||||
return (
|
||||
@ -127,35 +125,35 @@ class Modulation(nn.Module):
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, dtype=None, device=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
self.num_heads = num_heads
|
||||
self.hidden_size = hidden_size
|
||||
self.img_mod = Modulation(hidden_size, double=True)
|
||||
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
||||
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device)
|
||||
self.img_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device)
|
||||
|
||||
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.img_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.img_mlp = nn.Sequential(
|
||||
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
||||
nn.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
||||
nn.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
self.txt_mod = Modulation(hidden_size, double=True)
|
||||
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias)
|
||||
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device)
|
||||
self.txt_norm1 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device)
|
||||
|
||||
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.txt_norm2 = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.txt_mlp = nn.Sequential(
|
||||
nn.Linear(hidden_size, mlp_hidden_dim, bias=True),
|
||||
nn.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
|
||||
nn.GELU(approximate="tanh"),
|
||||
nn.Linear(mlp_hidden_dim, hidden_size, bias=True),
|
||||
nn.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor) -> tuple[Tensor, Tensor]:
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor):
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
txt_mod1, txt_mod2 = self.txt_mod(vec)
|
||||
|
||||
@ -188,6 +186,11 @@ class DoubleStreamBlock(nn.Module):
|
||||
# calculate the txt bloks
|
||||
txt = txt + txt_mod1.gate * self.txt_attn.proj(txt_attn)
|
||||
txt = txt + txt_mod2.gate * self.txt_mlp((1 + txt_mod2.scale) * self.txt_norm2(txt) + txt_mod2.shift)
|
||||
|
||||
if txt.dtype == torch.float16:
|
||||
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
|
||||
|
||||
|
||||
return img, txt
|
||||
|
||||
|
||||
@ -202,7 +205,9 @@ class SingleStreamBlock(nn.Module):
|
||||
hidden_size: int,
|
||||
num_heads: int,
|
||||
mlp_ratio: float = 4.0,
|
||||
qk_scale: float | None = None,
|
||||
qk_scale: float = None,
|
||||
dtype=None,
|
||||
device=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.hidden_dim = hidden_size
|
||||
@ -212,17 +217,17 @@ class SingleStreamBlock(nn.Module):
|
||||
|
||||
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
# qkv and mlp_in
|
||||
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim)
|
||||
self.linear1 = nn.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
|
||||
# proj and mlp_out
|
||||
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size)
|
||||
self.linear2 = nn.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
|
||||
|
||||
self.norm = QKNorm(head_dim)
|
||||
self.norm = QKNorm(head_dim, dtype=dtype, device=device)
|
||||
|
||||
self.hidden_size = hidden_size
|
||||
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.pre_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
|
||||
self.mlp_act = nn.GELU(approximate="tanh")
|
||||
self.modulation = Modulation(hidden_size, double=False)
|
||||
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor, pe: Tensor) -> Tensor:
|
||||
mod, _ = self.modulation(vec)
|
||||
@ -236,15 +241,18 @@ class SingleStreamBlock(nn.Module):
|
||||
attn = attention(q, k, v, pe=pe)
|
||||
# compute activation in mlp stream, cat again and run second linear layer
|
||||
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
|
||||
return x + mod.gate * output
|
||||
x += mod.gate * output
|
||||
if x.dtype == torch.float16:
|
||||
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
|
||||
return x
|
||||
|
||||
|
||||
class LastLayer(nn.Module):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int):
|
||||
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None):
|
||||
super().__init__()
|
||||
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True))
|
||||
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
|
||||
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
|
||||
self.adaLN_modulation = nn.Sequential(nn.SiLU(), nn.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor, vec: Tensor) -> Tensor:
|
||||
shift, scale = self.adaLN_modulation(vec).chunk(2, dim=1)
|
||||
|
@ -7,9 +7,9 @@ from huggingface_hub import hf_hub_download
|
||||
from imwatermark import WatermarkEncoder
|
||||
from safetensors.torch import load_file as load_sft
|
||||
|
||||
from flux.model import Flux, FluxParams
|
||||
from flux.modules.autoencoder import AutoEncoder, AutoEncoderParams
|
||||
from flux.modules.conditioner import HFEmbedder
|
||||
from .model import Flux, FluxParams
|
||||
from .modules.autoencoder import AutoEncoder, AutoEncoderParams
|
||||
from .modules.conditioner import HFEmbedder
|
||||
|
||||
|
||||
@dataclass
|
||||
|
Loading…
Reference in New Issue
Block a user