mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-18 12:20:11 +08:00
Merge branch 'AUTOMATIC1111:master' into master
This commit is contained in:
commit
34c0f499c5
@ -3,7 +3,9 @@ import os
|
|||||||
import re
|
import re
|
||||||
import torch
|
import torch
|
||||||
|
|
||||||
from modules import shared, devices, sd_models
|
from modules import shared, devices, sd_models, errors
|
||||||
|
|
||||||
|
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
|
||||||
|
|
||||||
re_digits = re.compile(r"\d+")
|
re_digits = re.compile(r"\d+")
|
||||||
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
|
re_unet_down_blocks = re.compile(r"lora_unet_down_blocks_(\d+)_attentions_(\d+)_(.+)")
|
||||||
@ -43,6 +45,23 @@ class LoraOnDisk:
|
|||||||
def __init__(self, name, filename):
|
def __init__(self, name, filename):
|
||||||
self.name = name
|
self.name = name
|
||||||
self.filename = filename
|
self.filename = filename
|
||||||
|
self.metadata = {}
|
||||||
|
|
||||||
|
_, ext = os.path.splitext(filename)
|
||||||
|
if ext.lower() == ".safetensors":
|
||||||
|
try:
|
||||||
|
self.metadata = sd_models.read_metadata_from_safetensors(filename)
|
||||||
|
except Exception as e:
|
||||||
|
errors.display(e, f"reading lora {filename}")
|
||||||
|
|
||||||
|
if self.metadata:
|
||||||
|
m = {}
|
||||||
|
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
|
||||||
|
m[k] = v
|
||||||
|
|
||||||
|
self.metadata = m
|
||||||
|
|
||||||
|
self.ssmd_cover_images = self.metadata.pop('ssmd_cover_images', None) # those are cover images and they are too big to display in UI as text
|
||||||
|
|
||||||
|
|
||||||
class LoraModule:
|
class LoraModule:
|
||||||
|
@ -23,6 +23,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
|
|||||||
"search_term": self.search_terms_from_path(lora_on_disk.filename),
|
"search_term": self.search_terms_from_path(lora_on_disk.filename),
|
||||||
"prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
|
"prompt": json.dumps(f"<lora:{name}:") + " + opts.extra_networks_default_multiplier + " + json.dumps(">"),
|
||||||
"local_preview": f"{path}.{shared.opts.samples_format}",
|
"local_preview": f"{path}.{shared.opts.samples_format}",
|
||||||
|
"metadata": json.dumps(lora_on_disk.metadata, indent=4) if lora_on_disk.metadata else None,
|
||||||
}
|
}
|
||||||
|
|
||||||
def allowed_directories_for_previews(self):
|
def allowed_directories_for_previews(self):
|
||||||
|
@ -1,4 +1,6 @@
|
|||||||
<div class='card' {preview_html} onclick={card_clicked}>
|
<div class='card' {preview_html} onclick={card_clicked}>
|
||||||
|
{metadata_button}
|
||||||
|
|
||||||
<div class='actions'>
|
<div class='actions'>
|
||||||
<div class='additional'>
|
<div class='additional'>
|
||||||
<ul>
|
<ul>
|
||||||
|
@ -102,4 +102,40 @@ function extraNetworksSearchButton(tabs_id, event){
|
|||||||
|
|
||||||
searchTextarea.value = text
|
searchTextarea.value = text
|
||||||
updateInput(searchTextarea)
|
updateInput(searchTextarea)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
var globalPopup = null;
|
||||||
|
var globalPopupInner = null;
|
||||||
|
function popup(contents){
|
||||||
|
if(! globalPopup){
|
||||||
|
globalPopup = document.createElement('div')
|
||||||
|
globalPopup.onclick = function(){ globalPopup.style.display = "none"; };
|
||||||
|
globalPopup.classList.add('global-popup');
|
||||||
|
|
||||||
|
var close = document.createElement('div')
|
||||||
|
close.classList.add('global-popup-close');
|
||||||
|
close.onclick = function(){ globalPopup.style.display = "none"; };
|
||||||
|
close.title = "Close";
|
||||||
|
globalPopup.appendChild(close)
|
||||||
|
|
||||||
|
globalPopupInner = document.createElement('div')
|
||||||
|
globalPopupInner.onclick = function(event){ event.stopPropagation(); return false; };
|
||||||
|
globalPopupInner.classList.add('global-popup-inner');
|
||||||
|
globalPopup.appendChild(globalPopupInner)
|
||||||
|
|
||||||
|
gradioApp().appendChild(globalPopup);
|
||||||
|
}
|
||||||
|
|
||||||
|
globalPopupInner.innerHTML = '';
|
||||||
|
globalPopupInner.appendChild(contents);
|
||||||
|
|
||||||
|
globalPopup.style.display = "flex";
|
||||||
|
}
|
||||||
|
|
||||||
|
function extraNetworksShowMetadata(text){
|
||||||
|
elem = document.createElement('pre')
|
||||||
|
elem.classList.add('popup-metadata');
|
||||||
|
elem.textContent = text;
|
||||||
|
|
||||||
|
popup(elem);
|
||||||
|
}
|
||||||
|
@ -573,6 +573,11 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||||||
os.replace(temp_file_path, filename_without_extension + extension)
|
os.replace(temp_file_path, filename_without_extension + extension)
|
||||||
|
|
||||||
fullfn_without_extension, extension = os.path.splitext(params.filename)
|
fullfn_without_extension, extension = os.path.splitext(params.filename)
|
||||||
|
if hasattr(os, 'statvfs'):
|
||||||
|
max_name_len = os.statvfs(path).f_namemax
|
||||||
|
fullfn_without_extension = fullfn_without_extension[:max_name_len - max(4, len(extension))]
|
||||||
|
params.filename = fullfn_without_extension + extension
|
||||||
|
fullfn = params.filename
|
||||||
_atomically_save_image(image, fullfn_without_extension, extension)
|
_atomically_save_image(image, fullfn_without_extension, extension)
|
||||||
|
|
||||||
image.already_saved_as = fullfn
|
image.already_saved_as = fullfn
|
||||||
|
@ -71,7 +71,7 @@ class UniPCSampler(object):
|
|||||||
# sampling
|
# sampling
|
||||||
C, H, W = shape
|
C, H, W = shape
|
||||||
size = (batch_size, C, H, W)
|
size = (batch_size, C, H, W)
|
||||||
print(f'Data shape for UniPC sampling is {size}')
|
# print(f'Data shape for UniPC sampling is {size}')
|
||||||
|
|
||||||
device = self.model.betas.device
|
device = self.model.betas.device
|
||||||
if x_T is None:
|
if x_T is None:
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
import torch
|
import torch
|
||||||
import torch.nn.functional as F
|
import torch.nn.functional as F
|
||||||
import math
|
import math
|
||||||
|
from tqdm.auto import trange
|
||||||
|
|
||||||
|
|
||||||
class NoiseScheduleVP:
|
class NoiseScheduleVP:
|
||||||
@ -750,7 +751,7 @@ class UniPC:
|
|||||||
if method == 'multistep':
|
if method == 'multistep':
|
||||||
assert steps >= order, "UniPC order must be < sampling steps"
|
assert steps >= order, "UniPC order must be < sampling steps"
|
||||||
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
timesteps = self.get_time_steps(skip_type=skip_type, t_T=t_T, t_0=t_0, N=steps, device=device)
|
||||||
print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
|
#print(f"Running UniPC Sampling with {timesteps.shape[0]} timesteps, order {order}")
|
||||||
assert timesteps.shape[0] - 1 == steps
|
assert timesteps.shape[0] - 1 == steps
|
||||||
with torch.no_grad():
|
with torch.no_grad():
|
||||||
vec_t = timesteps[0].expand((x.shape[0]))
|
vec_t = timesteps[0].expand((x.shape[0]))
|
||||||
@ -766,7 +767,7 @@ class UniPC:
|
|||||||
self.after_update(x, model_x)
|
self.after_update(x, model_x)
|
||||||
model_prev_list.append(model_x)
|
model_prev_list.append(model_x)
|
||||||
t_prev_list.append(vec_t)
|
t_prev_list.append(vec_t)
|
||||||
for step in range(order, steps + 1):
|
for step in trange(order, steps + 1):
|
||||||
vec_t = timesteps[step].expand(x.shape[0])
|
vec_t = timesteps[step].expand(x.shape[0])
|
||||||
if lower_order_final:
|
if lower_order_final:
|
||||||
step_order = min(order, steps + 1 - step)
|
step_order = min(order, steps + 1 - step)
|
||||||
|
@ -583,6 +583,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if state.job_count == -1:
|
if state.job_count == -1:
|
||||||
state.job_count = p.n_iter
|
state.job_count = p.n_iter
|
||||||
|
|
||||||
|
extra_network_data = None
|
||||||
for n in range(p.n_iter):
|
for n in range(p.n_iter):
|
||||||
p.iteration = n
|
p.iteration = n
|
||||||
|
|
||||||
@ -712,7 +713,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if opts.grid_save:
|
if opts.grid_save:
|
||||||
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
images.save_image(grid, p.outpath_grids, "grid", p.all_seeds[0], p.all_prompts[0], opts.grid_format, info=infotext(), short_filename=not opts.grid_extended_filename, p=p, grid=True)
|
||||||
|
|
||||||
if not p.disable_extra_networks:
|
if not p.disable_extra_networks and extra_network_data:
|
||||||
extra_networks.deactivate(p, extra_network_data)
|
extra_networks.deactivate(p, extra_network_data)
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
|
@ -210,6 +210,30 @@ def get_state_dict_from_checkpoint(pl_sd):
|
|||||||
return pl_sd
|
return pl_sd
|
||||||
|
|
||||||
|
|
||||||
|
def read_metadata_from_safetensors(filename):
|
||||||
|
import json
|
||||||
|
|
||||||
|
with open(filename, mode="rb") as file:
|
||||||
|
metadata_len = file.read(8)
|
||||||
|
metadata_len = int.from_bytes(metadata_len, "little")
|
||||||
|
json_start = file.read(2)
|
||||||
|
|
||||||
|
assert metadata_len > 2 and json_start in (b'{"', b"{'"), f"{filename} is not a safetensors file"
|
||||||
|
json_data = json_start + file.read(metadata_len-2)
|
||||||
|
json_obj = json.loads(json_data)
|
||||||
|
|
||||||
|
res = {}
|
||||||
|
for k, v in json_obj.get("__metadata__", {}).items():
|
||||||
|
res[k] = v
|
||||||
|
if isinstance(v, str) and v[0:1] == '{':
|
||||||
|
try:
|
||||||
|
res[k] = json.loads(v)
|
||||||
|
except Exception as e:
|
||||||
|
pass
|
||||||
|
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
|
def read_state_dict(checkpoint_file, print_global_state=False, map_location=None):
|
||||||
_, extension = os.path.splitext(checkpoint_file)
|
_, extension = os.path.splitext(checkpoint_file)
|
||||||
if extension.lower() == ".safetensors":
|
if extension.lower() == ".safetensors":
|
||||||
|
@ -30,8 +30,8 @@ def add_pages_to_demo(app):
|
|||||||
raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.")
|
raise ValueError(f"File cannot be fetched: {filename}. Must be in one of directories registered by extra pages.")
|
||||||
|
|
||||||
ext = os.path.splitext(filename)[1].lower()
|
ext = os.path.splitext(filename)[1].lower()
|
||||||
if ext not in (".png", ".jpg"):
|
if ext not in (".png", ".jpg", ".webp"):
|
||||||
raise ValueError(f"File cannot be fetched: {filename}. Only png and jpg.")
|
raise ValueError(f"File cannot be fetched: {filename}. Only png and jpg and webp.")
|
||||||
|
|
||||||
# would profit from returning 304
|
# would profit from returning 304
|
||||||
return FileResponse(filename, headers={"Accept-Ranges": "bytes"})
|
return FileResponse(filename, headers={"Accept-Ranges": "bytes"})
|
||||||
@ -124,6 +124,12 @@ class ExtraNetworksPage:
|
|||||||
if onclick is None:
|
if onclick is None:
|
||||||
onclick = '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"'
|
onclick = '"' + html.escape(f"""return cardClicked({json.dumps(tabname)}, {item["prompt"]}, {"true" if self.allow_negative_prompt else "false"})""") + '"'
|
||||||
|
|
||||||
|
metadata_button = ""
|
||||||
|
metadata = item.get("metadata")
|
||||||
|
if metadata:
|
||||||
|
metadata_onclick = '"' + html.escape(f"""extraNetworksShowMetadata({json.dumps(metadata)}); return false;""") + '"'
|
||||||
|
metadata_button = f"<div class='metadata-button' title='Show metadata' onclick={metadata_onclick}></div>"
|
||||||
|
|
||||||
args = {
|
args = {
|
||||||
"preview_html": "style='background-image: url(\"" + html.escape(preview) + "\")'" if preview else '',
|
"preview_html": "style='background-image: url(\"" + html.escape(preview) + "\")'" if preview else '',
|
||||||
"prompt": item.get("prompt", None),
|
"prompt": item.get("prompt", None),
|
||||||
@ -134,6 +140,7 @@ class ExtraNetworksPage:
|
|||||||
"card_clicked": onclick,
|
"card_clicked": onclick,
|
||||||
"save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"',
|
"save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {json.dumps(tabname)}, {json.dumps(item["local_preview"])})""") + '"',
|
||||||
"search_term": item.get("search_term", ""),
|
"search_term": item.get("search_term", ""),
|
||||||
|
"metadata_button": metadata_button,
|
||||||
}
|
}
|
||||||
|
|
||||||
return self.card_page.format(**args)
|
return self.card_page.format(**args)
|
||||||
|
61
style.css
61
style.css
@ -362,6 +362,46 @@ input[type="range"]{
|
|||||||
height: 100%;
|
height: 100%;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
.popup-metadata{
|
||||||
|
color: black;
|
||||||
|
background: white;
|
||||||
|
display: inline-block;
|
||||||
|
padding: 1em;
|
||||||
|
white-space: pre-wrap;
|
||||||
|
}
|
||||||
|
|
||||||
|
.global-popup{
|
||||||
|
display: flex;
|
||||||
|
position: fixed;
|
||||||
|
z-index: 1001;
|
||||||
|
left: 0;
|
||||||
|
top: 0;
|
||||||
|
width: 100%;
|
||||||
|
height: 100%;
|
||||||
|
overflow: auto;
|
||||||
|
background-color: rgba(20, 20, 20, 0.95);
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
.global-popup-close:before {
|
||||||
|
content: "×";
|
||||||
|
}
|
||||||
|
|
||||||
|
.global-popup-close{
|
||||||
|
position: fixed;
|
||||||
|
right: 0.25em;
|
||||||
|
top: 0;
|
||||||
|
cursor: pointer;
|
||||||
|
color: white;
|
||||||
|
font-size: 32pt;
|
||||||
|
}
|
||||||
|
|
||||||
|
.global-popup-inner{
|
||||||
|
display: inline-block;
|
||||||
|
margin: auto;
|
||||||
|
padding: 2em;
|
||||||
|
}
|
||||||
|
|
||||||
#lightboxModal{
|
#lightboxModal{
|
||||||
display: none;
|
display: none;
|
||||||
position: fixed;
|
position: fixed;
|
||||||
@ -837,6 +877,27 @@ footer {
|
|||||||
margin-left: 0.5em;
|
margin-left: 0.5em;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
.extra-network-cards .card .metadata-button:before, .extra-network-thumbs .card .metadata-button:before{
|
||||||
|
content: "🛈";
|
||||||
|
}
|
||||||
|
.extra-network-cards .card .metadata-button, .extra-network-thumbs .card .metadata-button{
|
||||||
|
display: none;
|
||||||
|
position: absolute;
|
||||||
|
right: 0;
|
||||||
|
color: white;
|
||||||
|
text-shadow: 2px 2px 3px black;
|
||||||
|
padding: 0.25em;
|
||||||
|
font-size: 22pt;
|
||||||
|
}
|
||||||
|
.extra-network-cards .card:hover .metadata-button, .extra-network-thumbs .card:hover .metadata-button{
|
||||||
|
display: inline-block;
|
||||||
|
}
|
||||||
|
.extra-network-cards .card .metadata-button:hover, .extra-network-thumbs .card .metadata-button:hover{
|
||||||
|
color: red;
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
.extra-network-thumbs {
|
.extra-network-thumbs {
|
||||||
display: flex;
|
display: flex;
|
||||||
flex-flow: row wrap;
|
flex-flow: row wrap;
|
||||||
|
Loading…
Reference in New Issue
Block a user