Merge remote-tracking branch 'origin2/dev' into soft-inpainting

# Conflicts:
#	modules/processing.py
This commit is contained in:
CodeHatchling 2023-12-04 20:38:13 -07:00
commit 38864816fa
47 changed files with 1329 additions and 668 deletions

View File

@ -1,3 +1,165 @@
## 1.7.0
### Features:
* settings tab rework: add search field, add categories, split UI settings page into many
* add altdiffusion-m18 support ([#13364](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13364))
* support inference with LyCORIS GLora networks ([#13610](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13610))
* add lora-embedding bundle system ([#13568](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13568))
* option to move prompt from top row into generation parameters
* add support for SSD-1B ([#13865](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13865))
* support inference with OFT networks ([#13692](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13692))
* script metadata and DAG sorting mechanism ([#13944](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13944))
* support HyperTile optimization ([#13948](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13948))
* add support for SD 2.1 Turbo ([#14170](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14170))
* remove Train->Preprocessing tab and put all its functionality into Extras tab
* initial IPEX support for Intel Arc GPU ([#14171](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14171))
### Minor:
* allow reading model hash from images in img2img batch mode ([#12767](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12767))
* add option to align with sgm repo's sampling implementation ([#12818](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12818))
* extra field for lora metadata viewer: `ss_output_name` ([#12838](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12838))
* add action in settings page to calculate all SD checkpoint hashes ([#12909](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12909))
* add button to copy prompt to style editor ([#12975](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12975))
* add --skip-load-model-at-start option ([#13253](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13253))
* write infotext to gif images
* read infotext from gif images ([#13068](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13068))
* allow configuring the initial state of InputAccordion in ui-config.json ([#13189](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13189))
* allow editing whitespace delimiters for ctrl+up/ctrl+down prompt editing ([#13444](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13444))
* prevent accidentally closing popup dialogs ([#13480](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13480))
* added option to play notification sound or not ([#13631](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13631))
* show the preview image in the full screen image viewer if available ([#13459](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13459))
* support for webui.settings.bat ([#13638](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13638))
* add an option to not print stack traces on ctrl+c
* start/restart generation by Ctrl (Alt) + Enter ([#13644](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13644))
* update prompts_from_file script to allow concatenating entries with the general prompt ([#13733](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13733))
* added a visible checkbox to input accordion
* added an option to hide all txt2img/img2img parameters in an accordion ([#13826](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13826))
* added 'Path' sorting option for Extra network cards ([#13968](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13968))
* enable prompt hotkeys in style editor ([#13931](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13931))
* option to show batch img2img results in UI ([#14009](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14009))
* infotext updates: add option to disregard certain infotext fields, add option to not include VAE in infotext, add explanation to infotext settings page, move some options to infotext settings page
* add FP32 fallback support on sd_vae_approx ([#14046](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14046))
* support XYZ scripts / split hires path from unet ([#14126](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14126))
* allow use of mutiple styles csv files ([#14125](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14125))
### Extensions and API:
* update gradio to 3.41.2
* support installed extensions list api ([#12774](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12774))
* update pnginfo API to return dict with parsed values
* add noisy latent to `ExtraNoiseParams` for callback ([#12856](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12856))
* show extension datetime in UTC ([#12864](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12864), [#12865](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12865), [#13281](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13281))
* add an option to choose how to combine hires fix and refiner
* include program version in info response. ([#13135](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13135))
* sd_unet support for SDXL
* patch DDPM.register_betas so that users can put given_betas in model yaml ([#13276](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13276))
* xyz_grid: add prepare ([#13266](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13266))
* allow multiple localization files with same language in extensions ([#13077](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13077))
* add onEdit function for js and rework token-counter.js to use it
* fix the key error exception when processing override_settings keys ([#13567](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13567))
* ability for extensions to return custom data via api in response.images ([#13463](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13463))
* call state.jobnext() before postproces*() ([#13762](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13762))
* add option to set notification sound volume ([#13884](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13884))
* update Ruff to 0.1.6 ([#14059](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14059))
* add Block component creation callback ([#14119](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14119))
* catch uncaught exception with ui creation scripts ([#14120](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14120))
* use extension name for determining an extension is installed in the index ([#14063](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14063))
* update is_installed() from launch_utils.py to fix reinstalling already installed packages ([#14192](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14192))
### Bug Fixes:
* fix pix2pix producing bad results
* fix defaults settings page breaking when any of main UI tabs are hidden
* fix error that causes some extra networks to be disabled if both <lora:> and <lyco:> are present in the prompt
* fix for Reload UI function: if you reload UI on one tab, other opened tabs will no longer stop working
* prevent duplicate resize handler ([#12795](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12795))
* small typo: vae resolve bug ([#12797](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12797))
* hide broken image crop tool ([#12792](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12792))
* don't show hidden samplers in dropdown for XYZ script ([#12780](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12780))
* fix style editing dialog breaking if it's opened in both img2img and txt2img tabs
* hide --gradio-auth and --api-auth values from /internal/sysinfo report
* add missing infotext for RNG in options ([#12819](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12819))
* fix notification not playing when built-in webui tab is inactive ([#12834](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12834))
* honor `--skip-install` for extension installers ([#12832](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12832))
* don't print blank stdout in extension installers ([#12833](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12833), [#12855](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12855))
* get progressbar to display correctly in extensions tab
* keep order in list of checkpoints when loading model that doesn't have a checksum
* fix inpainting models in txt2img creating black pictures
* fix generation params regex ([#12876](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12876))
* fix batch img2img output dir with script ([#12926](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12926))
* fix #13080 - Hypernetwork/TI preview generation ([#13084](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13084))
* fix bug with sigma min/max overrides. ([#12995](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12995))
* more accurate check for enabling cuDNN benchmark on 16XX cards ([#12924](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12924))
* don't use multicond parser for negative prompt counter ([#13118](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13118))
* fix data-sort-name containing spaces ([#13412](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13412))
* update card on correct tab when editing metadata ([#13411](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13411))
* fix viewing/editing metadata when filename contains an apostrophe ([#13395](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13395))
* fix: --sd_model in "Prompts from file or textbox" script is not working ([#13302](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13302))
* better Support for Portable Git ([#13231](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13231))
* fix issues when webui_dir is not work_dir ([#13210](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13210))
* fix: lora-bias-backup don't reset cache ([#13178](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13178))
* account for customizable extra network separators whyen removing extra network text from the prompt ([#12877](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12877))
* re fix batch img2img output dir with script ([#13170](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13170))
* fix `--ckpt-dir` path separator and option use `short name` for checkpoint dropdown ([#13139](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13139))
* consolidated allowed preview formats, Fix extra network `.gif` not woking as preview ([#13121](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13121))
* fix venv_dir=- environment variable not working as expected on linux ([#13469](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13469))
* repair unload sd checkpoint button
* edit-attention fixes ([#13533](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13533))
* fix bug when using --gfpgan-models-path ([#13718](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13718))
* properly apply sort order for extra network cards when selected from dropdown
* fixes generation restart not working for some users when 'Ctrl+Enter' is pressed ([#13962](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13962))
* thread safe extra network list_items ([#13014](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13014))
* fix not able to exit metadata popup when pop up is too big ([#14156](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14156))
* fix auto focal point crop for opencv >= 4.8 ([#14121](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14121))
* make 'use-cpu all' actually apply to 'all' ([#14131](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14131))
* extras tab batch: actually use original filename
* make webui not crash when running with --disable-all-extensions option
### Other:
* non-local condition ([#12814](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12814))
* fix minor typos ([#12827](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12827))
* remove xformers Python version check ([#12842](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12842))
* style: file-metadata word-break ([#12837](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12837))
* revert SGM noise multiplier change for img2img because it breaks hires fix
* do not change quicksettings dropdown option when value returned is `None` ([#12854](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12854))
* [RC 1.6.0 - zoom is partly hidden] Update style.css ([#12839](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12839))
* chore: change extension time format ([#12851](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12851))
* WEBUI.SH - Use torch 2.1.0 release candidate for Navi 3 ([#12929](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12929))
* add Fallback at images.read_info_from_image if exif data was invalid ([#13028](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13028))
* update cmd arg description ([#12986](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12986))
* fix: update shared.opts.data when add_option ([#12957](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12957), [#13213](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13213))
* restore missing tooltips ([#12976](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12976))
* use default dropdown padding on mobile ([#12880](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12880))
* put enable console prompts option into settings from commandline args ([#13119](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13119))
* fix some deprecated types ([#12846](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12846))
* bump to torchsde==0.2.6 ([#13418](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13418))
* update dragdrop.js ([#13372](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13372))
* use orderdict as lru cache:opt/bug ([#13313](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13313))
* XYZ if not include sub grids do not save sub grid ([#13282](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13282))
* initialize state.time_start befroe state.job_count ([#13229](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13229))
* fix fieldname regex ([#13458](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13458))
* change denoising_strength default to None. ([#13466](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13466))
* fix regression ([#13475](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13475))
* fix IndexError ([#13630](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13630))
* fix: checkpoints_loaded:{checkpoint:state_dict}, model.load_state_dict issue in dict value empty ([#13535](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13535))
* update bug_report.yml ([#12991](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/12991))
* requirements_versions httpx==0.24.1 ([#13839](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13839))
* fix parenthesis auto selection ([#13829](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13829))
* fix #13796 ([#13797](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13797))
* corrected a typo in `modules/cmd_args.py` ([#13855](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13855))
* feat: fix randn found element of type float at pos 2 ([#14004](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14004))
* adds tqdm handler to logging_config.py for progress bar integration ([#13996](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13996))
* hotfix: call shared.state.end() after postprocessing done ([#13977](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13977))
* fix dependency address patch 1 ([#13929](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13929))
* save sysinfo as .json ([#14035](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14035))
* move exception_records related methods to errors.py ([#14084](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14084))
* compatibility ([#13936](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13936))
* json.dump(ensure_ascii=False) ([#14108](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14108))
* dir buttons start with / so only the correct dir will be shown and no… ([#13957](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/13957))
* alternate implementation for unet forward replacement that does not depend on hijack being applied
* re-add `keyedit_delimiters_whitespace` setting lost as part of commit e294e46 ([#14178](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14178))
* fix `save_samples` being checked early when saving masked composite ([#14177](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14177))
* slight optimization for mask and mask_composite ([#14181](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14181))
* add import_hook hack to work around basicsr/torchvision incompatibility ([#14186](https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14186))
## 1.6.1
### Bug Fixes:

View File

@ -64,11 +64,14 @@ class ExtraOptionsSection(scripts.Script):
p.override_settings[name] = value
shared.options_templates.update(shared.options_section(('ui', "User interface"), {
"extra_options_txt2img": shared.OptionInfo([], "Options in main UI - txt2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img interfaces").needs_reload_ui(),
"extra_options_img2img": shared.OptionInfo([], "Options in main UI - img2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in img2img interfaces").needs_reload_ui(),
"extra_options_cols": shared.OptionInfo(1, "Options in main UI - number of columns", gr.Number, {"precision": 0}).needs_reload_ui(),
"extra_options_accordion": shared.OptionInfo(False, "Options in main UI - place into an accordion").needs_reload_ui()
shared.options_templates.update(shared.options_section(('settings_in_ui', "Settings in UI", "ui"), {
"settings_in_ui": shared.OptionHTML("""
This page allows you to add some settings to the main interface of txt2img and img2img tabs.
"""),
"extra_options_txt2img": shared.OptionInfo([], "Settings for txt2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in txt2img interfaces").needs_reload_ui(),
"extra_options_img2img": shared.OptionInfo([], "Settings for img2img", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that also appear in img2img interfaces").needs_reload_ui(),
"extra_options_cols": shared.OptionInfo(1, "Number of columns for added settings", gr.Number, {"precision": 0}).needs_reload_ui(),
"extra_options_accordion": shared.OptionInfo(False, "Place added settings into an accordion").needs_reload_ui()
}))

View File

@ -6,7 +6,6 @@ Original author: @tfernd Github: https://github.com/tfernd/HyperTile
from __future__ import annotations
import functools
from dataclasses import dataclass
from typing import Callable
@ -189,6 +188,19 @@ DEPTH_LAYERS_XL = {
RNG_INSTANCE = random.Random()
@cache
def get_divisors(value: int, min_value: int, /, max_options: int = 1) -> list[int]:
"""
Returns divisors of value that
x * min_value <= value
in big -> small order, amount of divisors is limited by max_options
"""
max_options = max(1, max_options) # at least 1 option should be returned
min_value = min(min_value, value)
divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order
ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order
return ns
def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int:
"""
@ -196,13 +208,7 @@ def random_divisor(value: int, min_value: int, /, max_options: int = 1) -> int:
x * min_value <= value
if max_options is 1, the behavior is deterministic
"""
min_value = min(min_value, value)
# All big divisors of value (inclusive)
divisors = [i for i in range(min_value, value + 1) if value % i == 0] # divisors in small -> big order
ns = [value // i for i in divisors[:max_options]] # has at least 1 element # big -> small order
ns = get_divisors(value, min_value, max_options=max_options) # get cached divisors
idx = RNG_INSTANCE.randint(0, len(ns) - 1)
return ns[idx]
@ -212,7 +218,7 @@ def set_hypertile_seed(seed: int) -> None:
RNG_INSTANCE.seed(seed)
@functools.cache
@cache
def largest_tile_size_available(width: int, height: int) -> int:
"""
Calculates the largest tile size available for a given width and height

View File

@ -1,5 +1,6 @@
import hypertile
from modules import scripts, script_callbacks, shared
from scripts.hypertile_xyz import add_axis_options
class ScriptHypertile(scripts.Script):
@ -16,8 +17,42 @@ class ScriptHypertile(scripts.Script):
configure_hypertile(p.width, p.height, enable_unet=shared.opts.hypertile_enable_unet)
self.add_infotext(p)
def before_hr(self, p, *args):
configure_hypertile(p.hr_upscale_to_x, p.hr_upscale_to_y, enable_unet=shared.opts.hypertile_enable_unet_secondpass or shared.opts.hypertile_enable_unet)
enable = shared.opts.hypertile_enable_unet_secondpass or shared.opts.hypertile_enable_unet
# exclusive hypertile seed for the second pass
if enable:
hypertile.set_hypertile_seed(p.all_seeds[0])
configure_hypertile(p.hr_upscale_to_x, p.hr_upscale_to_y, enable_unet=enable)
if enable and not shared.opts.hypertile_enable_unet:
p.extra_generation_params["Hypertile U-Net second pass"] = True
self.add_infotext(p, add_unet_params=True)
def add_infotext(self, p, add_unet_params=False):
def option(name):
value = getattr(shared.opts, name)
default_value = shared.opts.get_default(name)
return None if value == default_value else value
if shared.opts.hypertile_enable_unet:
p.extra_generation_params["Hypertile U-Net"] = True
if shared.opts.hypertile_enable_unet or add_unet_params:
p.extra_generation_params["Hypertile U-Net max depth"] = option('hypertile_max_depth_unet')
p.extra_generation_params["Hypertile U-Net max tile size"] = option('hypertile_max_tile_unet')
p.extra_generation_params["Hypertile U-Net swap size"] = option('hypertile_swap_size_unet')
if shared.opts.hypertile_enable_vae:
p.extra_generation_params["Hypertile VAE"] = True
p.extra_generation_params["Hypertile VAE max depth"] = option('hypertile_max_depth_vae')
p.extra_generation_params["Hypertile VAE max tile size"] = option('hypertile_max_tile_vae')
p.extra_generation_params["Hypertile VAE swap size"] = option('hypertile_swap_size_vae')
def configure_hypertile(width, height, enable_unet=True):
@ -53,16 +88,16 @@ def on_ui_settings():
benefit.
"""),
"hypertile_enable_unet": shared.OptionInfo(False, "Enable Hypertile U-Net").info("noticeable change in details of the generated picture; if enabled, overrides the setting below"),
"hypertile_enable_unet_secondpass": shared.OptionInfo(False, "Enable Hypertile U-Net for hires fix second pass"),
"hypertile_max_depth_unet": shared.OptionInfo(3, "Hypertile U-Net max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}),
"hypertile_max_tile_unet": shared.OptionInfo(256, "Hypertile U-net max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"hypertile_swap_size_unet": shared.OptionInfo(3, "Hypertile U-net swap size", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}),
"hypertile_enable_unet": shared.OptionInfo(False, "Enable Hypertile U-Net", infotext="Hypertile U-Net").info("enables hypertile for all modes, including hires fix second pass; noticeable change in details of the generated picture"),
"hypertile_enable_unet_secondpass": shared.OptionInfo(False, "Enable Hypertile U-Net for hires fix second pass", infotext="Hypertile U-Net second pass").info("enables hypertile just for hires fix second pass - regardless of whether the above setting is enabled"),
"hypertile_max_depth_unet": shared.OptionInfo(3, "Hypertile U-Net max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}, infotext="Hypertile U-Net max depth").info("larger = more neural network layers affected; minor effect on performance"),
"hypertile_max_tile_unet": shared.OptionInfo(256, "Hypertile U-Net max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, infotext="Hypertile U-Net max tile size").info("larger = worse performance"),
"hypertile_swap_size_unet": shared.OptionInfo(3, "Hypertile U-Net swap size", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, infotext="Hypertile U-Net swap size"),
"hypertile_enable_vae": shared.OptionInfo(False, "Enable Hypertile VAE").info("minimal change in the generated picture"),
"hypertile_max_depth_vae": shared.OptionInfo(3, "Hypertile VAE max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}),
"hypertile_max_tile_vae": shared.OptionInfo(128, "Hypertile VAE max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"hypertile_swap_size_vae": shared.OptionInfo(3, "Hypertile VAE swap size ", gr.Slider, {"minimum": 0, "maximum": 6, "step": 1}),
"hypertile_enable_vae": shared.OptionInfo(False, "Enable Hypertile VAE", infotext="Hypertile VAE").info("minimal change in the generated picture"),
"hypertile_max_depth_vae": shared.OptionInfo(3, "Hypertile VAE max depth", gr.Slider, {"minimum": 0, "maximum": 3, "step": 1}, infotext="Hypertile VAE max depth"),
"hypertile_max_tile_vae": shared.OptionInfo(128, "Hypertile VAE max tile size", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}, infotext="Hypertile VAE max tile size"),
"hypertile_swap_size_vae": shared.OptionInfo(3, "Hypertile VAE swap size ", gr.Slider, {"minimum": 0, "maximum": 64, "step": 1}, infotext="Hypertile VAE swap size"),
}
for name, opt in options.items():
@ -71,3 +106,4 @@ def on_ui_settings():
script_callbacks.on_ui_settings(on_ui_settings)
script_callbacks.on_before_ui(add_axis_options)

View File

@ -0,0 +1,51 @@
from modules import scripts
from modules.shared import opts
xyz_grid = [x for x in scripts.scripts_data if x.script_class.__module__ == "xyz_grid.py"][0].module
def int_applier(value_name:str, min_range:int = -1, max_range:int = -1):
"""
Returns a function that applies the given value to the given value_name in opts.data.
"""
def validate(value_name:str, value:str):
value = int(value)
# validate value
if not min_range == -1:
assert value >= min_range, f"Value {value} for {value_name} must be greater than or equal to {min_range}"
if not max_range == -1:
assert value <= max_range, f"Value {value} for {value_name} must be less than or equal to {max_range}"
def apply_int(p, x, xs):
validate(value_name, x)
opts.data[value_name] = int(x)
return apply_int
def bool_applier(value_name:str):
"""
Returns a function that applies the given value to the given value_name in opts.data.
"""
def validate(value_name:str, value:str):
assert value.lower() in ["true", "false"], f"Value {value} for {value_name} must be either true or false"
def apply_bool(p, x, xs):
validate(value_name, x)
value_boolean = x.lower() == "true"
opts.data[value_name] = value_boolean
return apply_bool
def add_axis_options():
extra_axis_options = [
xyz_grid.AxisOption("[Hypertile] Unet First pass Enabled", str, bool_applier("hypertile_enable_unet"), choices=xyz_grid.boolean_choice(reverse=True)),
xyz_grid.AxisOption("[Hypertile] Unet Second pass Enabled", str, bool_applier("hypertile_enable_unet_secondpass"), choices=xyz_grid.boolean_choice(reverse=True)),
xyz_grid.AxisOption("[Hypertile] Unet Max Depth", int, int_applier("hypertile_max_depth_unet", 0, 3), choices=lambda: [str(x) for x in range(4)]),
xyz_grid.AxisOption("[Hypertile] Unet Max Tile Size", int, int_applier("hypertile_max_tile_unet", 0, 512)),
xyz_grid.AxisOption("[Hypertile] Unet Swap Size", int, int_applier("hypertile_swap_size_unet", 0, 64)),
xyz_grid.AxisOption("[Hypertile] VAE Enabled", str, bool_applier("hypertile_enable_vae"), choices=xyz_grid.boolean_choice(reverse=True)),
xyz_grid.AxisOption("[Hypertile] VAE Max Depth", int, int_applier("hypertile_max_depth_vae", 0, 3), choices=lambda: [str(x) for x in range(4)]),
xyz_grid.AxisOption("[Hypertile] VAE Max Tile Size", int, int_applier("hypertile_max_tile_vae", 0, 512)),
xyz_grid.AxisOption("[Hypertile] VAE Swap Size", int, int_applier("hypertile_swap_size_vae", 0, 64)),
]
set_a = {opt.label for opt in xyz_grid.axis_options}
set_b = {opt.label for opt in extra_axis_options}
if set_a.intersection(set_b):
return
xyz_grid.axis_options.extend(extra_axis_options)

View File

@ -392,3 +392,9 @@ function extraNetworksRefreshSingleCard(page, tabname, name) {
}
});
}
window.addEventListener("keydown", function(event) {
if (event.key == "Escape") {
closePopup();
}
});

View File

@ -170,6 +170,23 @@ function submit_img2img() {
return res;
}
function submit_extras() {
showSubmitButtons('extras', false);
var id = randomId();
requestProgress(id, gradioApp().getElementById('extras_gallery_container'), gradioApp().getElementById('extras_gallery'), function() {
showSubmitButtons('extras', true);
});
var res = create_submit_args(arguments);
res[0] = id;
console.log(res);
return res;
}
function restoreProgressTxt2img() {
showRestoreProgressButton("txt2img", false);
var id = localGet("txt2img_task_id");

View File

@ -22,7 +22,6 @@ from modules.api import models
from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin, Image
from modules.sd_models_config import find_checkpoint_config_near_filename
@ -235,7 +234,6 @@ class Api:
self.add_api_route("/sdapi/v1/refresh-vae", self.refresh_vae, methods=["POST"])
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse)
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse)
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse)
self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse)
self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse)
self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse)
@ -675,19 +673,6 @@ class Api:
finally:
shared.state.end()
def preprocess(self, args: dict):
try:
shared.state.begin(job="preprocess")
preprocess(**args) # quick operation unless blip/booru interrogation is enabled
shared.state.end()
return models.PreprocessResponse(info='preprocess complete')
except KeyError as e:
return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}")
except Exception as e:
return models.PreprocessResponse(info=f"preprocess error: {e}")
finally:
shared.state.end()
def train_embedding(self, args: dict):
try:
shared.state.begin(job="train_embedding")

View File

@ -202,9 +202,6 @@ class TrainResponse(BaseModel):
class CreateResponse(BaseModel):
info: str = Field(title="Create info", description="Response string from create embedding or hypernetwork task.")
class PreprocessResponse(BaseModel):
info: str = Field(title="Preprocess info", description="Response string from preprocessing task.")
fields = {}
for key, metadata in opts.data_labels.items():
value = opts.data.get(key)

View File

@ -70,6 +70,7 @@ parser.add_argument("--opt-sdp-no-mem-attention", action='store_true', help="pre
parser.add_argument("--disable-opt-split-attention", action='store_true', help="prefer no cross-attention layer optimization for automatic choice of optimization")
parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
parser.add_argument("--use-ipex", action="store_true", help="use Intel XPU as torch device")
parser.add_argument("--disable-model-loading-ram-optimization", action='store_true', help="disable an optimization that reduces RAM use when loading a model")
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)

View File

@ -8,6 +8,13 @@ from modules import errors, shared
if sys.platform == "darwin":
from modules import mac_specific
if shared.cmd_opts.use_ipex:
from modules import xpu_specific
def has_xpu() -> bool:
return shared.cmd_opts.use_ipex and xpu_specific.has_xpu
def has_mps() -> bool:
if sys.platform != "darwin":
@ -30,6 +37,9 @@ def get_optimal_device_name():
if has_mps():
return "mps"
if has_xpu():
return xpu_specific.get_xpu_device_string()
return "cpu"
@ -38,7 +48,7 @@ def get_optimal_device():
def get_device_for(task):
if task in shared.cmd_opts.use_cpu:
if task in shared.cmd_opts.use_cpu or "all" in shared.cmd_opts.use_cpu:
return cpu
return get_optimal_device()
@ -54,6 +64,9 @@ def torch_gc():
if has_mps():
mac_specific.torch_mps_gc()
if has_xpu():
xpu_specific.torch_xpu_gc()
def enable_tf32():
if torch.cuda.is_available():

View File

@ -1,3 +1,4 @@
from __future__ import annotations
import base64
import io
import json
@ -15,9 +16,6 @@ re_imagesize = re.compile(r"^(\d+)x(\d+)$")
re_hypernet_hash = re.compile("\(([0-9a-f]+)\)$")
type_of_gr_update = type(gr.update())
paste_fields = {}
registered_param_bindings = []
class ParamBinding:
def __init__(self, paste_button, tabname, source_text_component=None, source_image_component=None, source_tabname=None, override_settings_component=None, paste_field_names=None):
@ -30,6 +28,10 @@ class ParamBinding:
self.paste_field_names = paste_field_names or []
paste_fields: dict[str, dict] = {}
registered_param_bindings: list[ParamBinding] = []
def reset():
paste_fields.clear()
registered_param_bindings.clear()
@ -113,7 +115,6 @@ def register_paste_params_button(binding: ParamBinding):
def connect_paste_params_buttons():
binding: ParamBinding
for binding in registered_param_bindings:
destination_image_component = paste_fields[binding.tabname]["init_img"]
fields = paste_fields[binding.tabname]["fields"]
@ -313,6 +314,9 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
if "VAE Decoder" not in res:
res["VAE Decoder"] = "Full"
skip = set(shared.opts.infotext_skip_pasting)
res = {k: v for k, v in res.items() if k not in skip}
return res
@ -443,3 +447,4 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component,
outputs=[],
show_progress=False,
)

View File

@ -47,10 +47,20 @@ def Block_get_config(self):
def BlockContext_init(self, *args, **kwargs):
if scripts.scripts_current is not None:
scripts.scripts_current.before_component(self, **kwargs)
scripts.script_callbacks.before_component_callback(self, **kwargs)
res = original_BlockContext_init(self, *args, **kwargs)
add_classes_to_gradio_component(self)
scripts.script_callbacks.after_component_callback(self, **kwargs)
if scripts.scripts_current is not None:
scripts.scripts_current.after_component(self, **kwargs)
return res

View File

@ -3,3 +3,14 @@ import sys
# this will break any attempt to import xformers which will prevent stability diffusion repo from trying to use it
if "--xformers" not in "".join(sys.argv):
sys.modules["xformers"] = None
# Hack to fix a changed import in torchvision 0.17+, which otherwise breaks
# basicsr; see https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13985
try:
import torchvision.transforms.functional_tensor # noqa: F401
except ImportError:
try:
import torchvision.transforms.functional as functional
sys.modules["torchvision.transforms.functional_tensor"] = functional
except ImportError:
pass # shrug...

View File

@ -6,6 +6,7 @@ import os
import shutil
import sys
import importlib.util
import importlib.metadata
import platform
import json
from functools import lru_cache
@ -118,6 +119,9 @@ def run(command, desc=None, errdesc=None, custom_env=None, live: bool = default_
def is_installed(package):
try:
dist = importlib.metadata.distribution(package)
except importlib.metadata.PackageNotFoundError:
try:
spec = importlib.util.find_spec(package)
except ModuleNotFoundError:
@ -125,6 +129,8 @@ def is_installed(package):
return spec is not None
return dist is not None
def repo_dir(name):
return os.path.join(script_path, dir_repos, name)
@ -310,6 +316,26 @@ def requirements_met(requirements_file):
def prepare_environment():
torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://download.pytorch.org/whl/cu118")
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.0.1 torchvision==0.15.2 --extra-index-url {torch_index_url}")
if args.use_ipex:
if platform.system() == "Windows":
# The "Nuullll/intel-extension-for-pytorch" wheels were built from IPEX source for Intel Arc GPU: https://github.com/intel/intel-extension-for-pytorch/tree/xpu-main
# This is NOT an Intel official release so please use it at your own risk!!
# See https://github.com/Nuullll/intel-extension-for-pytorch/releases/tag/v2.0.110%2Bxpu-master%2Bdll-bundle for details.
#
# Strengths (over official IPEX 2.0.110 windows release):
# - AOT build (for Arc GPU only) to eliminate JIT compilation overhead: https://github.com/intel/intel-extension-for-pytorch/issues/399
# - Bundles minimal oneAPI 2023.2 dependencies into the python wheels, so users don't need to install oneAPI for the whole system.
# - Provides a compatible torchvision wheel: https://github.com/intel/intel-extension-for-pytorch/issues/465
# Limitation:
# - Only works for python 3.10
url_prefix = "https://github.com/Nuullll/intel-extension-for-pytorch/releases/download/v2.0.110%2Bxpu-master%2Bdll-bundle"
torch_command = os.environ.get('TORCH_COMMAND', f"pip install {url_prefix}/torch-2.0.0a0+gite9ebda2-cp310-cp310-win_amd64.whl {url_prefix}/torchvision-0.15.2a0+fa99a53-cp310-cp310-win_amd64.whl {url_prefix}/intel_extension_for_pytorch-2.0.110+gitc6ea20b-cp310-cp310-win_amd64.whl")
else:
# Using official IPEX release for linux since it's already an AOT build.
# However, users still have to install oneAPI toolkit and activate oneAPI environment manually.
# See https://intel.github.io/intel-extension-for-pytorch/index.html#installation for details.
torch_index_url = os.environ.get('TORCH_INDEX_URL', "https://pytorch-extension.intel.com/release-whl/stable/xpu/us/")
torch_command = os.environ.get('TORCH_COMMAND', f"pip install torch==2.0.0a0 intel-extension-for-pytorch==2.0.110+gitba7f6c1 --extra-index-url {torch_index_url}")
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
xformers_package = os.environ.get('XFORMERS_PACKAGE', 'xformers==0.0.20')
@ -352,6 +378,8 @@ def prepare_environment():
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True)
startup_timer.record("install torch")
if args.use_ipex:
args.skip_torch_cuda_test = True
if not args.skip_torch_cuda_test and not check_run_python("import torch; assert torch.cuda.is_available()"):
raise RuntimeError(
'Torch is not able to use GPU; '

View File

@ -1,6 +1,7 @@
import logging
import torch
from torch import Tensor
import platform
from modules.sd_hijack_utils import CondFunc
from packaging import version
@ -51,6 +52,17 @@ def cumsum_fix(input, cumsum_func, *args, **kwargs):
return cumsum_func(input, *args, **kwargs)
# MPS workaround for https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14046
def interpolate_with_fp32_fallback(orig_func, *args, **kwargs) -> Tensor:
try:
return orig_func(*args, **kwargs)
except RuntimeError as e:
if "not implemented for" in str(e) and "Half" in str(e):
input_tensor = args[0]
return orig_func(input_tensor.to(torch.float32), *args[1:], **kwargs).to(input_tensor.dtype)
else:
print(f"An unexpected RuntimeError occurred: {str(e)}")
if has_mps:
if platform.mac_ver()[0].startswith("13.2."):
# MPS workaround for https://github.com/pytorch/pytorch/issues/95188, thanks to danieldk (https://github.com/explosion/curated-transformers/pull/124)
@ -77,6 +89,9 @@ if has_mps:
# MPS workaround for https://github.com/pytorch/pytorch/issues/96113
CondFunc('torch.nn.functional.layer_norm', lambda orig_func, x, normalized_shape, weight, bias, eps, **kwargs: orig_func(x.float(), normalized_shape, weight.float() if weight is not None else None, bias.float() if bias is not None else bias, eps).to(x.dtype), lambda _, input, *args, **kwargs: len(args) == 4 and input.device.type == 'mps')
# MPS workaround for https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/14046
CondFunc('torch.nn.functional.interpolate', interpolate_with_fp32_fallback, None)
# MPS workaround for https://github.com/pytorch/pytorch/issues/92311
if platform.processor() == 'i386':
for funcName in ['torch.argmax', 'torch.Tensor.argmax']:

View File

@ -24,10 +24,15 @@ from pytorch_lightning.utilities.distributed import rank_zero_only
from ldm.util import log_txt_as_img, exists, default, ismap, isimage, mean_flat, count_params, instantiate_from_config
from ldm.modules.ema import LitEma
from ldm.modules.distributions.distributions import normal_kl, DiagonalGaussianDistribution
from ldm.models.autoencoder import VQModelInterface, IdentityFirstStage, AutoencoderKL
from ldm.models.autoencoder import IdentityFirstStage, AutoencoderKL
from ldm.modules.diffusionmodules.util import make_beta_schedule, extract_into_tensor, noise_like
from ldm.models.diffusion.ddim import DDIMSampler
try:
from ldm.models.autoencoder import VQModelInterface
except Exception:
class VQModelInterface:
pass
__conditioning_keys__ = {'concat': 'c_concat',
'crossattn': 'c_crossattn',

View File

@ -29,11 +29,7 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
image_list = shared.listfiles(input_dir)
for filename in image_list:
try:
image = Image.open(filename)
except Exception:
continue
yield image, filename
yield filename, filename
else:
assert image, 'image not selected'
yield image, None
@ -45,23 +41,50 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
infotext = ''
for image_data, name in get_images(extras_mode, image, image_folder, input_dir):
data_to_process = list(get_images(extras_mode, image, image_folder, input_dir))
shared.state.job_count = len(data_to_process)
for image_placeholder, name in data_to_process:
image_data: Image.Image
shared.state.nextjob()
shared.state.textinfo = name
shared.state.skipped = False
if shared.state.interrupted:
break
if isinstance(image_placeholder, str):
try:
image_data = Image.open(image_placeholder)
except Exception:
continue
else:
image_data = image_placeholder
shared.state.assign_current_image(image_data)
parameters, existing_pnginfo = images.read_info_from_image(image_data)
if parameters:
existing_pnginfo["parameters"] = parameters
pp = scripts_postprocessing.PostprocessedImage(image_data.convert("RGB"))
initial_pp = scripts_postprocessing.PostprocessedImage(image_data.convert("RGB"))
scripts.scripts_postproc.run(pp, args)
scripts.scripts_postproc.run(initial_pp, args)
if shared.state.skipped:
continue
used_suffixes = {}
for pp in [initial_pp, *initial_pp.extra_images]:
suffix = pp.get_suffix(used_suffixes)
if opts.use_original_name_batch and name is not None:
basename = os.path.splitext(os.path.basename(name))[0]
forced_filename = basename + suffix
else:
basename = ''
forced_filename = None
infotext = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in pp.info.items() if v is not None])
@ -70,7 +93,30 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
pp.image.info["postprocessing"] = infotext
if save_output:
images.save_image(pp.image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=infotext, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None)
fullfn, _ = images.save_image(pp.image, path=outpath, basename=basename, extension=opts.samples_format, info=infotext, short_filename=True, no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=forced_filename, suffix=suffix)
if pp.caption:
caption_filename = os.path.splitext(fullfn)[0] + ".txt"
if os.path.isfile(caption_filename):
with open(caption_filename, encoding="utf8") as file:
existing_caption = file.read().strip()
else:
existing_caption = ""
action = shared.opts.postprocessing_existing_caption_action
if action == 'Prepend' and existing_caption:
caption = f"{existing_caption} {pp.caption}"
elif action == 'Append' and existing_caption:
caption = f"{pp.caption} {existing_caption}"
elif action == 'Keep' and existing_caption:
caption = existing_caption
else:
caption = pp.caption
caption = caption.strip()
if caption:
with open(caption_filename, "w", encoding="utf8") as file:
file.write(caption)
if extras_mode != 2 or show_extras_results:
outputs.append(pp.image)
@ -82,6 +128,10 @@ def run_postprocessing(extras_mode, image, image_folder, input_dir, output_dir,
return outputs, ui_common.plaintext_to_html(infotext), ''
def run_postprocessing_webui(id_task, *args, **kwargs):
return run_postprocessing(*args, **kwargs)
def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True):
"""old handler for API"""
@ -97,9 +147,11 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_
"upscaler_2_visibility": extras_upscaler_2_visibility,
},
"GFPGAN": {
"enable": True,
"gfpgan_visibility": gfpgan_visibility,
},
"CodeFormer": {
"enable": True,
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
},

View File

@ -692,8 +692,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
"Size": f"{p.width}x{p.height}",
"Model hash": p.sd_model_hash if opts.add_model_hash_to_info else None,
"Model": p.sd_model_name if opts.add_model_name_to_info else None,
"VAE hash": p.sd_vae_hash if opts.add_model_hash_to_info else None,
"VAE": p.sd_vae_name if opts.add_model_name_to_info else None,
"VAE hash": p.sd_vae_hash if opts.add_vae_hash_to_info else None,
"VAE": p.sd_vae_name if opts.add_vae_name_to_info else None,
"Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
"Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
@ -980,27 +980,26 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
if opts.enable_pnginfo:
image.info["parameters"] = text
output_images.append(image)
if save_samples and any([opts.save_mask, opts.save_mask_composite, opts.return_mask, opts.return_mask_composite]):
if hasattr(p, 'masks_for_overlay') and p.masks_for_overlay:
image_mask = p.masks_for_overlay[i].convert('RGB')
image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.masks_for_overlay[i], image.width, image.height).convert('L')).convert('RGBA')
elif hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
image_mask = p.mask_for_overlay.convert('RGB')
image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if hasattr(p, 'mask_for_overlay') and p.mask_for_overlay:
mask_for_overlay = p.mask_for_overlay
elif hasattr(p, 'masks_for_overlay') and p.masks_for_overlay and p.masks_for_overlay[i]:
mask_for_overlay = p.masks_for_overlay[i]
else:
image_mask = None
image_mask_composite = None
mask_for_overlay = None
if image_mask is not None and image_mask_composite is not None:
if opts.save_mask:
if mask_for_overlay is not None:
if opts.return_mask or opts.save_mask:
image_mask = mask_for_overlay.convert('RGB')
if save_samples and opts.save_mask:
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
if opts.save_mask_composite:
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
if opts.return_mask:
output_images.append(image_mask)
if opts.return_mask_composite or opts.save_mask_composite:
image_mask_composite = Image.composite(original_denoised_image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
if save_samples and opts.save_mask_composite:
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
if opts.return_mask_composite:
output_images.append(image_mask_composite)

View File

@ -560,17 +560,25 @@ class ScriptRunner:
on_after.clear()
def create_script_ui(self, script):
import modules.api.models as api_models
script.args_from = len(self.inputs)
script.args_to = len(self.inputs)
try:
self.create_script_ui_inner(script)
except Exception:
errors.report(f"Error creating UI for {script.name}: ", exc_info=True)
def create_script_ui_inner(self, script):
import modules.api.models as api_models
controls = wrap_call(script.ui, script.filename, "ui", script.is_img2img)
if controls is None:
return
script.name = wrap_call(script.title, script.filename, "title", default=script.filename).lower()
api_args = []
for control in controls:

View File

@ -1,13 +1,56 @@
import dataclasses
import os
import gradio as gr
from modules import errors, shared
@dataclasses.dataclass
class PostprocessedImageSharedInfo:
target_width: int = None
target_height: int = None
class PostprocessedImage:
def __init__(self, image):
self.image = image
self.info = {}
self.shared = PostprocessedImageSharedInfo()
self.extra_images = []
self.nametags = []
self.disable_processing = False
self.caption = None
def get_suffix(self, used_suffixes=None):
used_suffixes = {} if used_suffixes is None else used_suffixes
suffix = "-".join(self.nametags)
if suffix:
suffix = "-" + suffix
if suffix not in used_suffixes:
used_suffixes[suffix] = 1
return suffix
for i in range(1, 100):
proposed_suffix = suffix + "-" + str(i)
if proposed_suffix not in used_suffixes:
used_suffixes[proposed_suffix] = 1
return proposed_suffix
return suffix
def create_copy(self, new_image, *, nametags=None, disable_processing=False):
pp = PostprocessedImage(new_image)
pp.shared = self.shared
pp.nametags = self.nametags.copy()
pp.info = self.info.copy()
pp.disable_processing = disable_processing
if nametags is not None:
pp.nametags += nametags
return pp
class ScriptPostprocessing:
@ -42,10 +85,17 @@ class ScriptPostprocessing:
pass
def image_changed(self):
def process_firstpass(self, pp: PostprocessedImage, **args):
"""
Called for all scripts before calling process(). Scripts can examine the image here and set fields
of the pp object to communicate things to other scripts.
args contains a dictionary with all values returned by components from ui()
"""
pass
def image_changed(self):
pass
def wrap_call(func, filename, funcname, *args, default=None, **kwargs):
@ -118,16 +168,42 @@ class ScriptPostprocessingRunner:
return inputs
def run(self, pp: PostprocessedImage, args):
for script in self.scripts_in_preferred_order():
shared.state.job = script.name
scripts = []
for script in self.scripts_in_preferred_order():
script_args = args[script.args_from:script.args_to]
process_args = {}
for (name, _component), value in zip(script.controls.items(), script_args):
process_args[name] = value
script.process(pp, **process_args)
scripts.append((script, process_args))
for script, process_args in scripts:
script.process_firstpass(pp, **process_args)
all_images = [pp]
for script, process_args in scripts:
if shared.state.skipped:
break
shared.state.job = script.name
for single_image in all_images.copy():
if not single_image.disable_processing:
script.process(single_image, **process_args)
for extra_image in single_image.extra_images:
if not isinstance(extra_image, PostprocessedImage):
extra_image = single_image.create_copy(extra_image)
all_images.append(extra_image)
single_image.extra_images.clear()
pp.extra_images = all_images[1:]
def create_args_for_run(self, scripts_args):
if not self.ui_created:

View File

@ -38,8 +38,12 @@ ldm.models.diffusion.ddpm.print = shared.ldm_print
optimizers = []
current_optimizer: sd_hijack_optimizations.SdOptimization = None
ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sd_unet.UNetModel_forward)
sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sd_unet.UNetModel_forward)
ldm_patched_forward = sd_unet.create_unet_forward(ldm.modules.diffusionmodules.openaimodel.UNetModel.forward)
ldm_original_forward = patches.patch(__file__, ldm.modules.diffusionmodules.openaimodel.UNetModel, "forward", ldm_patched_forward)
sgm_patched_forward = sd_unet.create_unet_forward(sgm.modules.diffusionmodules.openaimodel.UNetModel.forward)
sgm_original_forward = patches.patch(__file__, sgm.modules.diffusionmodules.openaimodel.UNetModel, "forward", sgm_patched_forward)
def list_optimizers():
new_optimizers = script_callbacks.list_optimizers_callback()
@ -303,8 +307,6 @@ class StableDiffusionModelHijack:
self.layers = None
self.clip = None
sd_unet.original_forward = None
def apply_circular(self, enable):
if self.circular_enabled == enable:

View File

@ -230,15 +230,19 @@ def select_checkpoint():
return checkpoint_info
checkpoint_dict_replacements = {
checkpoint_dict_replacements_sd1 = {
'cond_stage_model.transformer.embeddings.': 'cond_stage_model.transformer.text_model.embeddings.',
'cond_stage_model.transformer.encoder.': 'cond_stage_model.transformer.text_model.encoder.',
'cond_stage_model.transformer.final_layer_norm.': 'cond_stage_model.transformer.text_model.final_layer_norm.',
}
checkpoint_dict_replacements_sd2_turbo = { # Converts SD 2.1 Turbo from SGM to LDM format.
'conditioner.embedders.0.': 'cond_stage_model.',
}
def transform_checkpoint_dict_key(k):
for text, replacement in checkpoint_dict_replacements.items():
def transform_checkpoint_dict_key(k, replacements):
for text, replacement in replacements.items():
if k.startswith(text):
k = replacement + k[len(text):]
@ -249,9 +253,14 @@ def get_state_dict_from_checkpoint(pl_sd):
pl_sd = pl_sd.pop("state_dict", pl_sd)
pl_sd.pop("state_dict", None)
is_sd2_turbo = 'conditioner.embedders.0.model.ln_final.weight' in pl_sd and pl_sd['conditioner.embedders.0.model.ln_final.weight'].size()[0] == 1024
sd = {}
for k, v in pl_sd.items():
new_key = transform_checkpoint_dict_key(k)
if is_sd2_turbo:
new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd2_turbo)
else:
new_key = transform_checkpoint_dict_key(k, checkpoint_dict_replacements_sd1)
if new_key is not None:
sd[new_key] = v

View File

@ -11,7 +11,7 @@ from modules.models.diffusion.uni_pc import uni_pc
def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=0.0):
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
alphas = alphas_cumprod[timesteps]
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' else torch.float32)
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32)
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
sigmas = eta * np.sqrt((1 - alphas_prev.cpu().numpy()) / (1 - alphas.cpu()) * (1 - alphas.cpu() / alphas_prev.cpu().numpy()))
@ -43,7 +43,7 @@ def ddim(model, x, timesteps, extra_args=None, callback=None, disable=None, eta=
def plms(model, x, timesteps, extra_args=None, callback=None, disable=None):
alphas_cumprod = model.inner_model.inner_model.alphas_cumprod
alphas = alphas_cumprod[timesteps]
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' else torch.float32)
alphas_prev = alphas_cumprod[torch.nn.functional.pad(timesteps[:-1], pad=(1, 0))].to(torch.float64 if x.device.type != 'mps' and x.device.type != 'xpu' else torch.float32)
sqrt_one_minus_alphas = torch.sqrt(1 - alphas)
extra_args = {} if extra_args is None else extra_args

View File

@ -5,8 +5,7 @@ from modules import script_callbacks, shared, devices
unet_options = []
current_unet_option = None
current_unet = None
original_forward = None
original_forward = None # not used, only left temporarily for compatibility
def list_unets():
new_unets = script_callbacks.list_unets_callback()
@ -84,9 +83,12 @@ class SdUnet(torch.nn.Module):
pass
def UNetModel_forward(self, x, timesteps=None, context=None, *args, **kwargs):
def create_unet_forward(original_forward):
def UNetModel_forward(self, x, timesteps=None, context=None, *args, **kwargs):
if current_unet is not None:
return current_unet.forward(x, timesteps, context, *args, **kwargs)
return original_forward(self, x, timesteps, context, *args, **kwargs)
return UNetModel_forward

View File

@ -66,6 +66,22 @@ def reload_hypernetworks():
shared.hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir)
def get_infotext_names():
from modules import generation_parameters_copypaste, shared
res = {}
for info in shared.opts.data_labels.values():
if info.infotext:
res[info.infotext] = 1
for tab_data in generation_parameters_copypaste.paste_fields.values():
for _, name in tab_data.get("fields") or []:
if isinstance(name, str):
res[name] = 1
return list(res)
ui_reorder_categories_builtin_items = [
"prompt",
"image",

View File

@ -46,8 +46,6 @@ options_templates.update(options_section(('saving-images', "Saving images/grids"
"grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}),
"grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}),
"enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"),
"save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."),
"save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."),
"save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."),
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
@ -237,6 +235,7 @@ options_templates.update(options_section(('interrogate', "Interrogate"), {
options_templates.update(options_section(('extra_networks', "Extra Networks", "sd"), {
"extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."),
"extra_networks_dir_button_function": OptionInfo(False, "Add a '/' to the beginning of directory buttons").info("Buttons will display the contents of the selected directory without acting as a search filter."),
"extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'),
"extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}),
"extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"),
@ -252,47 +251,65 @@ options_templates.update(options_section(('extra_networks', "Extra Networks", "s
"sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *shared.hypernetworks]}, refresh=shared_items.reload_hypernetworks),
}))
options_templates.update(options_section(('ui', "User interface", "ui"), {
"localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(),
"gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + shared_gradio_themes.gradio_hf_hub_themes}).info("you can also manually enter any of themes from the <a href='https://huggingface.co/spaces/gradio/theme-gallery'>gallery</a>.").needs_reload_ui(),
"gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"),
"gallery_height": OptionInfo("", "Gallery height", gr.Textbox).info("an be any valid CSS value").needs_reload_ui(),
"return_grid": OptionInfo(True, "Show grid in results for web"),
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
"js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"),
"js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"),
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
options_templates.update(options_section(('ui_prompt_editing', "Prompt editing", "ui"), {
"keyedit_precision_attention": OptionInfo(0.1, "Precision for (attention:1.1) when editing the prompt with Ctrl+up/down", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Precision for <extra networks:0.9> when editing the prompt with Ctrl+up/down", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_delimiters": OptionInfo(r".,\/!?%^*;:{}=`~() ", "Word delimiters when editing the prompt with Ctrl+up/down"),
"keyedit_delimiters_whitespace": OptionInfo(["Tab", "Carriage Return", "Line Feed"], "Ctrl+up/down whitespace delimiters", gr.CheckboxGroup, lambda: {"choices": ["Tab", "Carriage Return", "Line Feed"]}),
"disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(),
}))
options_templates.update(options_section(('ui_gallery', "Gallery", "ui"), {
"return_grid": OptionInfo(True, "Show grid in gallery"),
"do_not_show_images": OptionInfo(False, "Do not show any images in gallery"),
"js_modal_lightbox": OptionInfo(True, "Full page image viewer: enable"),
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Full page image viewer: show images zoomed in by default"),
"js_modal_lightbox_gamepad": OptionInfo(False, "Full page image viewer: navigate with gamepad"),
"js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Full page image viewer: gamepad repeat period").info("in milliseconds"),
"gallery_height": OptionInfo("", "Gallery height", gr.Textbox).info("can be any valid CSS value, for example 768px or 20em").needs_reload_ui(),
}))
options_templates.update(options_section(('ui_alternatives', "UI alternatives", "ui"), {
"compact_prompt_box": OptionInfo(False, "Compact prompt layout").info("puts prompt and negative prompt inside the Generate tab, leaving more vertical space for the image on the right").needs_reload_ui(),
"samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_reload_ui(),
"dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(),
"keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing <extra networks:0.9>", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}),
"keyedit_delimiters": OptionInfo(r".,\/!?%^*;:{}=`~() ", "Ctrl+up/down word delimiters"),
"keyedit_delimiters_whitespace": OptionInfo(["Tab", "Carriage Return", "Line Feed"], "Ctrl+up/down whitespace delimiters", gr.CheckboxGroup, lambda: {"choices": ["Tab", "Carriage Return", "Line Feed"]}),
"keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"),
"quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(),
"ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(),
"hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(),
"ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(),
"sd_checkpoint_dropdown_use_short": OptionInfo(False, "Checkpoint dropdown: use filenames without paths").info("models in subdirectories like photo/sd15.ckpt will be listed as just sd15.ckpt"),
"hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires checkpoint and sampler selection").needs_reload_ui(),
"hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(),
"disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(),
"txt2img_settings_accordion": OptionInfo(False, "Settings in txt2img hidden under Accordion").needs_reload_ui(),
"img2img_settings_accordion": OptionInfo(False, "Settings in img2img hidden under Accordion").needs_reload_ui(),
"compact_prompt_box": OptionInfo(False, "Compact prompt layout").info("puts prompt and negative prompt inside the Generate tab, leaving more vertical space for the image on the right").needs_reload_ui(),
}))
options_templates.update(options_section(('ui', "User interface", "ui"), {
"localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(),
"quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(),
"ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(),
"hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(),
"ui_reorder_list": OptionInfo([], "UI item order for txt2img/img2img tabs", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(),
"gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + shared_gradio_themes.gradio_hf_hub_themes}).info("you can also manually enter any of themes from the <a href='https://huggingface.co/spaces/gradio/theme-gallery'>gallery</a>.").needs_reload_ui(),
"gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"),
"show_progress_in_title": OptionInfo(True, "Show generation progress in window title."),
"send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"),
"send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"),
}))
options_templates.update(options_section(('infotext', "Infotext", "ui"), {
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
"add_model_name_to_info": OptionInfo(True, "Add model name to generation information"),
"add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"),
"add_version_to_infotext": OptionInfo(True, "Add program version to generation information"),
"infotext_explanation": OptionHTML("""
Infotext is what this software calls the text that contains generation parameters and can be used to generate the same picture again.
It is displayed in UI below the image. To use infotext, paste it into the prompt and click the paste button.
"""),
"enable_pnginfo": OptionInfo(True, "Write infotext to metadata of the generated image"),
"save_txt": OptionInfo(False, "Create a text file with infotext next to every generated image"),
"add_model_name_to_info": OptionInfo(True, "Add model name to infotext"),
"add_model_hash_to_info": OptionInfo(True, "Add model hash to infotext"),
"add_vae_name_to_info": OptionInfo(True, "Add VAE name to infotext"),
"add_vae_hash_to_info": OptionInfo(True, "Add VAE hash to infotext"),
"add_user_name_to_info": OptionInfo(False, "Add user name to infotext when authenticated"),
"add_version_to_infotext": OptionInfo(True, "Add program version to infotext"),
"disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"),
"infotext_skip_pasting": OptionInfo([], "Disregard fields from pasted infotext", ui_components.DropdownMulti, lambda: {"choices": shared_items.get_infotext_names()}),
"infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html("""<ul style='margin-left: 1.5em'>
<li>Ignore: keep prompt and styles dropdown as it is.</li>
<li>Apply: remove style text from prompt, always replace styles dropdown value with found styles (even if none are found).</li>
@ -341,6 +358,7 @@ options_templates.update(options_section(('postprocessing', "Postprocessing", "p
'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}),
'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}),
'postprocessing_existing_caption_action': OptionInfo("Ignore", "Action for existing captions", gr.Radio, {"choices": ["Ignore", "Keep", "Prepend", "Append"]}).info("when generating captions using postprocessing; Ignore = use generated; Keep = use original; Prepend/Append = combine both"),
}))
options_templates.update(options_section((None, "Hidden options"), {

View File

@ -1,4 +1,5 @@
import csv
import fnmatch
import os
import os.path
import re
@ -10,6 +11,23 @@ class PromptStyle(typing.NamedTuple):
name: str
prompt: str
negative_prompt: str
path: str = None
def clean_text(text: str) -> str:
"""
Iterating through a list of regular expressions and replacement strings, we
clean up the prompt and style text to make it easier to match against each
other.
"""
re_list = [
("multiple commas", re.compile("(,+\s+)+,?"), ", "),
("multiple spaces", re.compile("\s{2,}"), " "),
]
for _, regex, replace in re_list:
text = regex.sub(replace, text)
return text.strip(", ")
def merge_prompts(style_prompt: str, prompt: str) -> str:
@ -26,41 +44,64 @@ def apply_styles_to_prompt(prompt, styles):
for style in styles:
prompt = merge_prompts(style, prompt)
return prompt
return clean_text(prompt)
re_spaces = re.compile(" +")
def unwrap_style_text_from_prompt(style_text, prompt):
"""
Checks the prompt to see if the style text is wrapped around it. If so,
returns True plus the prompt text without the style text. Otherwise, returns
False with the original prompt.
def extract_style_text_from_prompt(style_text, prompt):
stripped_prompt = re.sub(re_spaces, " ", prompt.strip())
stripped_style_text = re.sub(re_spaces, " ", style_text.strip())
Note that the "cleaned" version of the style text is only used for matching
purposes here. It isn't returned; the original style text is not modified.
"""
stripped_prompt = clean_text(prompt)
stripped_style_text = clean_text(style_text)
if "{prompt}" in stripped_style_text:
# Work out whether the prompt is wrapped in the style text. If so, we
# return True and the "inner" prompt text that isn't part of the style.
try:
left, right = stripped_style_text.split("{prompt}", 2)
except ValueError as e:
# If the style text has multple "{prompt}"s, we can't split it into
# two parts. This is an error, but we can't do anything about it.
print(f"Unable to compare style text to prompt:\n{style_text}")
print(f"Error: {e}")
return False, prompt
if stripped_prompt.startswith(left) and stripped_prompt.endswith(right):
prompt = stripped_prompt[len(left):len(stripped_prompt)-len(right)]
prompt = stripped_prompt[len(left) : len(stripped_prompt) - len(right)]
return True, prompt
else:
# Work out whether the given prompt ends with the style text. If so, we
# return True and the prompt text up to where the style text starts.
if stripped_prompt.endswith(stripped_style_text):
prompt = stripped_prompt[:len(stripped_prompt)-len(stripped_style_text)]
if prompt.endswith(', '):
prompt = stripped_prompt[: len(stripped_prompt) - len(stripped_style_text)]
if prompt.endswith(", "):
prompt = prompt[:-2]
return True, prompt
return False, prompt
def extract_style_from_prompts(style: PromptStyle, prompt, negative_prompt):
def extract_original_prompts(style: PromptStyle, prompt, negative_prompt):
"""
Takes a style and compares it to the prompt and negative prompt. If the style
matches, returns True plus the prompt and negative prompt with the style text
removed. Otherwise, returns False with the original prompt and negative prompt.
"""
if not style.prompt and not style.negative_prompt:
return False, prompt, negative_prompt
match_positive, extracted_positive = extract_style_text_from_prompt(style.prompt, prompt)
match_positive, extracted_positive = unwrap_style_text_from_prompt(
style.prompt, prompt
)
if not match_positive:
return False, prompt, negative_prompt
match_negative, extracted_negative = extract_style_text_from_prompt(style.negative_prompt, negative_prompt)
match_negative, extracted_negative = unwrap_style_text_from_prompt(
style.negative_prompt, negative_prompt
)
if not match_negative:
return False, prompt, negative_prompt
@ -69,25 +110,88 @@ def extract_style_from_prompts(style: PromptStyle, prompt, negative_prompt):
class StyleDatabase:
def __init__(self, path: str):
self.no_style = PromptStyle("None", "", "")
self.no_style = PromptStyle("None", "", "", None)
self.styles = {}
self.path = path
folder, file = os.path.split(self.path)
self.default_file = file.split("*")[0] + ".csv"
if self.default_file == ".csv":
self.default_file = "styles.csv"
self.default_path = os.path.join(folder, self.default_file)
self.prompt_fields = [field for field in PromptStyle._fields if field != "path"]
self.reload()
def reload(self):
"""
Clears the style database and reloads the styles from the CSV file(s)
matching the path used to initialize the database.
"""
self.styles.clear()
if not os.path.exists(self.path):
return
path, filename = os.path.split(self.path)
with open(self.path, "r", encoding="utf-8-sig", newline='') as file:
if "*" in filename:
fileglob = filename.split("*")[0] + "*.csv"
filelist = []
for file in os.listdir(path):
if fnmatch.fnmatch(file, fileglob):
filelist.append(file)
# Add a visible divider to the style list
half_len = round(len(file) / 2)
divider = f"{'-' * (20 - half_len)} {file.upper()}"
divider = f"{divider} {'-' * (40 - len(divider))}"
self.styles[divider] = PromptStyle(
f"{divider}", None, None, "do_not_save"
)
# Add styles from this CSV file
self.load_from_csv(os.path.join(path, file))
if len(filelist) == 0:
print(f"No styles found in {path} matching {fileglob}")
return
elif not os.path.exists(self.path):
print(f"Style database not found: {self.path}")
return
else:
self.load_from_csv(self.path)
def load_from_csv(self, path: str):
with open(path, "r", encoding="utf-8-sig", newline="") as file:
reader = csv.DictReader(file, skipinitialspace=True)
for row in reader:
# Ignore empty rows or rows starting with a comment
if not row or row["name"].startswith("#"):
continue
# Support loading old CSV format with "name, text"-columns
prompt = row["prompt"] if "prompt" in row else row["text"]
negative_prompt = row.get("negative_prompt", "")
self.styles[row["name"]] = PromptStyle(row["name"], prompt, negative_prompt)
# Add style to database
self.styles[row["name"]] = PromptStyle(
row["name"], prompt, negative_prompt, path
)
def get_style_paths(self) -> list():
"""
Returns a list of all distinct paths, including the default path, of
files that styles are loaded from."""
# Update any styles without a path to the default path
for style in list(self.styles.values()):
if not style.path:
self.styles[style.name] = style._replace(path=self.default_path)
# Create a list of all distinct paths, including the default path
style_paths = set()
style_paths.add(self.default_path)
for _, style in self.styles.items():
if style.path:
style_paths.add(style.path)
# Remove any paths for styles that are just list dividers
style_paths.remove("do_not_save")
return list(style_paths)
def get_style_prompts(self, styles):
return [self.styles.get(x, self.no_style).prompt for x in styles]
@ -96,20 +200,53 @@ class StyleDatabase:
return [self.styles.get(x, self.no_style).negative_prompt for x in styles]
def apply_styles_to_prompt(self, prompt, styles):
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).prompt for x in styles])
return apply_styles_to_prompt(
prompt, [self.styles.get(x, self.no_style).prompt for x in styles]
)
def apply_negative_styles_to_prompt(self, prompt, styles):
return apply_styles_to_prompt(prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles])
return apply_styles_to_prompt(
prompt, [self.styles.get(x, self.no_style).negative_prompt for x in styles]
)
def save_styles(self, path: str) -> None:
def save_styles(self, path: str = None) -> None:
# The path argument is deprecated, but kept for backwards compatibility
_ = path
# Update any styles without a path to the default path
for style in list(self.styles.values()):
if not style.path:
self.styles[style.name] = style._replace(path=self.default_path)
# Create a list of all distinct paths, including the default path
style_paths = set()
style_paths.add(self.default_path)
for _, style in self.styles.items():
if style.path:
style_paths.add(style.path)
# Remove any paths for styles that are just list dividers
style_paths.remove("do_not_save")
csv_names = [os.path.split(path)[1].lower() for path in style_paths]
for style_path in style_paths:
# Always keep a backup file around
if os.path.exists(path):
shutil.copy(path, f"{path}.bak")
if os.path.exists(style_path):
shutil.copy(style_path, f"{style_path}.bak")
with open(path, "w", encoding="utf-8-sig", newline='') as file:
writer = csv.DictWriter(file, fieldnames=PromptStyle._fields)
# Write the styles to the CSV file
with open(style_path, "w", encoding="utf-8-sig", newline="") as file:
writer = csv.DictWriter(file, fieldnames=self.prompt_fields)
writer.writeheader()
writer.writerows(style._asdict() for k, style in self.styles.items())
for style in (s for s in self.styles.values() if s.path == style_path):
# Skip style list dividers, e.g. "STYLES.CSV"
if style.name.lower().strip("# ") in csv_names:
continue
# Write style fields, ignoring the path field
writer.writerow(
{k: v for k, v in style._asdict().items() if k != "path"}
)
def extract_styles_from_prompt(self, prompt, negative_prompt):
extracted = []
@ -120,7 +257,9 @@ class StyleDatabase:
found_style = None
for style in applicable_styles:
is_match, new_prompt, new_neg_prompt = extract_style_from_prompts(style, prompt, negative_prompt)
is_match, new_prompt, new_neg_prompt = extract_original_prompts(
style, prompt, negative_prompt
)
if is_match:
found_style = style
prompt = new_prompt

View File

@ -3,6 +3,8 @@ import requests
import os
import numpy as np
from PIL import ImageDraw
from modules import paths_internal
from pkg_resources import parse_version
GREEN = "#0F0"
BLUE = "#00F"
@ -25,7 +27,6 @@ def crop_image(im, settings):
elif is_portrait(settings.crop_width, settings.crop_height):
scale_by = settings.crop_height / im.height
im = im.resize((int(im.width * scale_by), int(im.height * scale_by)))
im_debug = im.copy()
@ -69,6 +70,7 @@ def crop_image(im, settings):
return results
def focal_point(im, settings):
corner_points = image_corner_points(im, settings) if settings.corner_points_weight > 0 else []
entropy_points = image_entropy_points(im, settings) if settings.entropy_points_weight > 0 else []
@ -110,7 +112,7 @@ def focal_point(im, settings):
if corner_centroid is not None:
color = BLUE
box = corner_centroid.bounding(max_size * corner_centroid.weight)
d.text((box[0], box[1]-15), f"Edge: {corner_centroid.weight:.02f}", fill=color)
d.text((box[0], box[1] - 15), f"Edge: {corner_centroid.weight:.02f}", fill=color)
d.ellipse(box, outline=color)
if len(corner_points) > 1:
for f in corner_points:
@ -118,7 +120,7 @@ def focal_point(im, settings):
if entropy_centroid is not None:
color = "#ff0"
box = entropy_centroid.bounding(max_size * entropy_centroid.weight)
d.text((box[0], box[1]-15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color)
d.text((box[0], box[1] - 15), f"Entropy: {entropy_centroid.weight:.02f}", fill=color)
d.ellipse(box, outline=color)
if len(entropy_points) > 1:
for f in entropy_points:
@ -126,7 +128,7 @@ def focal_point(im, settings):
if face_centroid is not None:
color = RED
box = face_centroid.bounding(max_size * face_centroid.weight)
d.text((box[0], box[1]-15), f"Face: {face_centroid.weight:.02f}", fill=color)
d.text((box[0], box[1] - 15), f"Face: {face_centroid.weight:.02f}", fill=color)
d.ellipse(box, outline=color)
if len(face_points) > 1:
for f in face_points:
@ -159,8 +161,8 @@ def image_face_points(im, settings):
PointOfInterest(
int(x + (w * 0.5)), # face focus left/right is center
int(y + (h * 0.33)), # face focus up/down is close to the top of the head
size = w,
weight = 1/len(faces[1])
size=w,
weight=1 / len(faces[1])
)
)
return results
@ -169,27 +171,29 @@ def image_face_points(im, settings):
gray = cv2.cvtColor(np_im, cv2.COLOR_BGR2GRAY)
tries = [
[ f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05 ],
[ f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05 ]
[f'{cv2.data.haarcascades}haarcascade_eye.xml', 0.01],
[f'{cv2.data.haarcascades}haarcascade_frontalface_default.xml', 0.05],
[f'{cv2.data.haarcascades}haarcascade_profileface.xml', 0.05],
[f'{cv2.data.haarcascades}haarcascade_frontalface_alt.xml', 0.05],
[f'{cv2.data.haarcascades}haarcascade_frontalface_alt2.xml', 0.05],
[f'{cv2.data.haarcascades}haarcascade_frontalface_alt_tree.xml', 0.05],
[f'{cv2.data.haarcascades}haarcascade_eye_tree_eyeglasses.xml', 0.05],
[f'{cv2.data.haarcascades}haarcascade_upperbody.xml', 0.05]
]
for t in tries:
classifier = cv2.CascadeClassifier(t[0])
minsize = int(min(im.width, im.height) * t[1]) # at least N percent of the smallest side
try:
faces = classifier.detectMultiScale(gray, scaleFactor=1.1,
minNeighbors=7, minSize=(minsize, minsize), flags=cv2.CASCADE_SCALE_IMAGE)
minNeighbors=7, minSize=(minsize, minsize),
flags=cv2.CASCADE_SCALE_IMAGE)
except Exception:
continue
if faces:
rects = [[f[0], f[1], f[0] + f[2], f[1] + f[3]] for f in faces]
return [PointOfInterest((r[0] +r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0]-r[2]), weight=1/len(rects)) for r in rects]
return [PointOfInterest((r[0] + r[2]) // 2, (r[1] + r[3]) // 2, size=abs(r[0] - r[2]),
weight=1 / len(rects)) for r in rects]
return []
@ -198,7 +202,7 @@ def image_corner_points(im, settings):
# naive attempt at preventing focal points from collecting at watermarks near the bottom
gd = ImageDraw.Draw(grayscale)
gd.rectangle([0, im.height*.9, im.width, im.height], fill="#999")
gd.rectangle([0, im.height * .9, im.width, im.height], fill="#999")
np_im = np.array(grayscale)
@ -206,7 +210,7 @@ def image_corner_points(im, settings):
np_im,
maxCorners=100,
qualityLevel=0.04,
minDistance=min(grayscale.width, grayscale.height)*0.06,
minDistance=min(grayscale.width, grayscale.height) * 0.06,
useHarrisDetector=False,
)
@ -216,7 +220,7 @@ def image_corner_points(im, settings):
focal_points = []
for point in points:
x, y = point.ravel()
focal_points.append(PointOfInterest(x, y, size=4, weight=1/len(points)))
focal_points.append(PointOfInterest(x, y, size=4, weight=1 / len(points)))
return focal_points
@ -247,8 +251,8 @@ def image_entropy_points(im, settings):
crop_current[move_idx[0]] += 4
crop_current[move_idx[1]] += 4
x_mid = int(crop_best[0] + settings.crop_width/2)
y_mid = int(crop_best[1] + settings.crop_height/2)
x_mid = int(crop_best[0] + settings.crop_width / 2)
y_mid = int(crop_best[1] + settings.crop_height / 2)
return [PointOfInterest(x_mid, y_mid, size=25, weight=1.0)]
@ -294,22 +298,23 @@ def is_square(w, h):
return w == h
def download_and_cache_models(dirname):
download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
model_file_name = 'face_detection_yunet.onnx'
model_dir_opencv = os.path.join(paths_internal.models_path, 'opencv')
if parse_version(cv2.__version__) >= parse_version('4.8'):
model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet_2023mar.onnx')
model_url = 'https://github.com/opencv/opencv_zoo/blob/b6e370b10f641879a87890d44e42173077154a05/models/face_detection_yunet/face_detection_yunet_2023mar.onnx?raw=true'
else:
model_file_path = os.path.join(model_dir_opencv, 'face_detection_yunet.onnx')
model_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true'
os.makedirs(dirname, exist_ok=True)
cache_file = os.path.join(dirname, model_file_name)
if not os.path.exists(cache_file):
print(f"downloading face detection model from '{download_url}' to '{cache_file}'")
response = requests.get(download_url)
with open(cache_file, "wb") as f:
def download_and_cache_models():
if not os.path.exists(model_file_path):
os.makedirs(model_dir_opencv, exist_ok=True)
print(f"downloading face detection model from '{model_url}' to '{model_file_path}'")
response = requests.get(model_url)
with open(model_file_path, "wb") as f:
f.write(response.content)
if os.path.exists(cache_file):
return cache_file
return None
return model_file_path
class PointOfInterest:

View File

@ -1,232 +0,0 @@
import os
from PIL import Image, ImageOps
import math
import tqdm
from modules import paths, shared, images, deepbooru
from modules.textual_inversion import autocrop
def preprocess(id_task, process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.15, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
try:
if process_caption:
shared.interrogator.load()
if process_caption_deepbooru:
deepbooru.model.start()
preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru, split_threshold, overlap_ratio, process_focal_crop, process_focal_crop_face_weight, process_focal_crop_entropy_weight, process_focal_crop_edges_weight, process_focal_crop_debug, process_multicrop, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
finally:
if process_caption:
shared.interrogator.send_blip_to_ram()
if process_caption_deepbooru:
deepbooru.model.stop()
def listfiles(dirname):
return os.listdir(dirname)
class PreprocessParams:
src = None
dstdir = None
subindex = 0
flip = False
process_caption = False
process_caption_deepbooru = False
preprocess_txt_action = None
def save_pic_with_caption(image, index, params: PreprocessParams, existing_caption=None):
caption = ""
if params.process_caption:
caption += shared.interrogator.generate_caption(image)
if params.process_caption_deepbooru:
if caption:
caption += ", "
caption += deepbooru.model.tag_multi(image)
filename_part = params.src
filename_part = os.path.splitext(filename_part)[0]
filename_part = os.path.basename(filename_part)
basename = f"{index:05}-{params.subindex}-{filename_part}"
image.save(os.path.join(params.dstdir, f"{basename}.png"))
if params.preprocess_txt_action == 'prepend' and existing_caption:
caption = f"{existing_caption} {caption}"
elif params.preprocess_txt_action == 'append' and existing_caption:
caption = f"{caption} {existing_caption}"
elif params.preprocess_txt_action == 'copy' and existing_caption:
caption = existing_caption
caption = caption.strip()
if caption:
with open(os.path.join(params.dstdir, f"{basename}.txt"), "w", encoding="utf8") as file:
file.write(caption)
params.subindex += 1
def save_pic(image, index, params, existing_caption=None):
save_pic_with_caption(image, index, params, existing_caption=existing_caption)
if params.flip:
save_pic_with_caption(ImageOps.mirror(image), index, params, existing_caption=existing_caption)
def split_pic(image, inverse_xy, width, height, overlap_ratio):
if inverse_xy:
from_w, from_h = image.height, image.width
to_w, to_h = height, width
else:
from_w, from_h = image.width, image.height
to_w, to_h = width, height
h = from_h * to_w // from_w
if inverse_xy:
image = image.resize((h, to_w))
else:
image = image.resize((to_w, h))
split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
y_step = (h - to_h) / (split_count - 1)
for i in range(split_count):
y = int(y_step * i)
if inverse_xy:
splitted = image.crop((y, 0, y + to_h, to_w))
else:
splitted = image.crop((0, y, to_w, y + to_h))
yield splitted
# not using torchvision.transforms.CenterCrop because it doesn't allow float regions
def center_crop(image: Image, w: int, h: int):
iw, ih = image.size
if ih / h < iw / w:
sw = w * ih / h
box = (iw - sw) / 2, 0, iw - (iw - sw) / 2, ih
else:
sh = h * iw / w
box = 0, (ih - sh) / 2, iw, ih - (ih - sh) / 2
return image.resize((w, h), Image.Resampling.LANCZOS, box)
def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, threshold):
iw, ih = image.size
err = lambda w, h: 1-(lambda x: x if x < 1 else 1/x)(iw/ih/(w/h))
wh = max(((w, h) for w in range(mindim, maxdim+1, 64) for h in range(mindim, maxdim+1, 64)
if minarea <= w * h <= maxarea and err(w, h) <= threshold),
key= lambda wh: (wh[0]*wh[1], -err(*wh))[::1 if objective=='Maximize area' else -1],
default=None
)
return wh and center_crop(image, *wh)
def preprocess_work(process_src, process_dst, process_width, process_height, preprocess_txt_action, process_keep_original_size, process_flip, process_split, process_caption, process_caption_deepbooru=False, split_threshold=0.5, overlap_ratio=0.2, process_focal_crop=False, process_focal_crop_face_weight=0.9, process_focal_crop_entropy_weight=0.3, process_focal_crop_edges_weight=0.5, process_focal_crop_debug=False, process_multicrop=None, process_multicrop_mindim=None, process_multicrop_maxdim=None, process_multicrop_minarea=None, process_multicrop_maxarea=None, process_multicrop_objective=None, process_multicrop_threshold=None):
width = process_width
height = process_height
src = os.path.abspath(process_src)
dst = os.path.abspath(process_dst)
split_threshold = max(0.0, min(1.0, split_threshold))
overlap_ratio = max(0.0, min(0.9, overlap_ratio))
assert src != dst, 'same directory specified as source and destination'
os.makedirs(dst, exist_ok=True)
files = listfiles(src)
shared.state.job = "preprocess"
shared.state.textinfo = "Preprocessing..."
shared.state.job_count = len(files)
params = PreprocessParams()
params.dstdir = dst
params.flip = process_flip
params.process_caption = process_caption
params.process_caption_deepbooru = process_caption_deepbooru
params.preprocess_txt_action = preprocess_txt_action
pbar = tqdm.tqdm(files)
for index, imagefile in enumerate(pbar):
params.subindex = 0
filename = os.path.join(src, imagefile)
try:
img = Image.open(filename)
img = ImageOps.exif_transpose(img)
img = img.convert("RGB")
except Exception:
continue
description = f"Preprocessing [Image {index}/{len(files)}]"
pbar.set_description(description)
shared.state.textinfo = description
params.src = filename
existing_caption = None
existing_caption_filename = f"{os.path.splitext(filename)[0]}.txt"
if os.path.exists(existing_caption_filename):
with open(existing_caption_filename, 'r', encoding="utf8") as file:
existing_caption = file.read()
if shared.state.interrupted:
break
if img.height > img.width:
ratio = (img.width * height) / (img.height * width)
inverse_xy = False
else:
ratio = (img.height * width) / (img.width * height)
inverse_xy = True
process_default_resize = True
if process_split and ratio < 1.0 and ratio <= split_threshold:
for splitted in split_pic(img, inverse_xy, width, height, overlap_ratio):
save_pic(splitted, index, params, existing_caption=existing_caption)
process_default_resize = False
if process_focal_crop and img.height != img.width:
dnn_model_path = None
try:
dnn_model_path = autocrop.download_and_cache_models(os.path.join(paths.models_path, "opencv"))
except Exception as e:
print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e)
autocrop_settings = autocrop.Settings(
crop_width = width,
crop_height = height,
face_points_weight = process_focal_crop_face_weight,
entropy_points_weight = process_focal_crop_entropy_weight,
corner_points_weight = process_focal_crop_edges_weight,
annotate_image = process_focal_crop_debug,
dnn_model_path = dnn_model_path,
)
for focal in autocrop.crop_image(img, autocrop_settings):
save_pic(focal, index, params, existing_caption=existing_caption)
process_default_resize = False
if process_multicrop:
cropped = multicrop_pic(img, process_multicrop_mindim, process_multicrop_maxdim, process_multicrop_minarea, process_multicrop_maxarea, process_multicrop_objective, process_multicrop_threshold)
if cropped is not None:
save_pic(cropped, index, params, existing_caption=existing_caption)
else:
print(f"skipped {img.width}x{img.height} image {filename} (can't find suitable size within error threshold)")
process_default_resize = False
if process_keep_original_size:
save_pic(img, index, params, existing_caption=existing_caption)
process_default_resize = False
if process_default_resize:
img = images.resize_image(1, img, width, height)
save_pic(img, index, params, existing_caption=existing_caption)
shared.state.nextjob()

View File

@ -3,7 +3,6 @@ import html
import gradio as gr
import modules.textual_inversion.textual_inversion
import modules.textual_inversion.preprocess
from modules import sd_hijack, shared
@ -15,12 +14,6 @@ def create_embedding(name, initialization_text, nvpt, overwrite_old):
return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", ""
def preprocess(*args):
modules.textual_inversion.preprocess.preprocess(*args)
return f"Preprocessing {'interrupted' if shared.state.interrupted else 'finished'}.", ""
def train_embedding(*args):
assert not shared.cmd_opts.lowvram, 'Training models with lowvram not possible'

View File

@ -919,71 +919,6 @@ def create_ui():
with gr.Column():
create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary', elem_id="train_create_hypernetwork")
with gr.Tab(label="Preprocess images", id="preprocess_images"):
process_src = gr.Textbox(label='Source directory', elem_id="train_process_src")
process_dst = gr.Textbox(label='Destination directory', elem_id="train_process_dst")
process_width = gr.Slider(minimum=64, maximum=2048, step=8, label="Width", value=512, elem_id="train_process_width")
process_height = gr.Slider(minimum=64, maximum=2048, step=8, label="Height", value=512, elem_id="train_process_height")
preprocess_txt_action = gr.Dropdown(label='Existing Caption txt Action', value="ignore", choices=["ignore", "copy", "prepend", "append"], elem_id="train_preprocess_txt_action")
with gr.Row():
process_keep_original_size = gr.Checkbox(label='Keep original size', elem_id="train_process_keep_original_size")
process_flip = gr.Checkbox(label='Create flipped copies', elem_id="train_process_flip")
process_split = gr.Checkbox(label='Split oversized images', elem_id="train_process_split")
process_focal_crop = gr.Checkbox(label='Auto focal point crop', elem_id="train_process_focal_crop")
process_multicrop = gr.Checkbox(label='Auto-sized crop', elem_id="train_process_multicrop")
process_caption = gr.Checkbox(label='Use BLIP for caption', elem_id="train_process_caption")
process_caption_deepbooru = gr.Checkbox(label='Use deepbooru for caption', visible=True, elem_id="train_process_caption_deepbooru")
with gr.Row(visible=False) as process_split_extra_row:
process_split_threshold = gr.Slider(label='Split image threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_split_threshold")
process_overlap_ratio = gr.Slider(label='Split image overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="train_process_overlap_ratio")
with gr.Row(visible=False) as process_focal_crop_row:
process_focal_crop_face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_face_weight")
process_focal_crop_entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_entropy_weight")
process_focal_crop_edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="train_process_focal_crop_edges_weight")
process_focal_crop_debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
with gr.Column(visible=False) as process_multicrop_col:
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
with gr.Row():
process_multicrop_mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id="train_process_multicrop_mindim")
process_multicrop_maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id="train_process_multicrop_maxdim")
with gr.Row():
process_multicrop_minarea = gr.Slider(minimum=64*64, maximum=2048*2048, step=1, label="Area lower bound", value=64*64, elem_id="train_process_multicrop_minarea")
process_multicrop_maxarea = gr.Slider(minimum=64*64, maximum=2048*2048, step=1, label="Area upper bound", value=640*640, elem_id="train_process_multicrop_maxarea")
with gr.Row():
process_multicrop_objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="train_process_multicrop_objective")
process_multicrop_threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="train_process_multicrop_threshold")
with gr.Row():
with gr.Column(scale=3):
gr.HTML(value="")
with gr.Column():
with gr.Row():
interrupt_preprocessing = gr.Button("Interrupt", elem_id="train_interrupt_preprocessing")
run_preprocess = gr.Button(value="Preprocess", variant='primary', elem_id="train_run_preprocess")
process_split.change(
fn=lambda show: gr_show(show),
inputs=[process_split],
outputs=[process_split_extra_row],
)
process_focal_crop.change(
fn=lambda show: gr_show(show),
inputs=[process_focal_crop],
outputs=[process_focal_crop_row],
)
process_multicrop.change(
fn=lambda show: gr_show(show),
inputs=[process_multicrop],
outputs=[process_multicrop_col],
)
def get_textual_inversion_template_names():
return sorted(textual_inversion.textual_inversion_templates)
@ -1084,42 +1019,6 @@ def create_ui():
]
)
run_preprocess.click(
fn=wrap_gradio_gpu_call(textual_inversion_ui.preprocess, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
inputs=[
dummy_component,
process_src,
process_dst,
process_width,
process_height,
preprocess_txt_action,
process_keep_original_size,
process_flip,
process_split,
process_caption,
process_caption_deepbooru,
process_split_threshold,
process_overlap_ratio,
process_focal_crop,
process_focal_crop_face_weight,
process_focal_crop_entropy_weight,
process_focal_crop_edges_weight,
process_focal_crop_debug,
process_multicrop,
process_multicrop_mindim,
process_multicrop_maxdim,
process_multicrop_minarea,
process_multicrop_maxarea,
process_multicrop_objective,
process_multicrop_threshold,
],
outputs=[
ti_output,
ti_outcome,
],
)
train_embedding.click(
fn=wrap_gradio_gpu_call(textual_inversion_ui.train_embedding, extra_outputs=[gr.update()]),
_js="start_training_textual_inversion",
@ -1193,12 +1092,6 @@ def create_ui():
outputs=[],
)
interrupt_preprocessing.click(
fn=lambda: shared.state.interrupt(),
inputs=[],
outputs=[],
)
loadsave = ui_loadsave.UiLoadsave(cmd_opts.ui_config_file)
settings = ui_settings.UiSettings()

View File

@ -335,6 +335,11 @@ def normalize_git_url(url):
return url
def get_extension_dirname_from_url(url):
*parts, last_part = url.split('/')
return normalize_git_url(last_part)
def install_extension_from_url(dirname, url, branch_name=None):
check_access()
@ -346,10 +351,7 @@ def install_extension_from_url(dirname, url, branch_name=None):
assert url, 'No URL specified'
if dirname is None or dirname == "":
*parts, last_part = url.split('/')
last_part = normalize_git_url(last_part)
dirname = last_part
dirname = get_extension_dirname_from_url(url)
target_dir = os.path.join(extensions.extensions_dir, dirname)
assert not os.path.exists(target_dir), f'Extension directory already exists: {target_dir}'
@ -449,7 +451,8 @@ def get_date(info: dict, key):
def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text=""):
extlist = available_extensions["extensions"]
installed_extension_urls = {normalize_git_url(extension.remote): extension.name for extension in extensions.extensions}
installed_extensions = {extension.name for extension in extensions.extensions}
installed_extension_urls = {normalize_git_url(extension.remote) for extension in extensions.extensions if extension.remote is not None}
tags = available_extensions.get("tags", {})
tags_to_hide = set(hide_tags)
@ -482,7 +485,7 @@ def refresh_available_extensions_from_data(hide_tags, sort_column, filter_text="
if url is None:
continue
existing = installed_extension_urls.get(normalize_git_url(url), None)
existing = get_extension_dirname_from_url(url) in installed_extensions or normalize_git_url(url) in installed_extension_urls
extension_tags = extension_tags + ["installed"] if existing else extension_tags
if any(x for x in extension_tags if x in tags_to_hide):

View File

@ -151,6 +151,11 @@ class ExtraNetworksPage:
continue
subdir = os.path.abspath(x)[len(parentdir):].replace("\\", "/")
if shared.opts.extra_networks_dir_button_function:
if not subdir.startswith("/"):
subdir = "/" + subdir
else:
while subdir.startswith("/"):
subdir = subdir[1:]

View File

@ -1,9 +1,10 @@
import gradio as gr
from modules import scripts, shared, ui_common, postprocessing, call_queue
from modules import scripts, shared, ui_common, postprocessing, call_queue, ui_toprow
import modules.generation_parameters_copypaste as parameters_copypaste
def create_ui():
dummy_component = gr.Label(visible=False)
tab_index = gr.State(value=0)
with gr.Row(equal_height=False, variant='compact'):
@ -20,11 +21,13 @@ def create_ui():
extras_batch_output_dir = gr.Textbox(label="Output directory", **shared.hide_dirs, placeholder="Leave blank to save images to the default path.", elem_id="extras_batch_output_dir")
show_extras_results = gr.Checkbox(label='Show result images', value=True, elem_id="extras_show_extras_results")
submit = gr.Button('Generate', elem_id="extras_generate", variant='primary')
script_inputs = scripts.scripts_postproc.setup_ui()
with gr.Column():
toprow = ui_toprow.Toprow(is_compact=True, is_img2img=False, id_part="extras")
toprow.create_inline_toprow_image()
submit = toprow.submit
result_images, html_info_x, html_info, html_log = ui_common.create_output_panel("extras", shared.opts.outdir_extras_samples)
tab_single.select(fn=lambda: 0, inputs=[], outputs=[tab_index])
@ -32,8 +35,10 @@ def create_ui():
tab_batch_dir.select(fn=lambda: 2, inputs=[], outputs=[tab_index])
submit.click(
fn=call_queue.wrap_gradio_gpu_call(postprocessing.run_postprocessing, extra_outputs=[None, '']),
fn=call_queue.wrap_gradio_gpu_call(postprocessing.run_postprocessing_webui, extra_outputs=[None, '']),
_js="submit_extras",
inputs=[
dummy_component,
tab_index,
extras_image,
image_batch,
@ -45,8 +50,9 @@ def create_ui():
outputs=[
result_images,
html_info_x,
html_info,
]
html_log,
],
show_progress=False,
)
parameters_copypaste.add_paste_fields("extras", extras_image, None)

View File

@ -34,8 +34,10 @@ class Toprow:
submit_box = None
def __init__(self, is_img2img, is_compact=False):
def __init__(self, is_img2img, is_compact=False, id_part=None):
if id_part is None:
id_part = "img2img" if is_img2img else "txt2img"
self.id_part = id_part
self.is_img2img = is_img2img
self.is_compact = is_compact

View File

@ -57,6 +57,9 @@ class Upscaler:
dest_h = int((img.height * scale) // 8 * 8)
for _ in range(3):
if img.width >= dest_w and img.height >= dest_h:
break
shape = (img.width, img.height)
img = self.do_upscale(img, selected_model)
@ -64,9 +67,6 @@ class Upscaler:
if shape == (img.width, img.height):
break
if img.width >= dest_w and img.height >= dest_h:
break
if img.width != dest_w or img.height != dest_h:
img = img.resize((int(dest_w), int(dest_h)), resample=LANCZOS)

50
modules/xpu_specific.py Normal file
View File

@ -0,0 +1,50 @@
from modules import shared
from modules.sd_hijack_utils import CondFunc
has_ipex = False
try:
import torch
import intel_extension_for_pytorch as ipex # noqa: F401
has_ipex = True
except Exception:
pass
def check_for_xpu():
return has_ipex and hasattr(torch, 'xpu') and torch.xpu.is_available()
def get_xpu_device_string():
if shared.cmd_opts.device_id is not None:
return f"xpu:{shared.cmd_opts.device_id}"
return "xpu"
def torch_xpu_gc():
with torch.xpu.device(get_xpu_device_string()):
torch.xpu.empty_cache()
has_xpu = check_for_xpu()
if has_xpu:
# W/A for https://github.com/intel/intel-extension-for-pytorch/issues/452: torch.Generator API doesn't support XPU device
CondFunc('torch.Generator',
lambda orig_func, device=None: torch.xpu.Generator(device),
lambda orig_func, device=None: device is not None and device.type == "xpu")
# W/A for some OPs that could not handle different input dtypes
CondFunc('torch.nn.functional.layer_norm',
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
orig_func(input.to(weight.data.dtype), normalized_shape, weight, *args, **kwargs),
lambda orig_func, input, normalized_shape=None, weight=None, *args, **kwargs:
weight is not None and input.dtype != weight.data.dtype)
CondFunc('torch.nn.modules.GroupNorm.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.nn.modules.linear.Linear.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)
CondFunc('torch.nn.modules.conv.Conv2d.forward',
lambda orig_func, self, input: orig_func(self, input.to(self.weight.data.dtype)),
lambda orig_func, self, input: input.dtype != self.weight.data.dtype)

View File

@ -0,0 +1,30 @@
from modules import scripts_postprocessing, ui_components, deepbooru, shared
import gradio as gr
class ScriptPostprocessingCeption(scripts_postprocessing.ScriptPostprocessing):
name = "Caption"
order = 4000
def ui(self):
with ui_components.InputAccordion(False, label="Caption") as enable:
option = gr.CheckboxGroup(value=["Deepbooru"], choices=["Deepbooru", "BLIP"], show_label=False)
return {
"enable": enable,
"option": option,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, option):
if not enable:
return
captions = [pp.caption]
if "Deepbooru" in option:
captions.append(deepbooru.model.tag(pp.image))
if "BLIP" in option:
captions.append(shared.interrogator.generate_caption(pp.image))
pp.caption = ", ".join([x for x in captions if x])

View File

@ -1,28 +1,28 @@
from PIL import Image
import numpy as np
from modules import scripts_postprocessing, codeformer_model
from modules import scripts_postprocessing, codeformer_model, ui_components
import gradio as gr
from modules.ui_components import FormRow
class ScriptPostprocessingCodeFormer(scripts_postprocessing.ScriptPostprocessing):
name = "CodeFormer"
order = 3000
def ui(self):
with FormRow():
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer visibility", value=0, elem_id="extras_codeformer_visibility")
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="CodeFormer weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight")
with ui_components.InputAccordion(False, label="CodeFormer") as enable:
with gr.Row():
codeformer_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_codeformer_visibility")
codeformer_weight = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Weight (0 = maximum effect, 1 = minimum effect)", value=0, elem_id="extras_codeformer_weight")
return {
"enable": enable,
"codeformer_visibility": codeformer_visibility,
"codeformer_weight": codeformer_weight,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, codeformer_visibility, codeformer_weight):
if codeformer_visibility == 0:
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, codeformer_visibility, codeformer_weight):
if codeformer_visibility == 0 or not enable:
return
restored_img = codeformer_model.codeformer.restore(np.array(pp.image, dtype=np.uint8), w=codeformer_weight)

View File

@ -0,0 +1,32 @@
from PIL import ImageOps, Image
from modules import scripts_postprocessing, ui_components
import gradio as gr
class ScriptPostprocessingCreateFlippedCopies(scripts_postprocessing.ScriptPostprocessing):
name = "Create flipped copies"
order = 4000
def ui(self):
with ui_components.InputAccordion(False, label="Create flipped copies") as enable:
with gr.Row():
option = gr.CheckboxGroup(value=["Horizontal"], choices=["Horizontal", "Vertical", "Both"], show_label=False)
return {
"enable": enable,
"option": option,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, option):
if not enable:
return
if "Horizontal" in option:
pp.extra_images.append(ImageOps.mirror(pp.image))
if "Vertical" in option:
pp.extra_images.append(pp.image.transpose(Image.Transpose.FLIP_TOP_BOTTOM))
if "Both" in option:
pp.extra_images.append(pp.image.transpose(Image.Transpose.FLIP_TOP_BOTTOM).transpose(Image.Transpose.FLIP_LEFT_RIGHT))

View File

@ -0,0 +1,54 @@
from modules import scripts_postprocessing, ui_components, errors
import gradio as gr
from modules.textual_inversion import autocrop
class ScriptPostprocessingFocalCrop(scripts_postprocessing.ScriptPostprocessing):
name = "Auto focal point crop"
order = 4000
def ui(self):
with ui_components.InputAccordion(False, label="Auto focal point crop") as enable:
face_weight = gr.Slider(label='Focal point face weight', value=0.9, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_face_weight")
entropy_weight = gr.Slider(label='Focal point entropy weight', value=0.15, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_entropy_weight")
edges_weight = gr.Slider(label='Focal point edges weight', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_focal_crop_edges_weight")
debug = gr.Checkbox(label='Create debug image', elem_id="train_process_focal_crop_debug")
return {
"enable": enable,
"face_weight": face_weight,
"entropy_weight": entropy_weight,
"edges_weight": edges_weight,
"debug": debug,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, face_weight, entropy_weight, edges_weight, debug):
if not enable:
return
if not pp.shared.target_width or not pp.shared.target_height:
return
dnn_model_path = None
try:
dnn_model_path = autocrop.download_and_cache_models()
except Exception:
errors.report("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", exc_info=True)
autocrop_settings = autocrop.Settings(
crop_width=pp.shared.target_width,
crop_height=pp.shared.target_height,
face_points_weight=face_weight,
entropy_points_weight=entropy_weight,
corner_points_weight=edges_weight,
annotate_image=debug,
dnn_model_path=dnn_model_path,
)
result, *others = autocrop.crop_image(pp.image, autocrop_settings)
pp.image = result
pp.extra_images = [pp.create_copy(x, nametags=["focal-crop-debug"], disable_processing=True) for x in others]

View File

@ -1,26 +1,25 @@
from PIL import Image
import numpy as np
from modules import scripts_postprocessing, gfpgan_model
from modules import scripts_postprocessing, gfpgan_model, ui_components
import gradio as gr
from modules.ui_components import FormRow
class ScriptPostprocessingGfpGan(scripts_postprocessing.ScriptPostprocessing):
name = "GFPGAN"
order = 2000
def ui(self):
with FormRow():
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="GFPGAN visibility", value=0, elem_id="extras_gfpgan_visibility")
with ui_components.InputAccordion(False, label="GFPGAN") as enable:
gfpgan_visibility = gr.Slider(minimum=0.0, maximum=1.0, step=0.001, label="Visibility", value=1.0, elem_id="extras_gfpgan_visibility")
return {
"enable": enable,
"gfpgan_visibility": gfpgan_visibility,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, gfpgan_visibility):
if gfpgan_visibility == 0:
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, gfpgan_visibility):
if gfpgan_visibility == 0 or not enable:
return
restored_img = gfpgan_model.gfpgan_fix_faces(np.array(pp.image, dtype=np.uint8))

View File

@ -0,0 +1,71 @@
import math
from modules import scripts_postprocessing, ui_components
import gradio as gr
def split_pic(image, inverse_xy, width, height, overlap_ratio):
if inverse_xy:
from_w, from_h = image.height, image.width
to_w, to_h = height, width
else:
from_w, from_h = image.width, image.height
to_w, to_h = width, height
h = from_h * to_w // from_w
if inverse_xy:
image = image.resize((h, to_w))
else:
image = image.resize((to_w, h))
split_count = math.ceil((h - to_h * overlap_ratio) / (to_h * (1.0 - overlap_ratio)))
y_step = (h - to_h) / (split_count - 1)
for i in range(split_count):
y = int(y_step * i)
if inverse_xy:
splitted = image.crop((y, 0, y + to_h, to_w))
else:
splitted = image.crop((0, y, to_w, y + to_h))
yield splitted
class ScriptPostprocessingSplitOversized(scripts_postprocessing.ScriptPostprocessing):
name = "Split oversized images"
order = 4000
def ui(self):
with ui_components.InputAccordion(False, label="Split oversized images") as enable:
with gr.Row():
split_threshold = gr.Slider(label='Threshold', value=0.5, minimum=0.0, maximum=1.0, step=0.05, elem_id="postprocess_split_threshold")
overlap_ratio = gr.Slider(label='Overlap ratio', value=0.2, minimum=0.0, maximum=0.9, step=0.05, elem_id="postprocess_overlap_ratio")
return {
"enable": enable,
"split_threshold": split_threshold,
"overlap_ratio": overlap_ratio,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, split_threshold, overlap_ratio):
if not enable:
return
width = pp.shared.target_width
height = pp.shared.target_height
if not width or not height:
return
if pp.image.height > pp.image.width:
ratio = (pp.image.width * height) / (pp.image.height * width)
inverse_xy = False
else:
ratio = (pp.image.height * width) / (pp.image.width * height)
inverse_xy = True
if ratio >= 1.0 and ratio > split_threshold:
return
result, *others = split_pic(pp.image, inverse_xy, width, height, overlap_ratio)
pp.image = result
pp.extra_images = [pp.create_copy(x) for x in others]

View File

@ -81,6 +81,14 @@ class ScriptPostprocessingUpscale(scripts_postprocessing.ScriptPostprocessing):
return image
def process_firstpass(self, pp: scripts_postprocessing.PostprocessedImage, upscale_mode=1, upscale_by=2.0, upscale_to_width=None, upscale_to_height=None, upscale_crop=False, upscaler_1_name=None, upscaler_2_name=None, upscaler_2_visibility=0.0):
if upscale_mode == 1:
pp.shared.target_width = upscale_to_width
pp.shared.target_height = upscale_to_height
else:
pp.shared.target_width = int(pp.image.width * upscale_by)
pp.shared.target_height = int(pp.image.height * upscale_by)
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_mode=1, upscale_by=2.0, upscale_to_width=None, upscale_to_height=None, upscale_crop=False, upscaler_1_name=None, upscaler_2_name=None, upscaler_2_visibility=0.0):
if upscaler_1_name == "None":
upscaler_1_name = None
@ -126,6 +134,10 @@ class ScriptPostprocessingUpscaleSimple(ScriptPostprocessingUpscale):
"upscaler_name": upscaler_name,
}
def process_firstpass(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None):
pp.shared.target_width = int(pp.image.width * upscale_by)
pp.shared.target_height = int(pp.image.height * upscale_by)
def process(self, pp: scripts_postprocessing.PostprocessedImage, upscale_by=2.0, upscaler_name=None):
if upscaler_name is None or upscaler_name == "None":
return

View File

@ -0,0 +1,64 @@
from PIL import Image
from modules import scripts_postprocessing, ui_components
import gradio as gr
def center_crop(image: Image, w: int, h: int):
iw, ih = image.size
if ih / h < iw / w:
sw = w * ih / h
box = (iw - sw) / 2, 0, iw - (iw - sw) / 2, ih
else:
sh = h * iw / w
box = 0, (ih - sh) / 2, iw, ih - (ih - sh) / 2
return image.resize((w, h), Image.Resampling.LANCZOS, box)
def multicrop_pic(image: Image, mindim, maxdim, minarea, maxarea, objective, threshold):
iw, ih = image.size
err = lambda w, h: 1 - (lambda x: x if x < 1 else 1 / x)(iw / ih / (w / h))
wh = max(((w, h) for w in range(mindim, maxdim + 1, 64) for h in range(mindim, maxdim + 1, 64)
if minarea <= w * h <= maxarea and err(w, h) <= threshold),
key=lambda wh: (wh[0] * wh[1], -err(*wh))[::1 if objective == 'Maximize area' else -1],
default=None
)
return wh and center_crop(image, *wh)
class ScriptPostprocessingAutosizedCrop(scripts_postprocessing.ScriptPostprocessing):
name = "Auto-sized crop"
order = 4000
def ui(self):
with ui_components.InputAccordion(False, label="Auto-sized crop") as enable:
gr.Markdown('Each image is center-cropped with an automatically chosen width and height.')
with gr.Row():
mindim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension lower bound", value=384, elem_id="postprocess_multicrop_mindim")
maxdim = gr.Slider(minimum=64, maximum=2048, step=8, label="Dimension upper bound", value=768, elem_id="postprocess_multicrop_maxdim")
with gr.Row():
minarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area lower bound", value=64 * 64, elem_id="postprocess_multicrop_minarea")
maxarea = gr.Slider(minimum=64 * 64, maximum=2048 * 2048, step=1, label="Area upper bound", value=640 * 640, elem_id="postprocess_multicrop_maxarea")
with gr.Row():
objective = gr.Radio(["Maximize area", "Minimize error"], value="Maximize area", label="Resizing objective", elem_id="postprocess_multicrop_objective")
threshold = gr.Slider(minimum=0, maximum=1, step=0.01, label="Error threshold", value=0.1, elem_id="postprocess_multicrop_threshold")
return {
"enable": enable,
"mindim": mindim,
"maxdim": maxdim,
"minarea": minarea,
"maxarea": maxarea,
"objective": objective,
"threshold": threshold,
}
def process(self, pp: scripts_postprocessing.PostprocessedImage, enable, mindim, maxdim, minarea, maxarea, objective, threshold):
if not enable:
return
cropped = multicrop_pic(pp.image, mindim, maxdim, minarea, maxarea, objective, threshold)
if cropped is not None:
pp.image = cropped
else:
print(f"skipped {pp.image.width}x{pp.image.height} image (can't find suitable size within error threshold)")

View File

@ -646,6 +646,8 @@ table.popup-table .link{
margin: auto;
padding: 2em;
z-index: 1001;
max-height: 90%;
max-width: 90%;
}
/* fullpage image viewer */