add restart sampler

This commit is contained in:
lambertae 2023-07-18 00:32:01 -04:00
parent 394ffa7b0a
commit 40a18d38a8

View File

@ -1,3 +1,5 @@
# export PIP_CACHE_DIR=/scratch/dengm/cache
# export XDG_CACHE_HOME=/scratch/dengm/cache
from collections import deque
import torch
import inspect
@ -30,12 +32,76 @@ samplers_k_diffusion = [
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
('Restart (new)', 'restart_sampler', ['restart'], {'scheduler': 'karras', "second_order": True}),
]
@torch.no_grad()
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list = {0.1: [10, 2, 2]}):
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)"""
'''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}'''
from tqdm.auto import trange, tqdm
extra_args = {} if extra_args is None else extra_args
s_in = x.new_ones([x.shape[0]])
step_id = 0
from k_diffusion.sampling import to_d, append_zero
def heun_step(x, old_sigma, new_sigma):
nonlocal step_id
denoised = model(x, old_sigma * s_in, **extra_args)
d = to_d(x, old_sigma, denoised)
if callback is not None:
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
dt = new_sigma - old_sigma
if new_sigma == 0:
# Euler method
x = x + d * dt
else:
# Heun's method
x_2 = x + d * dt
denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
d_2 = to_d(x_2, new_sigma, denoised_2)
d_prime = (d + d_2) / 2
x = x + d_prime * dt
step_id += 1
return x
# print(sigmas)
temp_list = dict()
for key, value in restart_list.items():
temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value
restart_list = temp_list
def get_sigmas_karras(n, sigma_min, sigma_max, rho=7., device='cpu'):
ramp = torch.linspace(0, 1, n).to(device)
min_inv_rho = (sigma_min ** (1 / rho))
max_inv_rho = (sigma_max ** (1 / rho))
if isinstance(min_inv_rho, torch.Tensor):
min_inv_rho = min_inv_rho.to(device)
if isinstance(max_inv_rho, torch.Tensor):
max_inv_rho = max_inv_rho.to(device)
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
return append_zero(sigmas).to(device)
for i in trange(len(sigmas) - 1, disable=disable):
x = heun_step(x, sigmas[i], sigmas[i+1])
if i + 1 in restart_list:
restart_steps, restart_times, restart_max = restart_list[i + 1]
min_idx = i + 1
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx], sigmas[max_idx], device=sigmas.device)[:-1] # remove the zero at the end
for times in range(restart_times):
x = x + torch.randn_like(x) * s_noise * (sigmas[max_idx] ** 2 - sigmas[min_idx] ** 2) ** 0.5
for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:]):
x = heun_step(x, old_sigma, new_sigma)
return x
samplers_data_k_diffusion = [
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
for label, funcname, aliases, options in samplers_k_diffusion
if hasattr(k_diffusion.sampling, funcname)
if (hasattr(k_diffusion.sampling, funcname) or funcname == 'restart_sampler')
]
sampler_extra_params = {
@ -245,7 +311,7 @@ class KDiffusionSampler:
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
self.funcname = funcname
self.func = getattr(k_diffusion.sampling, self.funcname)
self.func = getattr(k_diffusion.sampling, self.funcname) if funcname != "restart_sampler" else restart_sampler
self.extra_params = sampler_extra_params.get(funcname, [])
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None