Merge branch 'AUTOMATIC1111:master' into master

This commit is contained in:
Zac Liu 2022-12-06 09:16:15 +08:00 committed by GitHub
commit 3ebf977a6e
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23
40 changed files with 582 additions and 121 deletions

View File

@ -0,0 +1,6 @@
import os
from modules import paths
def preload(parser):
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(paths.models_path, 'LDSR'))

View File

@ -5,8 +5,9 @@ import traceback
from basicsr.utils.download_util import load_file_from_url from basicsr.utils.download_util import load_file_from_url
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
from modules.ldsr_model_arch import LDSR from ldsr_model_arch import LDSR
from modules import shared from modules import shared, script_callbacks
import sd_hijack_autoencoder
class UpscalerLDSR(Upscaler): class UpscalerLDSR(Upscaler):
@ -52,3 +53,12 @@ class UpscalerLDSR(Upscaler):
return img return img
ddim_steps = shared.opts.ldsr_steps ddim_steps = shared.opts.ldsr_steps
return ldsr.super_resolution(img, ddim_steps, self.scale) return ldsr.super_resolution(img, ddim_steps, self.scale)
def on_ui_settings():
import gradio as gr
shared.opts.add_option("ldsr_steps", shared.OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}, section=('upscaling', "Upscaling")))
script_callbacks.on_ui_settings(on_ui_settings)

View File

@ -0,0 +1,286 @@
# The content of this file comes from the ldm/models/autoencoder.py file of the compvis/stable-diffusion repo
# The VQModel & VQModelInterface were subsequently removed from ldm/models/autoencoder.py when we moved to the stability-ai/stablediffusion repo
# As the LDSR upscaler relies on VQModel & VQModelInterface, the hijack aims to put them back into the ldm.models.autoencoder
import torch
import pytorch_lightning as pl
import torch.nn.functional as F
from contextlib import contextmanager
from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer
from ldm.modules.diffusionmodules.model import Encoder, Decoder
from ldm.util import instantiate_from_config
import ldm.models.autoencoder
class VQModel(pl.LightningModule):
def __init__(self,
ddconfig,
lossconfig,
n_embed,
embed_dim,
ckpt_path=None,
ignore_keys=[],
image_key="image",
colorize_nlabels=None,
monitor=None,
batch_resize_range=None,
scheduler_config=None,
lr_g_factor=1.0,
remap=None,
sane_index_shape=False, # tell vector quantizer to return indices as bhw
use_ema=False
):
super().__init__()
self.embed_dim = embed_dim
self.n_embed = n_embed
self.image_key = image_key
self.encoder = Encoder(**ddconfig)
self.decoder = Decoder(**ddconfig)
self.loss = instantiate_from_config(lossconfig)
self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25,
remap=remap,
sane_index_shape=sane_index_shape)
self.quant_conv = torch.nn.Conv2d(ddconfig["z_channels"], embed_dim, 1)
self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1)
if colorize_nlabels is not None:
assert type(colorize_nlabels)==int
self.register_buffer("colorize", torch.randn(3, colorize_nlabels, 1, 1))
if monitor is not None:
self.monitor = monitor
self.batch_resize_range = batch_resize_range
if self.batch_resize_range is not None:
print(f"{self.__class__.__name__}: Using per-batch resizing in range {batch_resize_range}.")
self.use_ema = use_ema
if self.use_ema:
self.model_ema = LitEma(self)
print(f"Keeping EMAs of {len(list(self.model_ema.buffers()))}.")
if ckpt_path is not None:
self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys)
self.scheduler_config = scheduler_config
self.lr_g_factor = lr_g_factor
@contextmanager
def ema_scope(self, context=None):
if self.use_ema:
self.model_ema.store(self.parameters())
self.model_ema.copy_to(self)
if context is not None:
print(f"{context}: Switched to EMA weights")
try:
yield None
finally:
if self.use_ema:
self.model_ema.restore(self.parameters())
if context is not None:
print(f"{context}: Restored training weights")
def init_from_ckpt(self, path, ignore_keys=list()):
sd = torch.load(path, map_location="cpu")["state_dict"]
keys = list(sd.keys())
for k in keys:
for ik in ignore_keys:
if k.startswith(ik):
print("Deleting key {} from state_dict.".format(k))
del sd[k]
missing, unexpected = self.load_state_dict(sd, strict=False)
print(f"Restored from {path} with {len(missing)} missing and {len(unexpected)} unexpected keys")
if len(missing) > 0:
print(f"Missing Keys: {missing}")
print(f"Unexpected Keys: {unexpected}")
def on_train_batch_end(self, *args, **kwargs):
if self.use_ema:
self.model_ema(self)
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
quant, emb_loss, info = self.quantize(h)
return quant, emb_loss, info
def encode_to_prequant(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
def decode(self, quant):
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
def decode_code(self, code_b):
quant_b = self.quantize.embed_code(code_b)
dec = self.decode(quant_b)
return dec
def forward(self, input, return_pred_indices=False):
quant, diff, (_,_,ind) = self.encode(input)
dec = self.decode(quant)
if return_pred_indices:
return dec, diff, ind
return dec, diff
def get_input(self, batch, k):
x = batch[k]
if len(x.shape) == 3:
x = x[..., None]
x = x.permute(0, 3, 1, 2).to(memory_format=torch.contiguous_format).float()
if self.batch_resize_range is not None:
lower_size = self.batch_resize_range[0]
upper_size = self.batch_resize_range[1]
if self.global_step <= 4:
# do the first few batches with max size to avoid later oom
new_resize = upper_size
else:
new_resize = np.random.choice(np.arange(lower_size, upper_size+16, 16))
if new_resize != x.shape[2]:
x = F.interpolate(x, size=new_resize, mode="bicubic")
x = x.detach()
return x
def training_step(self, batch, batch_idx, optimizer_idx):
# https://github.com/pytorch/pytorch/issues/37142
# try not to fool the heuristics
x = self.get_input(batch, self.image_key)
xrec, qloss, ind = self(x, return_pred_indices=True)
if optimizer_idx == 0:
# autoencode
aeloss, log_dict_ae = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train",
predicted_indices=ind)
self.log_dict(log_dict_ae, prog_bar=False, logger=True, on_step=True, on_epoch=True)
return aeloss
if optimizer_idx == 1:
# discriminator
discloss, log_dict_disc = self.loss(qloss, x, xrec, optimizer_idx, self.global_step,
last_layer=self.get_last_layer(), split="train")
self.log_dict(log_dict_disc, prog_bar=False, logger=True, on_step=True, on_epoch=True)
return discloss
def validation_step(self, batch, batch_idx):
log_dict = self._validation_step(batch, batch_idx)
with self.ema_scope():
log_dict_ema = self._validation_step(batch, batch_idx, suffix="_ema")
return log_dict
def _validation_step(self, batch, batch_idx, suffix=""):
x = self.get_input(batch, self.image_key)
xrec, qloss, ind = self(x, return_pred_indices=True)
aeloss, log_dict_ae = self.loss(qloss, x, xrec, 0,
self.global_step,
last_layer=self.get_last_layer(),
split="val"+suffix,
predicted_indices=ind
)
discloss, log_dict_disc = self.loss(qloss, x, xrec, 1,
self.global_step,
last_layer=self.get_last_layer(),
split="val"+suffix,
predicted_indices=ind
)
rec_loss = log_dict_ae[f"val{suffix}/rec_loss"]
self.log(f"val{suffix}/rec_loss", rec_loss,
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
self.log(f"val{suffix}/aeloss", aeloss,
prog_bar=True, logger=True, on_step=False, on_epoch=True, sync_dist=True)
if version.parse(pl.__version__) >= version.parse('1.4.0'):
del log_dict_ae[f"val{suffix}/rec_loss"]
self.log_dict(log_dict_ae)
self.log_dict(log_dict_disc)
return self.log_dict
def configure_optimizers(self):
lr_d = self.learning_rate
lr_g = self.lr_g_factor*self.learning_rate
print("lr_d", lr_d)
print("lr_g", lr_g)
opt_ae = torch.optim.Adam(list(self.encoder.parameters())+
list(self.decoder.parameters())+
list(self.quantize.parameters())+
list(self.quant_conv.parameters())+
list(self.post_quant_conv.parameters()),
lr=lr_g, betas=(0.5, 0.9))
opt_disc = torch.optim.Adam(self.loss.discriminator.parameters(),
lr=lr_d, betas=(0.5, 0.9))
if self.scheduler_config is not None:
scheduler = instantiate_from_config(self.scheduler_config)
print("Setting up LambdaLR scheduler...")
scheduler = [
{
'scheduler': LambdaLR(opt_ae, lr_lambda=scheduler.schedule),
'interval': 'step',
'frequency': 1
},
{
'scheduler': LambdaLR(opt_disc, lr_lambda=scheduler.schedule),
'interval': 'step',
'frequency': 1
},
]
return [opt_ae, opt_disc], scheduler
return [opt_ae, opt_disc], []
def get_last_layer(self):
return self.decoder.conv_out.weight
def log_images(self, batch, only_inputs=False, plot_ema=False, **kwargs):
log = dict()
x = self.get_input(batch, self.image_key)
x = x.to(self.device)
if only_inputs:
log["inputs"] = x
return log
xrec, _ = self(x)
if x.shape[1] > 3:
# colorize with random projection
assert xrec.shape[1] > 3
x = self.to_rgb(x)
xrec = self.to_rgb(xrec)
log["inputs"] = x
log["reconstructions"] = xrec
if plot_ema:
with self.ema_scope():
xrec_ema, _ = self(x)
if x.shape[1] > 3: xrec_ema = self.to_rgb(xrec_ema)
log["reconstructions_ema"] = xrec_ema
return log
def to_rgb(self, x):
assert self.image_key == "segmentation"
if not hasattr(self, "colorize"):
self.register_buffer("colorize", torch.randn(3, x.shape[1], 1, 1).to(x))
x = F.conv2d(x, weight=self.colorize)
x = 2.*(x-x.min())/(x.max()-x.min()) - 1.
return x
class VQModelInterface(VQModel):
def __init__(self, embed_dim, *args, **kwargs):
super().__init__(embed_dim=embed_dim, *args, **kwargs)
self.embed_dim = embed_dim
def encode(self, x):
h = self.encoder(x)
h = self.quant_conv(h)
return h
def decode(self, h, force_not_quantize=False):
# also go through quantization layer
if not force_not_quantize:
quant, emb_loss, info = self.quantize(h)
else:
quant = h
quant = self.post_quant_conv(quant)
dec = self.decoder(quant)
return dec
setattr(ldm.models.autoencoder, "VQModel", VQModel)
setattr(ldm.models.autoencoder, "VQModelInterface", VQModelInterface)

View File

@ -0,0 +1,6 @@
import os
from modules import paths
def preload(parser):
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(paths.models_path, 'ScuNET'))

View File

@ -9,7 +9,7 @@ from basicsr.utils.download_util import load_file_from_url
import modules.upscaler import modules.upscaler
from modules import devices, modelloader from modules import devices, modelloader
from modules.scunet_model_arch import SCUNet as net from scunet_model_arch import SCUNet as net
class UpscalerScuNET(modules.upscaler.Upscaler): class UpscalerScuNET(modules.upscaler.Upscaler):
@ -49,7 +49,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
if model is None: if model is None:
return img return img
device = devices.device_scunet device = devices.get_device_for('scunet')
img = np.array(img) img = np.array(img)
img = img[:, :, ::-1] img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255 img = np.moveaxis(img, 2, 0) / 255
@ -66,7 +66,7 @@ class UpscalerScuNET(modules.upscaler.Upscaler):
return PIL.Image.fromarray(output, 'RGB') return PIL.Image.fromarray(output, 'RGB')
def load_model(self, path: str): def load_model(self, path: str):
device = devices.device_scunet device = devices.get_device_for('scunet')
if "http" in path: if "http" in path:
filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name, filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name,
progress=True) progress=True)

View File

@ -0,0 +1,6 @@
import os
from modules import paths
def preload(parser):
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(paths.models_path, 'SwinIR'))

View File

@ -7,15 +7,14 @@ from PIL import Image
from basicsr.utils.download_util import load_file_from_url from basicsr.utils.download_util import load_file_from_url
from tqdm import tqdm from tqdm import tqdm
from modules import modelloader, devices from modules import modelloader, devices, script_callbacks, shared
from modules.shared import cmd_opts, opts from modules.shared import cmd_opts, opts
from modules.swinir_model_arch import SwinIR as net from swinir_model_arch import SwinIR as net
from modules.swinir_model_arch_v2 import Swin2SR as net2 from swinir_model_arch_v2 import Swin2SR as net2
from modules.upscaler import Upscaler, UpscalerData from modules.upscaler import Upscaler, UpscalerData
precision_scope = (
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext device_swinir = devices.get_device_for('swinir')
)
class UpscalerSwinIR(Upscaler): class UpscalerSwinIR(Upscaler):
@ -42,7 +41,7 @@ class UpscalerSwinIR(Upscaler):
model = self.load_model(model_file) model = self.load_model(model_file)
if model is None: if model is None:
return img return img
model = model.to(devices.device_swinir) model = model.to(device_swinir, dtype=devices.dtype)
img = upscale(img, model) img = upscale(img, model)
try: try:
torch.cuda.empty_cache() torch.cuda.empty_cache()
@ -94,25 +93,27 @@ class UpscalerSwinIR(Upscaler):
model.load_state_dict(pretrained_model[params], strict=True) model.load_state_dict(pretrained_model[params], strict=True)
else: else:
model.load_state_dict(pretrained_model, strict=True) model.load_state_dict(pretrained_model, strict=True)
if not cmd_opts.no_half:
model = model.half()
return model return model
def upscale( def upscale(
img, img,
model, model,
tile=opts.SWIN_tile, tile=None,
tile_overlap=opts.SWIN_tile_overlap, tile_overlap=None,
window_size=8, window_size=8,
scale=4, scale=4,
): ):
tile = tile or opts.SWIN_tile
tile_overlap = tile_overlap or opts.SWIN_tile_overlap
img = np.array(img) img = np.array(img)
img = img[:, :, ::-1] img = img[:, :, ::-1]
img = np.moveaxis(img, 2, 0) / 255 img = np.moveaxis(img, 2, 0) / 255
img = torch.from_numpy(img).float() img = torch.from_numpy(img).float()
img = img.unsqueeze(0).to(devices.device_swinir) img = img.unsqueeze(0).to(device_swinir, dtype=devices.dtype)
with torch.no_grad(), precision_scope("cuda"): with torch.no_grad(), devices.autocast():
_, _, h_old, w_old = img.size() _, _, h_old, w_old = img.size()
h_pad = (h_old // window_size + 1) * window_size - h_old h_pad = (h_old // window_size + 1) * window_size - h_old
w_pad = (w_old // window_size + 1) * window_size - w_old w_pad = (w_old // window_size + 1) * window_size - w_old
@ -139,8 +140,8 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
stride = tile - tile_overlap stride = tile - tile_overlap
h_idx_list = list(range(0, h - tile, stride)) + [h - tile] h_idx_list = list(range(0, h - tile, stride)) + [h - tile]
w_idx_list = list(range(0, w - tile, stride)) + [w - tile] w_idx_list = list(range(0, w - tile, stride)) + [w - tile]
E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=devices.device_swinir).type_as(img) E = torch.zeros(b, c, h * sf, w * sf, dtype=devices.dtype, device=device_swinir).type_as(img)
W = torch.zeros_like(E, dtype=torch.half, device=devices.device_swinir) W = torch.zeros_like(E, dtype=devices.dtype, device=device_swinir)
with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar: with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar:
for h_idx in h_idx_list: for h_idx in h_idx_list:
@ -159,3 +160,13 @@ def inference(img, model, tile, tile_overlap, window_size, scale):
output = E.div_(W) output = E.div_(W)
return output return output
def on_ui_settings():
import gradio as gr
shared.opts.add_option("SWIN_tile", shared.OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}, section=('upscaling', "Upscaling")))
shared.opts.add_option("SWIN_tile_overlap", shared.OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}, section=('upscaling', "Upscaling")))
script_callbacks.on_ui_settings(on_ui_settings)

View File

@ -94,6 +94,8 @@ titles = {
"Add difference": "Result = A + (B - C) * M", "Add difference": "Result = A + (B - C) * M",
"Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.", "Learning rate": "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.",
"Clip skip": "Early stopping parameter for CLIP model; 1 is stop at last layer as usual, 2 is stop at penultimate layer, etc."
} }

View File

@ -92,14 +92,26 @@ function check_gallery(id_gallery){
if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) { if (prevSelectedIndex !== -1 && galleryButtons.length>prevSelectedIndex && !galleryBtnSelected) {
// automatically re-open previously selected index (if exists) // automatically re-open previously selected index (if exists)
activeElement = gradioApp().activeElement; activeElement = gradioApp().activeElement;
let scrollX = window.scrollX;
let scrollY = window.scrollY;
galleryButtons[prevSelectedIndex].click(); galleryButtons[prevSelectedIndex].click();
showGalleryImage(); showGalleryImage();
// When the gallery button is clicked, it gains focus and scrolls itself into view
// We need to scroll back to the previous position
setTimeout(function (){
window.scrollTo(scrollX, scrollY);
}, 50);
if(activeElement){ if(activeElement){
// i fought this for about an hour; i don't know why the focus is lost or why this helps recover it // i fought this for about an hour; i don't know why the focus is lost or why this helps recover it
// if somenoe has a better solution please by all means // if someone has a better solution please by all means
setTimeout(function() { activeElement.focus() }, 1); setTimeout(function (){
activeElement.focus({
preventScroll: true // Refocus the element that was focused before the gallery was opened without scrolling to it
})
}, 1);
} }
} }
}) })

View File

@ -186,6 +186,7 @@ def prepare_enviroment():
parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json') parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui settings", default='config.json')
args, _ = parser.parse_known_args(sys.argv) args, _ = parser.parse_known_args(sys.argv)
sys.argv, _ = extract_arg(sys.argv, '-f')
sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test') sys.argv, skip_torch_cuda_test = extract_arg(sys.argv, '--skip-torch-cuda-test')
sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers') sys.argv, reinstall_xformers = extract_arg(sys.argv, '--reinstall-xformers')
sys.argv, update_check = extract_arg(sys.argv, '--update-check') sys.argv, update_check = extract_arg(sys.argv, '--update-check')

View File

@ -152,7 +152,10 @@ class Api:
) )
if populate.sampler_name: if populate.sampler_name:
populate.sampler_index = None # prevent a warning later on populate.sampler_index = None # prevent a warning later on
p = StableDiffusionProcessingImg2Img(**vars(populate))
args = vars(populate)
args.pop('include_init_images', None) # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
p = StableDiffusionProcessingImg2Img(**args)
imgs = [] imgs = []
for img in init_images: for img in init_images:
@ -170,7 +173,7 @@ class Api:
b64images = list(map(encode_pil_to_base64, processed.images)) b64images = list(map(encode_pil_to_base64, processed.images))
if (not img2imgreq.include_init_images): if not img2imgreq.include_init_images:
img2imgreq.init_images = None img2imgreq.init_images = None
img2imgreq.mask = None img2imgreq.mask = None

View File

@ -21,7 +21,7 @@ class DeepDanbooru:
files = modelloader.load_models( files = modelloader.load_models(
model_path=os.path.join(paths.models_path, "torch_deepdanbooru"), model_path=os.path.join(paths.models_path, "torch_deepdanbooru"),
model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt', model_url='https://github.com/AUTOMATIC1111/TorchDeepDanbooru/releases/download/v1/model-resnet_custom_v3.pt',
ext_filter=".pt", ext_filter=[".pt"],
download_name='model-resnet_custom_v3.pt', download_name='model-resnet_custom_v3.pt',
) )

View File

@ -44,6 +44,15 @@ def get_optimal_device():
return cpu return cpu
def get_device_for(task):
from modules import shared
if task in shared.cmd_opts.use_cpu:
return cpu
return get_optimal_device()
def torch_gc(): def torch_gc():
if torch.cuda.is_available(): if torch.cuda.is_available():
with torch.cuda.device(get_cuda_device_string()): with torch.cuda.device(get_cuda_device_string()):
@ -53,37 +62,35 @@ def torch_gc():
def enable_tf32(): def enable_tf32():
if torch.cuda.is_available(): if torch.cuda.is_available():
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
if any([torch.cuda.get_device_capability(devid) == (7, 5) for devid in range(0, torch.cuda.device_count())]):
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True
errors.run(enable_tf32, "Enabling TF32") errors.run(enable_tf32, "Enabling TF32")
cpu = torch.device("cpu") cpu = torch.device("cpu")
device = device_interrogate = device_gfpgan = device_swinir = device_esrgan = device_scunet = device_codeformer = None device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
dtype = torch.float16 dtype = torch.float16
dtype_vae = torch.float16 dtype_vae = torch.float16
def randn(seed, shape): def randn(seed, shape):
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
if device.type == 'mps':
generator = torch.Generator(device=cpu)
generator.manual_seed(seed)
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
return noise
torch.manual_seed(seed) torch.manual_seed(seed)
if device.type == 'mps':
return torch.randn(shape, device=cpu).to(device)
return torch.randn(shape, device=device) return torch.randn(shape, device=device)
def randn_without_seed(shape): def randn_without_seed(shape):
# Pytorch currently doesn't handle setting randomness correctly when the metal backend is used.
if device.type == 'mps': if device.type == 'mps':
generator = torch.Generator(device=cpu) return torch.randn(shape, device=cpu).to(device)
noise = torch.randn(shape, generator=generator, device=cpu).to(device)
return noise
return torch.randn(shape, device=device) return torch.randn(shape, device=device)

View File

@ -8,6 +8,7 @@ from modules import paths, shared
extensions = [] extensions = []
extensions_dir = os.path.join(paths.script_path, "extensions") extensions_dir = os.path.join(paths.script_path, "extensions")
extensions_builtin_dir = os.path.join(paths.script_path, "extensions-builtin")
def active(): def active():
@ -15,12 +16,13 @@ def active():
class Extension: class Extension:
def __init__(self, name, path, enabled=True): def __init__(self, name, path, enabled=True, is_builtin=False):
self.name = name self.name = name
self.path = path self.path = path
self.enabled = enabled self.enabled = enabled
self.status = '' self.status = ''
self.can_update = False self.can_update = False
self.is_builtin = is_builtin
repo = None repo = None
try: try:
@ -79,11 +81,19 @@ def list_extensions():
if not os.path.isdir(extensions_dir): if not os.path.isdir(extensions_dir):
return return
for dirname in sorted(os.listdir(extensions_dir)): paths = []
path = os.path.join(extensions_dir, dirname) for dirname in [extensions_dir, extensions_builtin_dir]:
if not os.path.isdir(path): if not os.path.isdir(dirname):
continue return
extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions) for extension_dirname in sorted(os.listdir(dirname)):
path = os.path.join(dirname, extension_dirname)
if not os.path.isdir(path):
continue
paths.append((extension_dirname, path, dirname == extensions_builtin_dir))
for dirname, path, is_builtin in paths:
extension = Extension(name=dirname, path=path, enabled=dirname not in shared.opts.disabled_extensions, is_builtin=is_builtin)
extensions.append(extension) extensions.append(extension)

View File

@ -247,6 +247,7 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
primary_model_info = sd_models.checkpoints_list[primary_model_name] primary_model_info = sd_models.checkpoints_list[primary_model_name]
secondary_model_info = sd_models.checkpoints_list[secondary_model_name] secondary_model_info = sd_models.checkpoints_list[secondary_model_name]
teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None) teritary_model_info = sd_models.checkpoints_list.get(teritary_model_name, None)
result_is_inpainting_model = False
print(f"Loading {primary_model_info.filename}...") print(f"Loading {primary_model_info.filename}...")
theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu') theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu')
@ -280,8 +281,22 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
for key in tqdm.tqdm(theta_0.keys()): for key in tqdm.tqdm(theta_0.keys()):
if 'model' in key and key in theta_1: if 'model' in key and key in theta_1:
a = theta_0[key]
b = theta_1[key]
theta_0[key] = theta_func2(theta_0[key], theta_1[key], multiplier) # this enables merging an inpainting model (A) with another one (B);
# where normal model would have 4 channels, for latenst space, inpainting model would
# have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9
if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]:
if a.shape[1] == 4 and b.shape[1] == 9:
raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.")
assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}"
theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier)
result_is_inpainting_model = True
else:
theta_0[key] = theta_func2(a, b, multiplier)
if save_as_half: if save_as_half:
theta_0[key] = theta_0[key].half() theta_0[key] = theta_0[key].half()
@ -295,8 +310,16 @@ def run_modelmerger(primary_model_name, secondary_model_name, teritary_model_nam
ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path
filename = primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + interp_method.replace(" ", "_") + '-merged.' + checkpoint_format filename = \
primary_model_info.model_name + '_' + str(round(1-multiplier, 2)) + '-' + \
secondary_model_info.model_name + '_' + str(round(multiplier, 2)) + '-' + \
interp_method.replace(" ", "_") + \
'-merged.' + \
("inpainting." if result_is_inpainting_model else "") + \
checkpoint_format
filename = filename if custom_name == '' else (custom_name + '.' + checkpoint_format) filename = filename if custom_name == '' else (custom_name + '.' + checkpoint_format)
output_modelname = os.path.join(ckpt_dir, filename) output_modelname = os.path.join(ckpt_dir, filename)
print(f"Saving to {output_modelname}...") print(f"Saving to {output_modelname}...")

View File

@ -184,6 +184,10 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model
else: else:
res[k] = v res[k] = v
# Missing CLIP skip means it was set to 1 (the default)
if "Clip skip" not in res:
res["Clip skip"] = "1"
return res return res

View File

@ -433,7 +433,10 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory) dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
old_parallel_processing_allowed = shared.parallel_processing_allowed
if unload: if unload:
shared.parallel_processing_allowed = False
shared.sd_model.cond_stage_model.to(devices.cpu) shared.sd_model.cond_stage_model.to(devices.cpu)
shared.sd_model.first_stage_model.to(devices.cpu) shared.sd_model.first_stage_model.to(devices.cpu)
@ -495,7 +498,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
if shared.state.interrupted: if shared.state.interrupted:
break break
with torch.autocast("cuda"): with devices.autocast():
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory) x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
if tag_drop_out != 0 or shuffle_tags: if tag_drop_out != 0 or shuffle_tags:
shared.sd_model.cond_stage_model.to(devices.device) shared.sd_model.cond_stage_model.to(devices.device)
@ -612,10 +615,12 @@ Last saved image: {html.escape(last_saved_image)}<br/>
if shared.opts.save_optimizer_state: if shared.opts.save_optimizer_state:
hypernetwork.optimizer_state_dict = optimizer.state_dict() hypernetwork.optimizer_state_dict = optimizer.state_dict()
save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename) save_hypernetwork(hypernetwork, checkpoint, hypernetwork_name, filename)
del optimizer del optimizer
hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory. hypernetwork.optimizer_state_dict = None # dereference it after saving, to save memory.
shared.sd_model.cond_stage_model.to(devices.device) shared.sd_model.cond_stage_model.to(devices.device)
shared.sd_model.first_stage_model.to(devices.device) shared.sd_model.first_stage_model.to(devices.device)
shared.parallel_processing_allowed = old_parallel_processing_allowed
return hypernetwork, filename return hypernetwork, filename

View File

@ -4,7 +4,7 @@ import sys
import traceback import traceback
import numpy as np import numpy as np
from PIL import Image, ImageOps, ImageChops from PIL import Image, ImageOps, ImageFilter, ImageEnhance, ImageChops
from modules import devices, sd_samplers from modules import devices, sd_samplers
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
@ -40,7 +40,7 @@ def process_batch(p, input_dir, output_dir, args):
img = Image.open(image) img = Image.open(image)
# Use the EXIF orientation of photos taken by smartphones. # Use the EXIF orientation of photos taken by smartphones.
img = ImageOps.exif_transpose(img) img = ImageOps.exif_transpose(img)
p.init_images = [img] * p.batch_size p.init_images = [img] * p.batch_size
proc = modules.scripts.scripts_img2img.run(p, *args) proc = modules.scripts.scripts_img2img.run(p, *args)
@ -59,18 +59,31 @@ def process_batch(p, input_dir, output_dir, args):
processed_image.save(os.path.join(output_dir, filename)) processed_image.save(os.path.join(output_dir, filename))
def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args): def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, init_img, init_img_with_mask, init_img_with_mask_orig, init_img_inpaint, init_mask_inpaint, mask_mode, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, *args):
is_inpaint = mode == 1 is_inpaint = mode == 1
is_batch = mode == 2 is_batch = mode == 2
if is_inpaint: if is_inpaint:
# Drawn mask # Drawn mask
if mask_mode == 0: if mask_mode == 0:
image = init_img_with_mask['image'] is_mask_sketch = isinstance(init_img_with_mask, dict)
mask = init_img_with_mask['mask'] is_mask_paint = not is_mask_sketch
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1') if is_mask_sketch:
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L') # Sketch: mask iff. not transparent
image = image.convert('RGB') image, mask = init_img_with_mask["image"], init_img_with_mask["mask"]
alpha_mask = ImageOps.invert(image.split()[-1]).convert('L').point(lambda x: 255 if x > 0 else 0, mode='1')
mask = ImageChops.lighter(alpha_mask, mask.convert('L')).convert('L')
else:
# Color-sketch: mask iff. painted over
image = init_img_with_mask
orig = init_img_with_mask_orig or init_img_with_mask
pred = np.any(np.array(image) != np.array(orig), axis=-1)
mask = Image.fromarray(pred.astype(np.uint8) * 255, "L")
mask = ImageEnhance.Brightness(mask).enhance(1 - mask_alpha / 100)
blur = ImageFilter.GaussianBlur(mask_blur)
image = Image.composite(image.filter(blur), orig, mask.filter(blur))
image = image.convert("RGB")
# Uploaded mask # Uploaded mask
else: else:
image = init_img_inpaint image = init_img_inpaint
@ -82,7 +95,7 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro
# Use the EXIF orientation of photos taken by smartphones. # Use the EXIF orientation of photos taken by smartphones.
if image is not None: if image is not None:
image = ImageOps.exif_transpose(image) image = ImageOps.exif_transpose(image)
assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]' assert 0. <= denoising_strength <= 1., 'can only work with strength in [0.0, 1.0]'

View File

@ -1,4 +1,3 @@
import contextlib
import os import os
import sys import sys
import traceback import traceback
@ -11,10 +10,9 @@ from torchvision import transforms
from torchvision.transforms.functional import InterpolationMode from torchvision.transforms.functional import InterpolationMode
import modules.shared as shared import modules.shared as shared
from modules import devices, paths, lowvram from modules import devices, paths, lowvram, modelloader
blip_image_eval_size = 384 blip_image_eval_size = 384
blip_model_url = 'https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth'
clip_model_name = 'ViT-L/14' clip_model_name = 'ViT-L/14'
Category = namedtuple("Category", ["name", "topn", "items"]) Category = namedtuple("Category", ["name", "topn", "items"])
@ -47,7 +45,14 @@ class InterrogateModels:
def load_blip_model(self): def load_blip_model(self):
import models.blip import models.blip
blip_model = models.blip.blip_decoder(pretrained=blip_model_url, image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json")) files = modelloader.load_models(
model_path=os.path.join(paths.models_path, "BLIP"),
model_url='https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_caption_capfilt_large.pth',
ext_filter=[".pth"],
download_name='model_base_caption_capfilt_large.pth',
)
blip_model = models.blip.blip_decoder(pretrained=files[0], image_size=blip_image_eval_size, vit='base', med_config=os.path.join(paths.paths["BLIP"], "configs", "med_config.json"))
blip_model.eval() blip_model.eval()
return blip_model return blip_model
@ -148,8 +153,7 @@ class InterrogateModels:
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate) clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext with torch.no_grad(), devices.autocast():
with torch.no_grad(), precision_scope("cuda"):
image_features = self.clip_model.encode_image(clip_image).type(self.dtype) image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
image_features /= image_features.norm(dim=-1, keepdim=True) image_features /= image_features.norm(dim=-1, keepdim=True)

View File

@ -124,10 +124,9 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None):
def load_upscalers(): def load_upscalers():
sd = shared.script_path
# We can only do this 'magic' method to dynamically load upscalers if they are referenced, # We can only do this 'magic' method to dynamically load upscalers if they are referenced,
# so we'll try to import any _model.py files before looking in __subclasses__ # so we'll try to import any _model.py files before looking in __subclasses__
modules_dir = os.path.join(sd, "modules") modules_dir = os.path.join(shared.script_path, "modules")
for file in os.listdir(modules_dir): for file in os.listdir(modules_dir):
if "_model.py" in file: if "_model.py" in file:
model_name = file.replace("_model.py", "") model_name = file.replace("_model.py", "")
@ -136,22 +135,13 @@ def load_upscalers():
importlib.import_module(full_model) importlib.import_module(full_model)
except: except:
pass pass
datas = [] datas = []
c_o = vars(shared.cmd_opts) commandline_options = vars(shared.cmd_opts)
for cls in Upscaler.__subclasses__(): for cls in Upscaler.__subclasses__():
name = cls.__name__ name = cls.__name__
module_name = cls.__module__
module = importlib.import_module(module_name)
class_ = getattr(module, name)
cmd_name = f"{name.lower().replace('upscaler', '')}_models_path" cmd_name = f"{name.lower().replace('upscaler', '')}_models_path"
opt_string = None scaler = cls(commandline_options.get(cmd_name, None))
try: datas += scaler.scalers
if cmd_name in c_o:
opt_string = c_o[cmd_name]
except:
pass
scaler = class_(opt_string)
for child in scaler.scalers:
datas.append(child)
shared.sd_upscalers = datas shared.sd_upscalers = datas

View File

@ -414,7 +414,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None]) generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[0] if p.all_negative_prompts[0] else "" negative_prompt_text = "\nNegative prompt: " + p.all_negative_prompts[index] if p.all_negative_prompts[index] else ""
return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip() return f"{all_prompts[index]}{negative_prompt_text}\n{generation_params_text}".strip()
@ -530,8 +530,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
with devices.autocast(): with devices.autocast():
samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts) samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, prompts=prompts)
samples_ddim = samples_ddim.to(devices.dtype_vae) x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
x_samples_ddim = decode_first_stage(p.sd_model, samples_ddim) x_samples_ddim = torch.stack(x_samples_ddim).float()
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0) x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
del samples_ddim del samples_ddim

View File

@ -62,14 +62,12 @@ class RestrictedUnpickler(pickle.Unpickler):
raise Exception(f"global '{module}/{name}' is forbidden") raise Exception(f"global '{module}/{name}' is forbidden")
allowed_zip_names = ["archive/data.pkl", "archive/version"] # Regular expression that accepts 'dirname/version', 'dirname/data.pkl', and 'dirname/data/<number>'
allowed_zip_names_re = re.compile(r"^archive/data/\d+$") allowed_zip_names_re = re.compile(r"^([^/]+)/((data/\d+)|version|(data\.pkl))$")
data_pkl_re = re.compile(r"^([^/]+)/data\.pkl$")
def check_zip_filenames(filename, names): def check_zip_filenames(filename, names):
for name in names: for name in names:
if name in allowed_zip_names:
continue
if allowed_zip_names_re.match(name): if allowed_zip_names_re.match(name):
continue continue
@ -82,8 +80,14 @@ def check_pt(filename, extra_handler):
# new pytorch format is a zip file # new pytorch format is a zip file
with zipfile.ZipFile(filename) as z: with zipfile.ZipFile(filename) as z:
check_zip_filenames(filename, z.namelist()) check_zip_filenames(filename, z.namelist())
with z.open('archive/data.pkl') as file: # find filename of data.pkl in zip file: '<directory name>/data.pkl'
data_pkl_filenames = [f for f in z.namelist() if data_pkl_re.match(f)]
if len(data_pkl_filenames) == 0:
raise Exception(f"data.pkl not found in {filename}")
if len(data_pkl_filenames) > 1:
raise Exception(f"Multiple data.pkl found in {filename}")
with z.open(data_pkl_filenames[0]) as file:
unpickler = RestrictedUnpickler(file) unpickler = RestrictedUnpickler(file)
unpickler.extra_handler = extra_handler unpickler.extra_handler = extra_handler
unpickler.load() unpickler.load()

View File

@ -17,6 +17,7 @@ from modules.sd_hijack_optimizations import invokeAI_mps_available
import ldm.modules.attention import ldm.modules.attention
import ldm.modules.diffusionmodules.model import ldm.modules.diffusionmodules.model
import ldm.modules.diffusionmodules.openaimodel
import ldm.models.diffusion.ddim import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms import ldm.models.diffusion.plms
import ldm.modules.encoders.modules import ldm.modules.encoders.modules
@ -189,11 +190,7 @@ def register_buffer(self, name, attr):
if type(attr) == torch.Tensor: if type(attr) == torch.Tensor:
if attr.device != devices.device: if attr.device != devices.device:
attr = attr.to(device=devices.device, dtype=(torch.float32 if devices.device.type == 'mps' else None))
if devices.has_mps():
attr = attr.to(device="mps", dtype=torch.float32)
else:
attr = attr.to(devices.device)
setattr(self, name, attr) setattr(self, name, attr)

View File

@ -6,6 +6,7 @@ import tqdm
from PIL import Image from PIL import Image
import inspect import inspect
import k_diffusion.sampling import k_diffusion.sampling
import torchsde._brownian.brownian_interval
import ldm.models.diffusion.ddim import ldm.models.diffusion.ddim
import ldm.models.diffusion.plms import ldm.models.diffusion.plms
from modules import prompt_parser, devices, processing, images from modules import prompt_parser, devices, processing, images
@ -364,7 +365,23 @@ class TorchHijack:
if noise.shape == x.shape: if noise.shape == x.shape:
return noise return noise
return torch.randn_like(x) if x.device.type == 'mps':
return torch.randn_like(x, device=devices.cpu).to(x.device)
else:
return torch.randn_like(x)
# MPS fix for randn in torchsde
def torchsde_randn(size, dtype, device, seed):
if device.type == 'mps':
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
else:
generator = torch.Generator(device).manual_seed(int(seed))
return torch.randn(size, dtype=dtype, device=device, generator=generator)
torchsde._brownian.brownian_interval._randn = torchsde_randn
class KDiffusionSampler: class KDiffusionSampler:
@ -415,8 +432,7 @@ class KDiffusionSampler:
self.model_wrap.step = 0 self.model_wrap.step = 0
self.eta = p.eta or opts.eta_ancestral self.eta = p.eta or opts.eta_ancestral
if self.sampler_noises is not None: k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else [])
k_diffusion.sampling.torch = TorchHijack(self.sampler_noises)
extra_params_kwargs = {} extra_params_kwargs = {}
for param_name in self.extra_params: for param_name in self.extra_params:

View File

@ -50,9 +50,6 @@ parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory wi
parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN')) parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(models_path, 'ESRGAN'))
parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN')) parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(models_path, 'BSRGAN'))
parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN')) parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(models_path, 'RealESRGAN'))
parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(models_path, 'ScuNET'))
parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(models_path, 'SwinIR'))
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(models_path, 'LDSR'))
parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None) parser.add_argument("--clip-models-path", type=str, help="Path to directory with CLIP model file(s).", default=None)
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers") parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work") parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
@ -61,7 +58,7 @@ parser.add_argument("--opt-split-attention", action='store_true', help="force-en
parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.") parser.add_argument("--opt-split-attention-invokeai", action='store_true', help="force-enables InvokeAI's cross-attention layer optimization. By default, it's on when cuda is unavailable.")
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find") parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization") parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
parser.add_argument("--use-cpu", nargs='+',choices=['all', 'sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer'], help="use CPU as torch device for specified modules", default=[], type=str.lower) parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests") parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None) parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False) parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
@ -72,6 +69,7 @@ parser.add_argument("--ui-settings-file", type=str, help="filename to use for ui
parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option") parser.add_argument("--gradio-debug", action='store_true', help="launch gradio with --debug option")
parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None) parser.add_argument("--gradio-auth", type=str, help='set gradio authentication like "username:password"; or comma-delimit multiple like "u1:p1,u2:p2,u3:p3"', default=None)
parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="editor") parser.add_argument("--gradio-img2img-tool", type=str, help='gradio image uploader tool: can be either editor for ctopping, or color-sketch for drawing', choices=["color-sketch", "editor"], default="editor")
parser.add_argument("--gradio-inpaint-tool", type=str, choices=["sketch", "color-sketch"], default="sketch", help="gradio inpainting editor: can be either sketch to only blur/noise the input, or color-sketch to paint over it")
parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last") parser.add_argument("--opt-channelslast", action='store_true', help="change memory type for stable diffusion to channels last")
parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv')) parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv'))
parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False) parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False)
@ -94,6 +92,7 @@ parser.add_argument("--tls-certfile", type=str, help="Partially enables TLS, req
parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None) parser.add_argument("--server-name", type=str, help="Sets hostname of server", default=None)
script_loading.preload_extensions(extensions.extensions_dir, parser) script_loading.preload_extensions(extensions.extensions_dir, parser)
script_loading.preload_extensions(extensions.extensions_builtin_dir, parser)
cmd_opts = parser.parse_args() cmd_opts = parser.parse_args()
@ -115,8 +114,8 @@ text_model_name = config.model.params.cond_stage_config.params.name
cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access
devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_swinir, devices.device_esrgan, devices.device_scunet, devices.device_codeformer = \ devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \
(devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'swinir', 'esrgan', 'scunet', 'codeformer']) (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer'])
device = devices.device device = devices.device
weight_load_location = None if cmd_opts.lowram else "cpu" weight_load_location = None if cmd_opts.lowram else "cpu"
@ -329,9 +328,6 @@ options_templates.update(options_section(('upscaling', "Upscaling"), {
"ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}), "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers. 0 = no tiling.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}),
"ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}), "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for ESRGAN upscalers. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}), "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI. (Requires restart)", gr.CheckboxGroup, lambda: {"choices": realesrgan_models_names()}),
"SWIN_tile": OptionInfo(192, "Tile size for all SwinIR.", gr.Slider, {"minimum": 16, "maximum": 512, "step": 16}),
"SWIN_tile_overlap": OptionInfo(8, "Tile overlap, in pixels for SwinIR. Low values = visible seam.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}),
"ldsr_steps": OptionInfo(100, "LDSR processing steps. Lower = faster", gr.Slider, {"minimum": 1, "maximum": 200, "step": 1}),
"upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}),
"use_scale_latent_for_hires_fix": OptionInfo(False, "Upscale latent space image when doing hires. fix"), "use_scale_latent_for_hires_fix": OptionInfo(False, "Upscale latent space image when doing hires. fix"),
})) }))
@ -375,7 +371,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
"comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }), "comma_padding_backtrack": OptionInfo(20, "Increase coherency by padding from the last comma within n tokens when using more than 75 tokens", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1 }),
"filter_nsfw": OptionInfo(False, "Filter NSFW content"), "filter_nsfw": OptionInfo(False, "Filter NSFW content"),
'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}), 'CLIP_stop_at_last_layers': OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
})) }))

View File

@ -276,8 +276,8 @@ def poi_average(pois, settings):
weight += poi.weight weight += poi.weight
x += poi.x * poi.weight x += poi.x * poi.weight
y += poi.y * poi.weight y += poi.y * poi.weight
avg_x = round(x / weight) avg_x = round(weight and x / weight)
avg_y = round(y / weight) avg_y = round(weight and y / weight)
return PointOfInterest(avg_x, avg_y) return PointOfInterest(avg_x, avg_y)
@ -338,4 +338,4 @@ class Settings:
self.face_points_weight = face_points_weight self.face_points_weight = face_points_weight
self.annotate_image = annotate_image self.annotate_image = annotate_image
self.destop_view_image = False self.destop_view_image = False
self.dnn_model_path = dnn_model_path self.dnn_model_path = dnn_model_path

View File

@ -82,7 +82,7 @@ class PersonalizedBase(Dataset):
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32) torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
latent_sample = None latent_sample = None
with torch.autocast("cuda"): with devices.autocast():
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0)) latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)): if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
@ -101,7 +101,7 @@ class PersonalizedBase(Dataset):
entry.cond_text = self.create_text(filename_text) entry.cond_text = self.create_text(filename_text)
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags): if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
with torch.autocast("cuda"): with devices.autocast():
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0) entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
self.dataset.append(entry) self.dataset.append(entry)

View File

@ -269,6 +269,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
# dataset loading may take a while, so input validations and early returns should be done before this # dataset loading may take a while, so input validations and early returns should be done before this
shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..."
old_parallel_processing_allowed = shared.parallel_processing_allowed
pin_memory = shared.opts.pin_memory pin_memory = shared.opts.pin_memory
@ -279,6 +280,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory) dl = modules.textual_inversion.dataset.PersonalizedDataLoader(ds, latent_sampling_method=latent_sampling_method, batch_size=ds.batch_size, pin_memory=pin_memory)
if unload: if unload:
shared.parallel_processing_allowed = False
shared.sd_model.first_stage_model.to(devices.cpu) shared.sd_model.first_stage_model.to(devices.cpu)
embedding.vec.requires_grad = True embedding.vec.requires_grad = True
@ -316,7 +318,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
if shared.state.interrupted: if shared.state.interrupted:
break break
with torch.autocast("cuda"): with devices.autocast():
# c = stack_conds(batch.cond).to(devices.device) # c = stack_conds(batch.cond).to(devices.device)
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory) # mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
# print(mask) # print(mask)
@ -450,6 +452,7 @@ Last saved image: {html.escape(last_saved_image)}<br/>
pbar.leave = False pbar.leave = False
pbar.close() pbar.close()
shared.sd_model.first_stage_model.to(devices.device) shared.sd_model.first_stage_model.to(devices.device)
shared.parallel_processing_allowed = old_parallel_processing_allowed
return embedding, filename return embedding, filename

View File

@ -28,7 +28,6 @@ import modules.codeformer_model
import modules.generation_parameters_copypaste as parameters_copypaste import modules.generation_parameters_copypaste as parameters_copypaste
import modules.gfpgan_model import modules.gfpgan_model
import modules.hypernetworks.ui import modules.hypernetworks.ui
import modules.ldsr_model
import modules.scripts import modules.scripts
import modules.shared as shared import modules.shared as shared
import modules.styles import modules.styles
@ -792,12 +791,26 @@ def create_ui():
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool).style(height=480) init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_img2img_tool).style(height=480)
with gr.TabItem('Inpaint', id='inpaint'): with gr.TabItem('Inpaint', id='inpaint'):
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA").style(height=480) init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool=cmd_opts.gradio_inpaint_tool, image_mode="RGBA").style(height=480)
init_img_with_mask_orig = gr.State(None)
use_color_sketch = cmd_opts.gradio_inpaint_tool == "color-sketch"
if use_color_sketch:
def update_orig(image, state):
if image is not None:
same_size = state is not None and state.size == image.size
has_exact_match = np.any(np.all(np.array(image) == np.array(state), axis=-1))
edited = same_size and has_exact_match
return image if not edited or state is None else state
init_img_with_mask.change(update_orig, [init_img_with_mask, init_img_with_mask_orig], init_img_with_mask_orig)
init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_base") init_img_inpaint = gr.Image(label="Image for img2img", show_label=False, source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_base")
init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask") init_mask_inpaint = gr.Image(label="Mask", source="upload", interactive=True, type="pil", visible=False, elem_id="img_inpaint_mask")
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4) with gr.Row():
mask_blur = gr.Slider(label='Mask blur', minimum=0, maximum=64, step=1, value=4)
mask_alpha = gr.Slider(label="Mask transparency", interactive=use_color_sketch, visible=use_color_sketch)
with gr.Row(): with gr.Row():
mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode") mask_mode = gr.Radio(label="Mask mode", show_label=False, choices=["Draw mask", "Upload mask"], type="index", value="Draw mask", elem_id="mask_mode")
@ -884,12 +897,14 @@ def create_ui():
img2img_prompt_style2, img2img_prompt_style2,
init_img, init_img,
init_img_with_mask, init_img_with_mask,
init_img_with_mask_orig,
init_img_inpaint, init_img_inpaint,
init_mask_inpaint, init_mask_inpaint,
mask_mode, mask_mode,
steps, steps,
sampler_index, sampler_index,
mask_blur, mask_blur,
mask_alpha,
inpainting_fill, inpainting_fill,
restore_faces, restore_faces,
tiling, tiling,

View File

@ -17,7 +17,7 @@ available_extensions = {"extensions": []}
def check_access(): def check_access():
assert not shared.cmd_opts.disable_extension_access, "extension access disabed because of commandline flags" assert not shared.cmd_opts.disable_extension_access, "extension access disabled because of command line flags"
def apply_and_restart(disable_list, update_list): def apply_and_restart(disable_list, update_list):
@ -78,6 +78,12 @@ def extension_table():
""" """
for ext in extensions.extensions: for ext in extensions.extensions:
remote = ""
if ext.is_builtin:
remote = "built-in"
elif ext.remote:
remote = f"""<a href="{html.escape(ext.remote or '')}" target="_blank">{html.escape("built-in" if ext.is_builtin else ext.remote or '')}</a>"""
if ext.can_update: if ext.can_update:
ext_status = f"""<label><input class="gr-check-radio gr-checkbox" name="update_{html.escape(ext.name)}" checked="checked" type="checkbox">{html.escape(ext.status)}</label>""" ext_status = f"""<label><input class="gr-check-radio gr-checkbox" name="update_{html.escape(ext.name)}" checked="checked" type="checkbox">{html.escape(ext.status)}</label>"""
else: else:
@ -86,7 +92,7 @@ def extension_table():
code += f""" code += f"""
<tr> <tr>
<td><label><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td> <td><label><input class="gr-check-radio gr-checkbox" name="enable_{html.escape(ext.name)}" type="checkbox" {'checked="checked"' if ext.enabled else ''}>{html.escape(ext.name)}</label></td>
<td><a href="{html.escape(ext.remote or '')}" target="_blank">{html.escape(ext.remote or '')}</a></td> <td>{remote}</td>
<td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td> <td{' class="extension_status"' if ext.remote is not None else ''}>{ext_status}</td>
</tr> </tr>
""" """

View File

@ -84,6 +84,6 @@ class Script(scripts.Script):
processed.infotexts.insert(0, processed.infotexts[0]) processed.infotexts.insert(0, processed.infotexts[0])
if opts.grid_save: if opts.grid_save:
images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", prompt=original_prompt, seed=processed.seed, grid=True, p=p) images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", extension=opts.grid_format, prompt=original_prompt, seed=processed.seed, grid=True, p=p)
return processed return processed

View File

@ -383,6 +383,6 @@ class Script(scripts.Script):
) )
if opts.grid_save: if opts.grid_save:
images.save_image(processed.images[0], p.outpath_grids, "xy_grid", prompt=p.prompt, seed=processed.seed, grid=True, p=p) images.save_image(processed.images[0], p.outpath_grids, "xy_grid", extension=opts.grid_format, prompt=p.prompt, seed=processed.seed, grid=True, p=p)
return processed return processed

13
webui-macos-env.sh Normal file
View File

@ -0,0 +1,13 @@
#!/bin/bash
####################################################################
# macOS defaults #
# Please modify webui-user.sh to change these instead of this file #
####################################################################
export COMMANDLINE_ARGS="--skip-torch-cuda-test --no-half --use-cpu interrogate"
export TORCH_COMMAND="pip install torch==1.12.1 torchvision==0.13.1"
export K_DIFFUSION_REPO="https://github.com/brkirch/k-diffusion.git"
export K_DIFFUSION_COMMIT_HASH="51c9778f269cedb55a4d88c79c0246d35bdadb71"
export PYTORCH_ENABLE_MPS_FALLBACK=1
####################################################################

View File

@ -10,7 +10,7 @@
#clone_dir="stable-diffusion-webui" #clone_dir="stable-diffusion-webui"
# Commandline arguments for webui.py, for example: export COMMANDLINE_ARGS="--medvram --opt-split-attention" # Commandline arguments for webui.py, for example: export COMMANDLINE_ARGS="--medvram --opt-split-attention"
export COMMANDLINE_ARGS="" #export COMMANDLINE_ARGS=""
# python3 executable # python3 executable
#python_cmd="python3" #python_cmd="python3"

View File

@ -53,10 +53,11 @@ def initialize():
codeformer.setup_model(cmd_opts.codeformer_models_path) codeformer.setup_model(cmd_opts.codeformer_models_path)
gfpgan.setup_model(cmd_opts.gfpgan_models_path) gfpgan.setup_model(cmd_opts.gfpgan_models_path)
shared.face_restorers.append(modules.face_restoration.FaceRestoration()) shared.face_restorers.append(modules.face_restoration.FaceRestoration())
modelloader.load_upscalers()
modules.scripts.load_scripts() modules.scripts.load_scripts()
modelloader.load_upscalers()
modules.sd_vae.refresh_vae_list() modules.sd_vae.refresh_vae_list()
modules.sd_models.load_model() modules.sd_models.load_model()
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights())) shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()))
@ -177,6 +178,8 @@ def webui():
print('Reloading custom scripts') print('Reloading custom scripts')
modules.scripts.reload_scripts() modules.scripts.reload_scripts()
modelloader.load_upscalers()
print('Reloading modules: modules.ui') print('Reloading modules: modules.ui')
importlib.reload(modules.ui) importlib.reload(modules.ui)
print('Refreshing Model List') print('Refreshing Model List')

View File

@ -4,6 +4,14 @@
# change the variables in webui-user.sh instead # # change the variables in webui-user.sh instead #
################################################# #################################################
# If run from macOS, load defaults from webui-macos-env.sh
if [[ "$OSTYPE" == "darwin"* ]]; then
if [[ -f webui-macos-env.sh ]]
then
source ./webui-macos-env.sh
fi
fi
# Read variables from webui-user.sh # Read variables from webui-user.sh
# shellcheck source=/dev/null # shellcheck source=/dev/null
if [[ -f webui-user.sh ]] if [[ -f webui-user.sh ]]
@ -51,10 +59,11 @@ fi
can_run_as_root=0 can_run_as_root=0
# read any command line flags to the webui.sh script # read any command line flags to the webui.sh script
while getopts "f" flag while getopts "f" flag > /dev/null 2>&1
do do
case ${flag} in case ${flag} in
f) can_run_as_root=1;; f) can_run_as_root=1;;
*) break;;
esac esac
done done