mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-19 21:00:14 +08:00
ensure that original alpha bar always exists
This commit is contained in:
parent
668ae34e21
commit
309a606c2f
@ -882,15 +882,17 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
alphas_bar[-1] = 4.8973451890853435e-08
|
alphas_bar[-1] = 4.8973451890853435e-08
|
||||||
return alphas_bar
|
return alphas_bar
|
||||||
|
|
||||||
if hasattr(p.sd_model, 'alphas_cumprod') and hasattr(p.sd_model, 'alphas_cumprod_original'):
|
if hasattr(p.sd_model, 'alphas_cumprod') and not hasattr(p.sd_model, 'alphas_cumprod_original'):
|
||||||
p.sd_model.alphas_cumprod = p.sd_model.alphas_cumprod_original.to(shared.device)
|
p.sd_model.alphas_cumprod_original = p.sd_model.alphas_cumprod
|
||||||
|
|
||||||
|
p.sd_model.alphas_cumprod = p.sd_model.alphas_cumprod_original.to(shared.device)
|
||||||
|
|
||||||
if opts.use_downcasted_alpha_bar:
|
if opts.use_downcasted_alpha_bar:
|
||||||
p.extra_generation_params['Downcast alphas_cumprod'] = opts.use_downcasted_alpha_bar
|
p.extra_generation_params['Downcast alphas_cumprod'] = opts.use_downcasted_alpha_bar
|
||||||
p.sd_model.alphas_cumprod = p.sd_model.alphas_cumprod.half().to(shared.device)
|
p.sd_model.alphas_cumprod = p.sd_model.alphas_cumprod.half().to(shared.device)
|
||||||
if opts.sd_noise_schedule == "Zero Terminal SNR":
|
if opts.sd_noise_schedule == "Zero Terminal SNR":
|
||||||
p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
|
p.extra_generation_params['Noise Schedule'] = opts.sd_noise_schedule
|
||||||
p.sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(p.sd_model.alphas_cumprod).to(shared.device)
|
p.sd_model.alphas_cumprod = rescale_zero_terminal_snr_abar(p.sd_model.alphas_cumprod).to(shared.device)
|
||||||
|
|
||||||
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
|
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
|
||||||
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
|
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
|
||||||
|
Loading…
Reference in New Issue
Block a user