diff --git a/README.md b/README.md index 6af3c4266..e91915ac2 100644 --- a/README.md +++ b/README.md @@ -252,7 +252,7 @@ display(processed.images, processed.seed, processed.info) ### `--lowvram` Optimizations for GPUs with low VRAM. This should make it possible to generate 512x512 images on videocards with 4GB memory. -The original idea of those ideas is by basujindal: https://github.com/basujindal/stable-diffusion. Model is separated into modules, +The original idea of those optimizations is by basujindal: https://github.com/basujindal/stable-diffusion. Model is separated into modules, and only one module is kept in GPU memory; when another module needs to run, the previous is removed from GPU memory. It should be obvious but the nature of those optimizations makes the processing run slower -- about 10 times slower diff --git a/webui.py b/webui.py index 3eec3a177..c98afe0fe 100644 --- a/webui.py +++ b/webui.py @@ -53,11 +53,15 @@ parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default='embeddings', help="embeddings dirtectory for textual inversion (default: embeddings)") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") -parser.add_argument("--lowvram", action='store_true', help="enamble optimizations for low vram") +parser.add_argument("--lowvram", action='store_true', help="enamble stable diffusion model optimizations for low vram") parser.add_argument("--precision", type=str, help="evaluate at this precision", choices=["full", "autocast"], default="autocast") cmd_opts = parser.parse_args() +cpu = torch.device("cpu") +gpu = torch.device("cuda") +device = gpu if torch.cuda.is_available() else cpu + css_hide_progressbar = """ .wrap .m-12 svg { display:none!important; } .wrap .m-12::before { content:"Loading..." } @@ -106,7 +110,7 @@ try: ] have_realesrgan = True except Exception: - print("Error loading Real-ESRGAN:", file=sys.stderr) + print("Error importing Real-ESRGAN:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) realesrgan_models = [RealesrganModelInfo('None', '', 0, None)] @@ -119,6 +123,27 @@ sd_upscalers = { } +have_gfpgan = False +if os.path.exists(cmd_opts.gfpgan_dir): + try: + sys.path.append(os.path.abspath(cmd_opts.gfpgan_dir)) + from gfpgan import GFPGANer + + have_gfpgan = True + except: + print("Error importing GFPGAN:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + + +def gfpgan(): + model_name = 'GFPGANv1.3' + model_path = os.path.join(cmd_opts.gfpgan_dir, 'experiments/pretrained_models', model_name + '.pth') + if not os.path.isfile(model_path): + raise Exception("GFPGAN model not found at path "+model_path) + + return GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None) + + class Options: class OptionInfo: def __init__(self, default=None, label="", component=None, component_args=None): @@ -140,6 +165,7 @@ class Options: "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), "export_for_4chan": OptionInfo(True, "If PNG image is larger than 4MB or any dimension is larger than 4000, downscale and save copy as JPG"), "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"), + "font": OptionInfo("arial.ttf", "Font for image grids that have text"), "prompt_matrix_add_to_start": OptionInfo(True, "In prompt matrix, add the variable combination of text to the start of the prompt, rather than the end"), "sd_upscale_upscaler_index": OptionInfo("RealESRGAN", "Upscaler to use for SD upscale", gr.Radio, {"choices": list(sd_upscalers.keys())}), "sd_upscale_overlap": OptionInfo(64, "Overlap for tiles for SD upscale. The smaller it is, the less smooth transition from one tile to another", gr.Slider, {"minimum": 0, "maximum": 256, "step": 16}), @@ -319,19 +345,6 @@ def plaintext_to_html(text): text = "".join([f"
{html.escape(x)}
\n" for x in text.split('\n')]) return text - -def load_gfpgan(): - model_name = 'GFPGANv1.3' - model_path = os.path.join(cmd_opts.gfpgan_dir, 'experiments/pretrained_models', model_name + '.pth') - if not os.path.isfile(model_path): - raise Exception("GFPGAN model not found at path "+model_path) - - sys.path.append(os.path.abspath(cmd_opts.gfpgan_dir)) - from gfpgan import GFPGANer - - return GFPGANer(model_path=model_path, upscale=1, arch='clean', channel_multiplier=2, bg_upsampler=None) - - def image_grid(imgs, batch_size=1, rows=None): if rows is None: if opts.n_rows > 0: @@ -449,7 +462,7 @@ def draw_grid_annotations(im, width, height, hor_texts, ver_texts): fontsize = (width + height) // 25 line_spacing = fontsize // 2 - fnt = ImageFont.truetype("arial.ttf", fontsize) + fnt = ImageFont.truetype(opts.font, fontsize) color_active = (0, 0, 0) color_inactive = (153, 153, 153) @@ -581,16 +594,6 @@ def wrap_gradio_call(func): return f -GFPGAN = None -if os.path.exists(cmd_opts.gfpgan_dir): - try: - GFPGAN = load_gfpgan() - print("Loaded GFPGAN") - except Exception: - print("Error loading GFPGAN:", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - - class StableDiffusionModelHijack: ids_lookup = {} word_embeddings = {} @@ -894,7 +897,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: "Sampler": samplers[p.sampler_index].name, "CFG scale": p.cfg_scale, "Seed": seed, - "GFPGAN": ("GFPGAN" if p.use_GFPGAN and GFPGAN is not None else None) + "GFPGAN": ("GFPGAN" if p.use_GFPGAN else None) } if p.extra_generation_params is not None: @@ -937,9 +940,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed: x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2) x_sample = x_sample.astype(np.uint8) - if p.use_GFPGAN and GFPGAN is not None: + if p.use_GFPGAN: torch_gc() - cropped_faces, restored_faces, restored_img = GFPGAN.enhance(x_sample, has_aligned=False, only_center_face=False, paste_back=True) + + gfpgan_model = gfpgan() + cropped_faces, restored_faces, restored_img = gfpgan_model.enhance(x_sample, has_aligned=False, only_center_face=False, paste_back=True) x_sample = restored_img image = Image.fromarray(x_sample) @@ -1073,7 +1078,7 @@ txt2img_interface = gr.Interface( gr.Textbox(label="Prompt", placeholder="A corgi wearing a top hat as an oil painting.", lines=1), gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50), gr.Radio(label='Sampling method', choices=[x.name for x in samplers], value=samplers[0].name, type="index"), - gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None), + gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=have_gfpgan), gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False), gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count (how many batches of images to generate)', value=1), gr.Slider(minimum=1, maximum=8, step=1, label='Batch size (how many images are in a batch; memory-hungry)', value=1), @@ -1260,7 +1265,7 @@ img2img_interface = gr.Interface( gr.Image(value=sample_img2img, source="upload", interactive=True, type="pil"), gr.Slider(minimum=1, maximum=150, step=1, label="Sampling Steps", value=50), gr.Radio(label='Sampling method', choices=[x.name for x in samplers_for_img2img], value=samplers_for_img2img[0].name, type="index"), - gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=GFPGAN is not None), + gr.Checkbox(label='Fix faces using GFPGAN', value=False, visible=have_gfpgan), gr.Checkbox(label='Create prompt matrix (separate multiple prompts using |, and get all combinations of them)', value=False), gr.Checkbox(label='Loopback (use images from previous batch when creating next batch)', value=False), gr.Checkbox(label='Stable Diffusion upscale', value=False), @@ -1306,8 +1311,9 @@ def run_extras(image, GFPGAN_strength, RealESRGAN_upscaling, RealESRGAN_model_in outpath = opts.outdir or "outputs/extras-samples" - if GFPGAN is not None and GFPGAN_strength > 0: - cropped_faces, restored_faces, restored_img = GFPGAN.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True) + if have_gfpgan is not None and GFPGAN_strength > 0: + gfpgan_model = gfpgan() + cropped_faces, restored_faces, restored_img = gfpgan_model.enhance(np.array(image, dtype=np.uint8), has_aligned=False, only_center_face=False, paste_back=True) res = Image.fromarray(restored_img) if GFPGAN_strength < 1.0: @@ -1328,7 +1334,7 @@ extras_interface = gr.Interface( wrap_gradio_call(run_extras), inputs=[ gr.Image(label="Source", source="upload", interactive=True, type="pil"), - gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN strength", value=1, interactive=GFPGAN is not None), + gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN strength", value=1, interactive=have_gfpgan), gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label="Real-ESRGAN upscaling", value=2, interactive=have_realesrgan), gr.Radio(label='Real-ESRGAN model', choices=[x.name for x in realesrgan_models], value=realesrgan_models[0].name, type="index", interactive=have_realesrgan), ], @@ -1399,11 +1405,6 @@ interfaces = [ sd_config = OmegaConf.load(cmd_opts.config) sd_model = load_model_from_config(sd_config, cmd_opts.ckpt) - -cpu = torch.device("cpu") -gpu = torch.device("cuda") -device = gpu if torch.cuda.is_available() else cpu - sd_model = (sd_model if cmd_opts.no_half else sd_model.half()) if not cmd_opts.lowvram: