mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
Option for using fp16 weight when apply lora
This commit is contained in:
parent
b2e039d07b
commit
370a77f8e7
@ -388,18 +388,26 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
|
||||
if module is not None and hasattr(self, 'weight'):
|
||||
try:
|
||||
with torch.no_grad():
|
||||
updown, ex_bias = module.calc_updown(self.weight)
|
||||
if getattr(self, 'fp16_weight', None) is None:
|
||||
weight = self.weight
|
||||
bias = self.bias
|
||||
else:
|
||||
weight = self.fp16_weight.clone().to(self.weight.device)
|
||||
bias = getattr(self, 'fp16_bias', None)
|
||||
if bias is not None:
|
||||
bias = bias.clone().to(self.bias.device)
|
||||
updown, ex_bias = module.calc_updown(weight)
|
||||
|
||||
if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
|
||||
if len(weight.shape) == 4 and weight.shape[1] == 9:
|
||||
# inpainting model. zero pad updown to make channel[1] 4 to 9
|
||||
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
|
||||
|
||||
self.weight.copy_((self.weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
|
||||
self.weight.copy_((weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype))
|
||||
if ex_bias is not None and hasattr(self, 'bias'):
|
||||
if self.bias is None:
|
||||
self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype)
|
||||
else:
|
||||
self.bias.copy_((self.bias.to(dtype=ex_bias.dtype) + ex_bias).to(dtype=self.bias.dtype))
|
||||
self.bias.copy_((bias + ex_bias).to(dtype=self.bias.dtype))
|
||||
except RuntimeError as e:
|
||||
logging.debug(f"Network {net.name} layer {network_layer_name}: {e}")
|
||||
extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1
|
||||
|
@ -178,6 +178,7 @@ def configure_opts_onchange():
|
||||
shared.opts.onchange("gradio_theme", shared.reload_gradio_theme)
|
||||
shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False)
|
||||
shared.opts.onchange("fp8_storage", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False)
|
||||
shared.opts.onchange("cache_fp16_weight", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False)
|
||||
startup_timer.record("opts onchange")
|
||||
|
||||
|
||||
|
@ -413,14 +413,22 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
|
||||
devices.dtype_unet = torch.float16
|
||||
timer.record("apply half()")
|
||||
|
||||
for module in model.modules():
|
||||
if hasattr(module, 'fp16_weight'):
|
||||
del module.fp16_weight
|
||||
if hasattr(module, 'fp16_bias'):
|
||||
del module.fp16_bias
|
||||
|
||||
if check_fp8(model):
|
||||
devices.fp8 = True
|
||||
first_stage = model.first_stage_model
|
||||
model.first_stage_model = None
|
||||
for module in model.modules():
|
||||
if isinstance(module, torch.nn.Conv2d):
|
||||
module.to(torch.float8_e4m3fn)
|
||||
elif isinstance(module, torch.nn.Linear):
|
||||
if isinstance(module, (torch.nn.Conv2d, torch.nn.Linear)):
|
||||
if shared.opts.cache_fp16_weight:
|
||||
module.fp16_weight = module.weight.clone().half()
|
||||
if module.bias is not None:
|
||||
module.fp16_bias = module.bias.clone().half()
|
||||
module.to(torch.float8_e4m3fn)
|
||||
model.first_stage_model = first_stage
|
||||
timer.record("apply fp8")
|
||||
|
@ -201,6 +201,7 @@ options_templates.update(options_section(('optimizations', "Optimizations"), {
|
||||
"persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("do not recalculate conds from prompts if prompts have not changed since previous calculation"),
|
||||
"batch_cond_uncond": OptionInfo(True, "Batch cond/uncond").info("do both conditional and unconditional denoising in one batch; uses a bit more VRAM during sampling, but improves speed; previously this was controlled by --always-batch-cond-uncond comandline argument"),
|
||||
"fp8_storage": OptionInfo("Disable", "FP8 weight", gr.Dropdown, {"choices": ["Disable", "Enable for SDXL", "Enable"]}).info("Use FP8 to store Linear/Conv layers' weight. Require pytorch>=2.1.0."),
|
||||
"cache_fp16_weight": OptionInfo(False, "Cache FP16 weight for LoRA").info("Cache fp16 weight when enabling FP8, will increase the quality of LoRA. Use more system ram."),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('compatibility', "Compatibility"), {
|
||||
|
Loading…
Reference in New Issue
Block a user