mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
Merge branch 'master' into feat/allow-origins
This commit is contained in:
commit
37ba0070ec
@ -218,6 +218,10 @@ class Api:
|
||||
return options
|
||||
|
||||
def set_config(self, req: OptionsModel):
|
||||
# currently req has all options fields even if you send a dict like { "send_seed": false }, which means it will
|
||||
# overwrite all options with default values.
|
||||
raise RuntimeError('Setting options via API is not supported')
|
||||
|
||||
reqDict = vars(req)
|
||||
for o in reqDict:
|
||||
setattr(shared.opts, o, reqDict[o])
|
||||
|
@ -1,6 +1,6 @@
|
||||
import inspect
|
||||
from pydantic import BaseModel, Field, create_model
|
||||
from typing import Any, Optional, Union
|
||||
from typing import Any, Optional
|
||||
from typing_extensions import Literal
|
||||
from inflection import underscore
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img
|
||||
@ -185,22 +185,22 @@ _options = vars(parser)['_option_string_actions']
|
||||
for key in _options:
|
||||
if(_options[key].dest != 'help'):
|
||||
flag = _options[key]
|
||||
_type = str
|
||||
if(_options[key].default != None): _type = type(_options[key].default)
|
||||
_type = str
|
||||
if _options[key].default is not None: _type = type(_options[key].default)
|
||||
flags.update({flag.dest: (_type,Field(default=flag.default, description=flag.help))})
|
||||
|
||||
FlagsModel = create_model("Flags", **flags)
|
||||
|
||||
class SamplerItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
aliases: list[str] = Field(title="Aliases")
|
||||
aliases: list[str] = Field(title="Aliases")
|
||||
options: dict[str, str] = Field(title="Options")
|
||||
|
||||
class UpscalerItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
model_name: str | None = Field(title="Model Name")
|
||||
model_path: str | None = Field(title="Path")
|
||||
model_url: str | None = Field(title="URL")
|
||||
model_name: Optional[str] = Field(title="Model Name")
|
||||
model_path: Optional[str] = Field(title="Path")
|
||||
model_url: Optional[str] = Field(title="URL")
|
||||
|
||||
class SDModelItem(BaseModel):
|
||||
title: str = Field(title="Title")
|
||||
@ -211,21 +211,21 @@ class SDModelItem(BaseModel):
|
||||
|
||||
class HypernetworkItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
path: str | None = Field(title="Path")
|
||||
path: Optional[str] = Field(title="Path")
|
||||
|
||||
class FaceRestorerItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
cmd_dir: str | None = Field(title="Path")
|
||||
cmd_dir: Optional[str] = Field(title="Path")
|
||||
|
||||
class RealesrganItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
path: str | None = Field(title="Path")
|
||||
scale: int | None = Field(title="Scale")
|
||||
path: Optional[str] = Field(title="Path")
|
||||
scale: Optional[int] = Field(title="Scale")
|
||||
|
||||
class PromptStyleItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
prompt: str | None = Field(title="Prompt")
|
||||
negative_prompt: str | None = Field(title="Negative Prompt")
|
||||
prompt: Optional[str] = Field(title="Prompt")
|
||||
negative_prompt: Optional[str] = Field(title="Negative Prompt")
|
||||
|
||||
class ArtistItem(BaseModel):
|
||||
name: str = Field(title="Name")
|
||||
|
@ -34,8 +34,11 @@ class Extension:
|
||||
if repo is None or repo.bare:
|
||||
self.remote = None
|
||||
else:
|
||||
self.remote = next(repo.remote().urls, None)
|
||||
self.status = 'unknown'
|
||||
try:
|
||||
self.remote = next(repo.remote().urls, None)
|
||||
self.status = 'unknown'
|
||||
except Exception:
|
||||
self.remote = None
|
||||
|
||||
def list_files(self, subdir, extension):
|
||||
from modules import scripts
|
||||
|
@ -22,6 +22,8 @@ from collections import defaultdict, deque
|
||||
from statistics import stdev, mean
|
||||
|
||||
|
||||
optimizer_dict = {optim_name : cls_obj for optim_name, cls_obj in inspect.getmembers(torch.optim, inspect.isclass) if optim_name != "Optimizer"}
|
||||
|
||||
class HypernetworkModule(torch.nn.Module):
|
||||
multiplier = 1.0
|
||||
activation_dict = {
|
||||
@ -142,6 +144,8 @@ class Hypernetwork:
|
||||
self.use_dropout = use_dropout
|
||||
self.activate_output = activate_output
|
||||
self.last_layer_dropout = kwargs['last_layer_dropout'] if 'last_layer_dropout' in kwargs else True
|
||||
self.optimizer_name = None
|
||||
self.optimizer_state_dict = None
|
||||
|
||||
for size in enable_sizes or []:
|
||||
self.layers[size] = (
|
||||
@ -163,6 +167,7 @@ class Hypernetwork:
|
||||
|
||||
def save(self, filename):
|
||||
state_dict = {}
|
||||
optimizer_saved_dict = {}
|
||||
|
||||
for k, v in self.layers.items():
|
||||
state_dict[k] = (v[0].state_dict(), v[1].state_dict())
|
||||
@ -178,8 +183,15 @@ class Hypernetwork:
|
||||
state_dict['sd_checkpoint_name'] = self.sd_checkpoint_name
|
||||
state_dict['activate_output'] = self.activate_output
|
||||
state_dict['last_layer_dropout'] = self.last_layer_dropout
|
||||
|
||||
|
||||
if self.optimizer_name is not None:
|
||||
optimizer_saved_dict['optimizer_name'] = self.optimizer_name
|
||||
|
||||
torch.save(state_dict, filename)
|
||||
if shared.opts.save_optimizer_state and self.optimizer_state_dict:
|
||||
optimizer_saved_dict['hash'] = sd_models.model_hash(filename)
|
||||
optimizer_saved_dict['optimizer_state_dict'] = self.optimizer_state_dict
|
||||
torch.save(optimizer_saved_dict, filename + '.optim')
|
||||
|
||||
def load(self, filename):
|
||||
self.filename = filename
|
||||
@ -202,6 +214,18 @@ class Hypernetwork:
|
||||
print(f"Activate last layer is set to {self.activate_output}")
|
||||
self.last_layer_dropout = state_dict.get('last_layer_dropout', False)
|
||||
|
||||
optimizer_saved_dict = torch.load(self.filename + '.optim', map_location = 'cpu') if os.path.exists(self.filename + '.optim') else {}
|
||||
self.optimizer_name = optimizer_saved_dict.get('optimizer_name', 'AdamW')
|
||||
print(f"Optimizer name is {self.optimizer_name}")
|
||||
if sd_models.model_hash(filename) == optimizer_saved_dict.get('hash', None):
|
||||
self.optimizer_state_dict = optimizer_saved_dict.get('optimizer_state_dict', None)
|
||||
else:
|
||||
self.optimizer_state_dict = None
|
||||
if self.optimizer_state_dict:
|
||||
print("Loaded existing optimizer from checkpoint")
|
||||
else:
|
||||
print("No saved optimizer exists in checkpoint")
|
||||
|
||||
for size, sd in state_dict.items():
|
||||
if type(size) == int:
|
||||
self.layers[size] = (
|
||||
@ -219,11 +243,11 @@ class Hypernetwork:
|
||||
|
||||
def list_hypernetworks(path):
|
||||
res = {}
|
||||
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
||||
for filename in sorted(glob.iglob(os.path.join(path, '**/*.pt'), recursive=True)):
|
||||
name = os.path.splitext(os.path.basename(filename))[0]
|
||||
# Prevent a hypothetical "None.pt" from being listed.
|
||||
if name != "None":
|
||||
res[name] = filename
|
||||
res[name + f"({sd_models.model_hash(filename)})"] = filename
|
||||
return res
|
||||
|
||||
|
||||
@ -358,6 +382,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
||||
shared.state.textinfo = "Initializing hypernetwork training..."
|
||||
shared.state.job_count = steps
|
||||
|
||||
hypernetwork_name = hypernetwork_name.rsplit('(', 1)[0]
|
||||
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||
|
||||
log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%m-%d"), hypernetwork_name)
|
||||
@ -404,8 +429,19 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
||||
weights = hypernetwork.weights()
|
||||
for weight in weights:
|
||||
weight.requires_grad = True
|
||||
# if optimizer == "AdamW": or else Adam / AdamW / SGD, etc...
|
||||
optimizer = torch.optim.AdamW(weights, lr=scheduler.learn_rate)
|
||||
# Here we use optimizer from saved HN, or we can specify as UI option.
|
||||
if (optimizer_name := hypernetwork.optimizer_name) in optimizer_dict:
|
||||
optimizer = optimizer_dict[hypernetwork.optimizer_name](params=weights, lr=scheduler.learn_rate)
|
||||
else:
|
||||
print(f"Optimizer type {optimizer_name} is not defined!")
|
||||
optimizer = torch.optim.AdamW(params=weights, lr=scheduler.learn_rate)
|
||||
optimizer_name = 'AdamW'
|
||||
if hypernetwork.optimizer_state_dict: # This line must be changed if Optimizer type can be different from saved optimizer.
|
||||
try:
|
||||
optimizer.load_state_dict(hypernetwork.optimizer_state_dict)
|
||||
except RuntimeError as e:
|
||||
print("Cannot resume from saved optimizer!")
|
||||
print(e)
|
||||
|
||||
steps_without_grad = 0
|
||||
|
||||
@ -467,7 +503,11 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, data_root, log
|
||||
# Before saving, change name to match current checkpoint.
|
||||
hypernetwork_name_every = f'{hypernetwork_name}-{steps_done}'
|
||||
last_saved_file = os.path.join(hypernetwork_dir, f'{hypernetwork_name_every}.pt')
|
||||
hypernetwork.optimizer_name = optimizer_name
|
||||
if shared.opts.save_optimizer_state:
|
||||
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, last_saved_file)
|
||||
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||
|
||||
textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, len(ds), {
|
||||
"loss": f"{previous_mean_loss:.7f}",
|
||||
@ -530,8 +570,12 @@ Last saved image: {html.escape(last_saved_image)}<br/>
|
||||
report_statistics(loss_dict)
|
||||
|
||||
filename = os.path.join(shared.cmd_opts.hypernetwork_dir, f'{hypernetwork_name}.pt')
|
||||
hypernetwork.optimizer_name = optimizer_name
|
||||
if shared.opts.save_optimizer_state:
|
||||
hypernetwork.optimizer_state_dict = optimizer.state_dict()
|
||||
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
|
||||
|
||||
del optimizer
|
||||
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
|
||||
return hypernetwork, filename
|
||||
|
||||
def save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename):
|
||||
|
@ -9,7 +9,7 @@ from modules import devices, sd_hijack, shared
|
||||
from modules.hypernetworks import hypernetwork
|
||||
|
||||
not_available = ["hardswish", "multiheadattention"]
|
||||
keys = ["linear"] + list(x for x in hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
|
||||
keys = list(x for x in hypernetwork.HypernetworkModule.activation_dict.keys() if x not in not_available)
|
||||
|
||||
def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None, activation_func=None, weight_init=None, add_layer_norm=False, use_dropout=False):
|
||||
# Remove illegal characters from name.
|
||||
|
@ -87,6 +87,9 @@ parser.add_argument("--ui-debug-mode", action='store_true', help="Don't load mod
|
||||
parser.add_argument("--device-id", type=str, help="Select the default CUDA device to use (export CUDA_VISIBLE_DEVICES=0,1,etc might be needed before)", default=None)
|
||||
parser.add_argument("--administrator", action='store_true', help="Administrator rights", default=False)
|
||||
parser.add_argument("--cors-allow-origins", type=str, help="Allowed CORS origins", default=None)
|
||||
parser.add_argument("--tls-keyfile", type=str, help="Partially enables TLS, requires --tls-certfile to fully function", default=None)
|
||||
parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, requires --tls-keyfile to fully function", default=None)
|
||||
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
|
||||
|
||||
cmd_opts = parser.parse_args()
|
||||
restricted_opts = {
|
||||
@ -318,6 +321,7 @@ options_templates.update(options_section(('system', "System"), {
|
||||
|
||||
options_templates.update(options_section(('training', "Training"), {
|
||||
"unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."),
|
||||
"save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."),
|
||||
"dataset_filename_word_regex": OptionInfo("", "Filename word regex"),
|
||||
"dataset_filename_join_string": OptionInfo(" ", "Filename join string"),
|
||||
"training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}),
|
||||
@ -407,7 +411,8 @@ class Options:
|
||||
if key in self.data or key in self.data_labels:
|
||||
assert not cmd_opts.freeze_settings, "changing settings is disabled"
|
||||
|
||||
comp_args = opts.data_labels[key].component_args
|
||||
info = opts.data_labels.get(key, None)
|
||||
comp_args = info.component_args if info else None
|
||||
if isinstance(comp_args, dict) and comp_args.get('visible', True) is False:
|
||||
raise RuntimeError(f"not possible to set {key} because it is restricted")
|
||||
|
||||
|
@ -188,7 +188,7 @@ def refresh_available_extensions_from_data():
|
||||
|
||||
code += f"""
|
||||
<tr>
|
||||
<td><a href="{html.escape(url)}">{html.escape(name)}</a></td>
|
||||
<td><a href="{html.escape(url)}" target="_blank">{html.escape(name)}</a></td>
|
||||
<td>{html.escape(description)}</td>
|
||||
<td>{install_code}</td>
|
||||
</tr>
|
||||
|
@ -57,10 +57,18 @@ class Upscaler:
|
||||
self.scale = scale
|
||||
dest_w = img.width * scale
|
||||
dest_h = img.height * scale
|
||||
|
||||
for i in range(3):
|
||||
if img.width > dest_w and img.height > dest_h:
|
||||
break
|
||||
shape = (img.width, img.height)
|
||||
|
||||
img = self.do_upscale(img, selected_model)
|
||||
|
||||
if shape == (img.width, img.height):
|
||||
break
|
||||
|
||||
if img.width >= dest_w and img.height >= dest_h:
|
||||
break
|
||||
|
||||
if img.width != dest_w or img.height != dest_h:
|
||||
img = img.resize((int(dest_w), int(dest_h)), resample=LANCZOS)
|
||||
|
||||
|
20
webui.py
20
webui.py
@ -35,7 +35,7 @@ from modules.shared import cmd_opts
|
||||
import modules.hypernetworks.hypernetwork
|
||||
|
||||
queue_lock = threading.Lock()
|
||||
|
||||
server_name = "0.0.0.0" if cmd_opts.listen else cmd_opts.server_name
|
||||
|
||||
def wrap_queued_call(func):
|
||||
def f(*args, **kwargs):
|
||||
@ -86,6 +86,20 @@ def initialize():
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
||||
|
||||
if cmd_opts.tls_keyfile is not None and cmd_opts.tls_keyfile is not None:
|
||||
|
||||
try:
|
||||
if not os.path.exists(cmd_opts.tls_keyfile):
|
||||
print("Invalid path to TLS keyfile given")
|
||||
if not os.path.exists(cmd_opts.tls_certfile):
|
||||
print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'")
|
||||
except TypeError:
|
||||
cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None
|
||||
print("TLS setup invalid, running webui without TLS")
|
||||
else:
|
||||
print("Running with TLS")
|
||||
|
||||
|
||||
# make the program just exit at ctrl+c without waiting for anything
|
||||
def sigint_handler(sig, frame):
|
||||
print(f'Interrupted with signal {sig} in {frame}')
|
||||
@ -138,8 +152,10 @@ def webui():
|
||||
|
||||
app, local_url, share_url = demo.launch(
|
||||
share=cmd_opts.share,
|
||||
server_name="0.0.0.0" if cmd_opts.listen else None,
|
||||
server_name=server_name,
|
||||
server_port=cmd_opts.port,
|
||||
ssl_keyfile=cmd_opts.tls_keyfile,
|
||||
ssl_certfile=cmd_opts.tls_certfile,
|
||||
debug=cmd_opts.gradio_debug,
|
||||
auth=[tuple(cred.split(':')) for cred in cmd_opts.gradio_auth.strip('"').split(',')] if cmd_opts.gradio_auth else None,
|
||||
inbrowser=cmd_opts.autolaunch,
|
||||
|
Loading…
Reference in New Issue
Block a user