mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
add an option (on by default) to disable T5
revert t5xxl back to fp16
This commit is contained in:
parent
d4b814aed6
commit
34b4443cc3
@ -29,7 +29,7 @@ CLIPL_CONFIG = {
|
|||||||
"num_hidden_layers": 12,
|
"num_hidden_layers": 12,
|
||||||
}
|
}
|
||||||
|
|
||||||
T5_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp8_e4m3fn.safetensors"
|
T5_URL = "https://huggingface.co/AUTOMATIC/stable-diffusion-3-medium-text-encoders/resolve/main/t5xxl_fp16.safetensors"
|
||||||
T5_CONFIG = {
|
T5_CONFIG = {
|
||||||
"d_ff": 10240,
|
"d_ff": 10240,
|
||||||
"d_model": 4096,
|
"d_model": 4096,
|
||||||
@ -63,7 +63,11 @@ class SD3Cond(torch.nn.Module):
|
|||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=devices.dtype)
|
self.clip_g = SDXLClipG(CLIPG_CONFIG, device="cpu", dtype=devices.dtype)
|
||||||
self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=devices.dtype, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG)
|
self.clip_l = SDClipModel(layer="hidden", layer_idx=-2, device="cpu", dtype=devices.dtype, layer_norm_hidden_state=False, return_projected_pooled=False, textmodel_json_config=CLIPL_CONFIG)
|
||||||
|
|
||||||
|
if shared.opts.sd3_enable_t5:
|
||||||
self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=devices.dtype)
|
self.t5xxl = T5XXLModel(T5_CONFIG, device="cpu", dtype=devices.dtype)
|
||||||
|
else:
|
||||||
|
self.t5xxl = None
|
||||||
|
|
||||||
self.weights_loaded = False
|
self.weights_loaded = False
|
||||||
|
|
||||||
@ -74,7 +78,12 @@ class SD3Cond(torch.nn.Module):
|
|||||||
tokens = self.tokenizer.tokenize_with_weights(prompt)
|
tokens = self.tokenizer.tokenize_with_weights(prompt)
|
||||||
l_out, l_pooled = self.clip_l.encode_token_weights(tokens["l"])
|
l_out, l_pooled = self.clip_l.encode_token_weights(tokens["l"])
|
||||||
g_out, g_pooled = self.clip_g.encode_token_weights(tokens["g"])
|
g_out, g_pooled = self.clip_g.encode_token_weights(tokens["g"])
|
||||||
|
|
||||||
|
if self.t5xxl and shared.opts.sd3_enable_t5:
|
||||||
t5_out, t5_pooled = self.t5xxl.encode_token_weights(tokens["t5xxl"])
|
t5_out, t5_pooled = self.t5xxl.encode_token_weights(tokens["t5xxl"])
|
||||||
|
else:
|
||||||
|
t5_out = torch.zeros(l_out.shape[0:2] + (4096,), dtype=l_out.dtype, device=l_out.device)
|
||||||
|
|
||||||
lg_out = torch.cat([l_out, g_out], dim=-1)
|
lg_out = torch.cat([l_out, g_out], dim=-1)
|
||||||
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
|
lg_out = torch.nn.functional.pad(lg_out, (0, 4096 - lg_out.shape[-1]))
|
||||||
lgt_out = torch.cat([lg_out, t5_out], dim=-2)
|
lgt_out = torch.cat([lg_out, t5_out], dim=-2)
|
||||||
@ -101,7 +110,8 @@ class SD3Cond(torch.nn.Module):
|
|||||||
with safetensors.safe_open(clip_l_file, framework="pt") as file:
|
with safetensors.safe_open(clip_l_file, framework="pt") as file:
|
||||||
self.clip_l.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
|
self.clip_l.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
|
||||||
|
|
||||||
t5_file = modelloader.load_file_from_url(T5_URL, model_dir=clip_path, file_name="t5xxl_fp8_e4m3fn.safetensors")
|
if self.t5xxl:
|
||||||
|
t5_file = modelloader.load_file_from_url(T5_URL, model_dir=clip_path, file_name="t5xxl_fp16.safetensors")
|
||||||
with safetensors.safe_open(t5_file, framework="pt") as file:
|
with safetensors.safe_open(t5_file, framework="pt") as file:
|
||||||
self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
|
self.t5xxl.transformer.load_state_dict(SafetensorsMapping(file), strict=False)
|
||||||
|
|
||||||
|
@ -191,6 +191,10 @@ options_templates.update(options_section(('sdxl', "Stable Diffusion XL", "sd"),
|
|||||||
"sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"),
|
"sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
|
options_templates.update(options_section(('sd3', "Stable Diffusion 3", "sd"), {
|
||||||
|
"sd3_enable_t5": OptionInfo(False, "Enable T5").info("load T5 text encoder; increases VRAM use by a lot, potentially improving quality of generation; requires model reload to apply"),
|
||||||
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('vae', "VAE", "sd"), {
|
options_templates.update(options_section(('vae', "VAE", "sd"), {
|
||||||
"sd_vae_explanation": OptionHTML("""
|
"sd_vae_explanation": OptionHTML("""
|
||||||
<abbr title='Variational autoencoder'>VAE</abbr> is a neural network that transforms a standard <abbr title='red/green/blue'>RGB</abbr>
|
<abbr title='Variational autoencoder'>VAE</abbr> is a neural network that transforms a standard <abbr title='red/green/blue'>RGB</abbr>
|
||||||
|
Loading…
Reference in New Issue
Block a user