mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-20 05:10:15 +08:00
Merge branch 'master' into embed-embeddings-in-images
This commit is contained in:
commit
4117afff11
@ -66,6 +66,7 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web
|
|||||||
- separate prompts using uppercase `AND`
|
- separate prompts using uppercase `AND`
|
||||||
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
|
- also supports weights for prompts: `a cat :1.2 AND a dog AND a penguin :2.2`
|
||||||
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
- No token limit for prompts (original stable diffusion lets you use up to 75 tokens)
|
||||||
|
- DeepDanbooru integration, creates danbooru style tags for anime prompts (add --deepdanbooru to commandline args)
|
||||||
|
|
||||||
## Installation and Running
|
## Installation and Running
|
||||||
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
Make sure the required [dependencies](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Dependencies) are met and follow the instructions available for both [NVidia](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-NVidia-GPUs) (recommended) and [AMD](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Install-and-Run-on-AMD-GPUs) GPUs.
|
||||||
@ -123,4 +124,5 @@ The documentation was moved from this README over to the project's [wiki](https:
|
|||||||
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
- Noise generation for outpainting mk2 - https://github.com/parlance-zz/g-diffuser-bot
|
||||||
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
- CLIP interrogator idea and borrowing some code - https://github.com/pharmapsychotic/clip-interrogator
|
||||||
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
||||||
|
- DeepDanbooru - interrogator for anime diffusors https://github.com/KichangKim/DeepDanbooru
|
||||||
- (You)
|
- (You)
|
||||||
|
@ -1,72 +1,97 @@
|
|||||||
// A full size 'lightbox' preview modal shown when left clicking on gallery previews
|
// A full size 'lightbox' preview modal shown when left clicking on gallery previews
|
||||||
|
|
||||||
function closeModal() {
|
function closeModal() {
|
||||||
gradioApp().getElementById("lightboxModal").style.display = "none";
|
gradioApp().getElementById("lightboxModal").style.display = "none";
|
||||||
}
|
}
|
||||||
|
|
||||||
function showModal(event) {
|
function showModal(event) {
|
||||||
const source = event.target || event.srcElement;
|
const source = event.target || event.srcElement;
|
||||||
const modalImage = gradioApp().getElementById("modalImage")
|
const modalImage = gradioApp().getElementById("modalImage")
|
||||||
const lb = gradioApp().getElementById("lightboxModal")
|
const lb = gradioApp().getElementById("lightboxModal")
|
||||||
modalImage.src = source.src
|
modalImage.src = source.src
|
||||||
if (modalImage.style.display === 'none') {
|
if (modalImage.style.display === 'none') {
|
||||||
lb.style.setProperty('background-image', 'url(' + source.src + ')');
|
lb.style.setProperty('background-image', 'url(' + source.src + ')');
|
||||||
}
|
}
|
||||||
lb.style.display = "block";
|
lb.style.display = "block";
|
||||||
lb.focus()
|
lb.focus()
|
||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
function negmod(n, m) {
|
function negmod(n, m) {
|
||||||
return ((n % m) + m) % m;
|
return ((n % m) + m) % m;
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalImageSwitch(offset){
|
function updateOnBackgroundChange() {
|
||||||
var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all")
|
const modalImage = gradioApp().getElementById("modalImage")
|
||||||
var galleryButtons = []
|
if (modalImage && modalImage.offsetParent) {
|
||||||
allgalleryButtons.forEach(function(elem){
|
let allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
|
||||||
if(elem.parentElement.offsetParent){
|
let currentButton = null
|
||||||
galleryButtons.push(elem);
|
allcurrentButtons.forEach(function(elem) {
|
||||||
|
if (elem.parentElement.offsetParent) {
|
||||||
|
currentButton = elem;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
|
if (modalImage.src != currentButton.children[0].src) {
|
||||||
|
modalImage.src = currentButton.children[0].src;
|
||||||
|
if (modalImage.style.display === 'none') {
|
||||||
|
modal.style.setProperty('background-image', `url(${modalImage.src})`)
|
||||||
|
}
|
||||||
|
}
|
||||||
}
|
}
|
||||||
})
|
}
|
||||||
|
|
||||||
if(galleryButtons.length>1){
|
function modalImageSwitch(offset) {
|
||||||
var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
|
var allgalleryButtons = gradioApp().querySelectorAll(".gallery-item.transition-all")
|
||||||
var currentButton = null
|
var galleryButtons = []
|
||||||
allcurrentButtons.forEach(function(elem){
|
allgalleryButtons.forEach(function(elem) {
|
||||||
if(elem.parentElement.offsetParent){
|
if (elem.parentElement.offsetParent) {
|
||||||
currentButton = elem;
|
galleryButtons.push(elem);
|
||||||
}
|
}
|
||||||
})
|
})
|
||||||
|
|
||||||
var result = -1
|
if (galleryButtons.length > 1) {
|
||||||
galleryButtons.forEach(function(v, i){ if(v==currentButton) { result = i } })
|
var allcurrentButtons = gradioApp().querySelectorAll(".gallery-item.transition-all.\\!ring-2")
|
||||||
|
var currentButton = null
|
||||||
|
allcurrentButtons.forEach(function(elem) {
|
||||||
|
if (elem.parentElement.offsetParent) {
|
||||||
|
currentButton = elem;
|
||||||
|
}
|
||||||
|
})
|
||||||
|
|
||||||
if(result != -1){
|
var result = -1
|
||||||
nextButton = galleryButtons[negmod((result+offset),galleryButtons.length)]
|
galleryButtons.forEach(function(v, i) {
|
||||||
nextButton.click()
|
if (v == currentButton) {
|
||||||
const modalImage = gradioApp().getElementById("modalImage");
|
result = i
|
||||||
const modal = gradioApp().getElementById("lightboxModal");
|
}
|
||||||
modalImage.src = nextButton.children[0].src;
|
})
|
||||||
if (modalImage.style.display === 'none') {
|
|
||||||
modal.style.setProperty('background-image', `url(${modalImage.src})`)
|
if (result != -1) {
|
||||||
|
nextButton = galleryButtons[negmod((result + offset), galleryButtons.length)]
|
||||||
|
nextButton.click()
|
||||||
|
const modalImage = gradioApp().getElementById("modalImage");
|
||||||
|
const modal = gradioApp().getElementById("lightboxModal");
|
||||||
|
modalImage.src = nextButton.children[0].src;
|
||||||
|
if (modalImage.style.display === 'none') {
|
||||||
|
modal.style.setProperty('background-image', `url(${modalImage.src})`)
|
||||||
|
}
|
||||||
|
setTimeout(function() {
|
||||||
|
modal.focus()
|
||||||
|
}, 10)
|
||||||
}
|
}
|
||||||
setTimeout( function(){modal.focus()},10)
|
}
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalNextImage(event){
|
function modalNextImage(event) {
|
||||||
modalImageSwitch(1)
|
modalImageSwitch(1)
|
||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalPrevImage(event){
|
function modalPrevImage(event) {
|
||||||
modalImageSwitch(-1)
|
modalImageSwitch(-1)
|
||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalKeyHandler(event){
|
function modalKeyHandler(event) {
|
||||||
switch (event.key) {
|
switch (event.key) {
|
||||||
case "ArrowLeft":
|
case "ArrowLeft":
|
||||||
modalPrevImage(event)
|
modalPrevImage(event)
|
||||||
@ -80,24 +105,22 @@ function modalKeyHandler(event){
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function showGalleryImage(){
|
function showGalleryImage() {
|
||||||
setTimeout(function() {
|
setTimeout(function() {
|
||||||
fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
|
fullImg_preview = gradioApp().querySelectorAll('img.w-full.object-contain')
|
||||||
|
|
||||||
if(fullImg_preview != null){
|
if (fullImg_preview != null) {
|
||||||
fullImg_preview.forEach(function function_name(e) {
|
fullImg_preview.forEach(function function_name(e) {
|
||||||
if (e.dataset.modded)
|
if (e.dataset.modded)
|
||||||
return;
|
return;
|
||||||
e.dataset.modded = true;
|
e.dataset.modded = true;
|
||||||
if(e && e.parentElement.tagName == 'DIV'){
|
if(e && e.parentElement.tagName == 'DIV'){
|
||||||
|
|
||||||
e.style.cursor='pointer'
|
e.style.cursor='pointer'
|
||||||
|
|
||||||
e.addEventListener('click', function (evt) {
|
e.addEventListener('click', function (evt) {
|
||||||
if(!opts.js_modal_lightbox) return;
|
if(!opts.js_modal_lightbox) return;
|
||||||
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
|
modalZoomSet(gradioApp().getElementById('modalImage'), opts.js_modal_lightbox_initially_zoomed)
|
||||||
showModal(evt)
|
showModal(evt)
|
||||||
},true);
|
}, true);
|
||||||
}
|
}
|
||||||
});
|
});
|
||||||
}
|
}
|
||||||
@ -105,21 +128,21 @@ function showGalleryImage(){
|
|||||||
}, 100);
|
}, 100);
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalZoomSet(modalImage, enable){
|
function modalZoomSet(modalImage, enable) {
|
||||||
if( enable ){
|
if (enable) {
|
||||||
modalImage.classList.add('modalImageFullscreen');
|
modalImage.classList.add('modalImageFullscreen');
|
||||||
} else{
|
} else {
|
||||||
modalImage.classList.remove('modalImageFullscreen');
|
modalImage.classList.remove('modalImageFullscreen');
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalZoomToggle(event){
|
function modalZoomToggle(event) {
|
||||||
modalImage = gradioApp().getElementById("modalImage");
|
modalImage = gradioApp().getElementById("modalImage");
|
||||||
modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen'))
|
modalZoomSet(modalImage, !modalImage.classList.contains('modalImageFullscreen'))
|
||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
function modalTileImageToggle(event){
|
function modalTileImageToggle(event) {
|
||||||
const modalImage = gradioApp().getElementById("modalImage");
|
const modalImage = gradioApp().getElementById("modalImage");
|
||||||
const modal = gradioApp().getElementById("lightboxModal");
|
const modal = gradioApp().getElementById("lightboxModal");
|
||||||
const isTiling = modalImage.style.display === 'none';
|
const isTiling = modalImage.style.display === 'none';
|
||||||
@ -134,17 +157,18 @@ function modalTileImageToggle(event){
|
|||||||
event.stopPropagation()
|
event.stopPropagation()
|
||||||
}
|
}
|
||||||
|
|
||||||
function galleryImageHandler(e){
|
function galleryImageHandler(e) {
|
||||||
if(e && e.parentElement.tagName == 'BUTTON'){
|
if (e && e.parentElement.tagName == 'BUTTON') {
|
||||||
e.onclick = showGalleryImage;
|
e.onclick = showGalleryImage;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
onUiUpdate(function(){
|
onUiUpdate(function() {
|
||||||
fullImg_preview = gradioApp().querySelectorAll('img.w-full')
|
fullImg_preview = gradioApp().querySelectorAll('img.w-full')
|
||||||
if(fullImg_preview != null){
|
if (fullImg_preview != null) {
|
||||||
fullImg_preview.forEach(galleryImageHandler);
|
fullImg_preview.forEach(galleryImageHandler);
|
||||||
}
|
}
|
||||||
|
updateOnBackgroundChange();
|
||||||
})
|
})
|
||||||
|
|
||||||
document.addEventListener("DOMContentLoaded", function() {
|
document.addEventListener("DOMContentLoaded", function() {
|
||||||
@ -152,13 +176,13 @@ document.addEventListener("DOMContentLoaded", function() {
|
|||||||
const modal = document.createElement('div')
|
const modal = document.createElement('div')
|
||||||
modal.onclick = closeModal;
|
modal.onclick = closeModal;
|
||||||
modal.id = "lightboxModal";
|
modal.id = "lightboxModal";
|
||||||
modal.tabIndex=0
|
modal.tabIndex = 0
|
||||||
modal.addEventListener('keydown', modalKeyHandler, true)
|
modal.addEventListener('keydown', modalKeyHandler, true)
|
||||||
|
|
||||||
const modalControls = document.createElement('div')
|
const modalControls = document.createElement('div')
|
||||||
modalControls.className = 'modalControls gradio-container';
|
modalControls.className = 'modalControls gradio-container';
|
||||||
modal.append(modalControls);
|
modal.append(modalControls);
|
||||||
|
|
||||||
const modalZoom = document.createElement('span')
|
const modalZoom = document.createElement('span')
|
||||||
modalZoom.className = 'modalZoom cursor';
|
modalZoom.className = 'modalZoom cursor';
|
||||||
modalZoom.innerHTML = '⤡'
|
modalZoom.innerHTML = '⤡'
|
||||||
@ -183,30 +207,30 @@ document.addEventListener("DOMContentLoaded", function() {
|
|||||||
const modalImage = document.createElement('img')
|
const modalImage = document.createElement('img')
|
||||||
modalImage.id = 'modalImage';
|
modalImage.id = 'modalImage';
|
||||||
modalImage.onclick = closeModal;
|
modalImage.onclick = closeModal;
|
||||||
modalImage.tabIndex=0
|
modalImage.tabIndex = 0
|
||||||
modalImage.addEventListener('keydown', modalKeyHandler, true)
|
modalImage.addEventListener('keydown', modalKeyHandler, true)
|
||||||
modal.appendChild(modalImage)
|
modal.appendChild(modalImage)
|
||||||
|
|
||||||
const modalPrev = document.createElement('a')
|
const modalPrev = document.createElement('a')
|
||||||
modalPrev.className = 'modalPrev';
|
modalPrev.className = 'modalPrev';
|
||||||
modalPrev.innerHTML = '❮'
|
modalPrev.innerHTML = '❮'
|
||||||
modalPrev.tabIndex=0
|
modalPrev.tabIndex = 0
|
||||||
modalPrev.addEventListener('click',modalPrevImage,true);
|
modalPrev.addEventListener('click', modalPrevImage, true);
|
||||||
modalPrev.addEventListener('keydown', modalKeyHandler, true)
|
modalPrev.addEventListener('keydown', modalKeyHandler, true)
|
||||||
modal.appendChild(modalPrev)
|
modal.appendChild(modalPrev)
|
||||||
|
|
||||||
const modalNext = document.createElement('a')
|
const modalNext = document.createElement('a')
|
||||||
modalNext.className = 'modalNext';
|
modalNext.className = 'modalNext';
|
||||||
modalNext.innerHTML = '❯'
|
modalNext.innerHTML = '❯'
|
||||||
modalNext.tabIndex=0
|
modalNext.tabIndex = 0
|
||||||
modalNext.addEventListener('click',modalNextImage,true);
|
modalNext.addEventListener('click', modalNextImage, true);
|
||||||
modalNext.addEventListener('keydown', modalKeyHandler, true)
|
modalNext.addEventListener('keydown', modalKeyHandler, true)
|
||||||
|
|
||||||
modal.appendChild(modalNext)
|
modal.appendChild(modalNext)
|
||||||
|
|
||||||
|
|
||||||
gradioApp().getRootNode().appendChild(modal)
|
gradioApp().getRootNode().appendChild(modal)
|
||||||
|
|
||||||
document.body.appendChild(modalFragment);
|
document.body.appendChild(modalFragment);
|
||||||
|
|
||||||
});
|
});
|
||||||
|
141
launch.py
141
launch.py
@ -7,38 +7,14 @@ import shlex
|
|||||||
import platform
|
import platform
|
||||||
|
|
||||||
dir_repos = "repositories"
|
dir_repos = "repositories"
|
||||||
dir_tmp = "tmp"
|
|
||||||
|
|
||||||
python = sys.executable
|
python = sys.executable
|
||||||
git = os.environ.get('GIT', "git")
|
git = os.environ.get('GIT', "git")
|
||||||
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
|
||||||
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
|
||||||
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
|
||||||
|
|
||||||
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
|
||||||
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
|
|
||||||
|
|
||||||
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
|
|
||||||
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
|
||||||
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "f4e99857772fc3a126ba886aadf795a332774878")
|
|
||||||
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
|
||||||
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
|
||||||
|
|
||||||
args = shlex.split(commandline_args)
|
|
||||||
|
|
||||||
|
|
||||||
def extract_arg(args, name):
|
def extract_arg(args, name):
|
||||||
return [x for x in args if x != name], name in args
|
return [x for x in args if x != name], name in args
|
||||||
|
|
||||||
|
|
||||||
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
|
|
||||||
xformers = '--xformers' in args
|
|
||||||
|
|
||||||
|
|
||||||
def repo_dir(name):
|
|
||||||
return os.path.join(dir_repos, name)
|
|
||||||
|
|
||||||
|
|
||||||
def run(command, desc=None, errdesc=None):
|
def run(command, desc=None, errdesc=None):
|
||||||
if desc is not None:
|
if desc is not None:
|
||||||
print(desc)
|
print(desc)
|
||||||
@ -58,23 +34,11 @@ stderr: {result.stderr.decode(encoding="utf8", errors="ignore") if len(result.st
|
|||||||
return result.stdout.decode(encoding="utf8", errors="ignore")
|
return result.stdout.decode(encoding="utf8", errors="ignore")
|
||||||
|
|
||||||
|
|
||||||
def run_python(code, desc=None, errdesc=None):
|
|
||||||
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
|
||||||
|
|
||||||
|
|
||||||
def run_pip(args, desc=None):
|
|
||||||
return run(f'"{python}" -m pip {args} --prefer-binary', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
|
|
||||||
|
|
||||||
|
|
||||||
def check_run(command):
|
def check_run(command):
|
||||||
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True)
|
||||||
return result.returncode == 0
|
return result.returncode == 0
|
||||||
|
|
||||||
|
|
||||||
def check_run_python(code):
|
|
||||||
return check_run(f'"{python}" -c "{code}"')
|
|
||||||
|
|
||||||
|
|
||||||
def is_installed(package):
|
def is_installed(package):
|
||||||
try:
|
try:
|
||||||
spec = importlib.util.find_spec(package)
|
spec = importlib.util.find_spec(package)
|
||||||
@ -84,6 +48,22 @@ def is_installed(package):
|
|||||||
return spec is not None
|
return spec is not None
|
||||||
|
|
||||||
|
|
||||||
|
def repo_dir(name):
|
||||||
|
return os.path.join(dir_repos, name)
|
||||||
|
|
||||||
|
|
||||||
|
def run_python(code, desc=None, errdesc=None):
|
||||||
|
return run(f'"{python}" -c "{code}"', desc, errdesc)
|
||||||
|
|
||||||
|
|
||||||
|
def run_pip(args, desc=None):
|
||||||
|
return run(f'"{python}" -m pip {args} --prefer-binary', desc=f"Installing {desc}", errdesc=f"Couldn't install {desc}")
|
||||||
|
|
||||||
|
|
||||||
|
def check_run_python(code):
|
||||||
|
return check_run(f'"{python}" -c "{code}"')
|
||||||
|
|
||||||
|
|
||||||
def git_clone(url, dir, name, commithash=None):
|
def git_clone(url, dir, name, commithash=None):
|
||||||
# TODO clone into temporary dir and move if successful
|
# TODO clone into temporary dir and move if successful
|
||||||
|
|
||||||
@ -105,56 +85,81 @@ def git_clone(url, dir, name, commithash=None):
|
|||||||
run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
|
run(f'"{git}" -C {dir} checkout {commithash}', None, "Couldn't checkout {name}'s hash: {commithash}")
|
||||||
|
|
||||||
|
|
||||||
try:
|
def prepare_enviroment():
|
||||||
commit = run(f"{git} rev-parse HEAD").strip()
|
torch_command = os.environ.get('TORCH_COMMAND', "pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 --extra-index-url https://download.pytorch.org/whl/cu113")
|
||||||
except Exception:
|
requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt")
|
||||||
commit = "<none>"
|
commandline_args = os.environ.get('COMMANDLINE_ARGS', "")
|
||||||
|
|
||||||
print(f"Python {sys.version}")
|
gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379")
|
||||||
print(f"Commit hash: {commit}")
|
clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1")
|
||||||
|
|
||||||
|
stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc")
|
||||||
|
taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6")
|
||||||
|
k_diffusion_commit_hash = os.environ.get('K_DIFFUSION_COMMIT_HASH', "f4e99857772fc3a126ba886aadf795a332774878")
|
||||||
|
codeformer_commit_hash = os.environ.get('CODEFORMER_COMMIT_HASH', "c5b4593074ba6214284d6acd5f1719b6c5d739af")
|
||||||
|
blip_commit_hash = os.environ.get('BLIP_COMMIT_HASH', "48211a1594f1321b00f14c9f7a5b4813144b2fb9")
|
||||||
|
|
||||||
if not is_installed("torch") or not is_installed("torchvision"):
|
args = shlex.split(commandline_args)
|
||||||
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
|
|
||||||
|
|
||||||
if not skip_torch_cuda_test:
|
args, skip_torch_cuda_test = extract_arg(args, '--skip-torch-cuda-test')
|
||||||
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
|
xformers = '--xformers' in args
|
||||||
|
deepdanbooru = '--deepdanbooru' in args
|
||||||
|
|
||||||
if not is_installed("gfpgan"):
|
try:
|
||||||
run_pip(f"install {gfpgan_package}", "gfpgan")
|
commit = run(f"{git} rev-parse HEAD").strip()
|
||||||
|
except Exception:
|
||||||
|
commit = "<none>"
|
||||||
|
|
||||||
if not is_installed("clip"):
|
print(f"Python {sys.version}")
|
||||||
run_pip(f"install {clip_package}", "clip")
|
print(f"Commit hash: {commit}")
|
||||||
|
|
||||||
if not is_installed("xformers") and xformers and platform.python_version().startswith("3.10"):
|
if not is_installed("torch") or not is_installed("torchvision"):
|
||||||
if platform.system() == "Windows":
|
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch")
|
||||||
run_pip("install https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/a/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl", "xformers")
|
|
||||||
elif platform.system() == "Linux":
|
|
||||||
run_pip("install xformers", "xformers")
|
|
||||||
|
|
||||||
os.makedirs(dir_repos, exist_ok=True)
|
if not skip_torch_cuda_test:
|
||||||
|
run_python("import torch; assert torch.cuda.is_available(), 'Torch is not able to use GPU; add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'")
|
||||||
|
|
||||||
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
if not is_installed("gfpgan"):
|
||||||
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
run_pip(f"install {gfpgan_package}", "gfpgan")
|
||||||
git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
|
||||||
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
|
||||||
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
|
||||||
|
|
||||||
if not is_installed("lpips"):
|
if not is_installed("clip"):
|
||||||
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
|
run_pip(f"install {clip_package}", "clip")
|
||||||
|
|
||||||
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
if not is_installed("xformers") and xformers and platform.python_version().startswith("3.10"):
|
||||||
|
if platform.system() == "Windows":
|
||||||
|
run_pip("install https://github.com/C43H66N12O12S2/stable-diffusion-webui/releases/download/a/xformers-0.0.14.dev0-cp310-cp310-win_amd64.whl", "xformers")
|
||||||
|
elif platform.system() == "Linux":
|
||||||
|
run_pip("install xformers", "xformers")
|
||||||
|
|
||||||
sys.argv += args
|
if not is_installed("deepdanbooru") and deepdanbooru:
|
||||||
|
run_pip("install git+https://github.com/KichangKim/DeepDanbooru.git@edf73df4cdaeea2cf00e9ac08bd8a9026b7a7b26#egg=deepdanbooru[tensorflow] tensorflow==2.10.0 tensorflow-io==0.27.0", "deepdanbooru")
|
||||||
|
|
||||||
|
os.makedirs(dir_repos, exist_ok=True)
|
||||||
|
|
||||||
|
git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash)
|
||||||
|
git_clone("https://github.com/CompVis/taming-transformers.git", repo_dir('taming-transformers'), "Taming Transformers", taming_transformers_commit_hash)
|
||||||
|
git_clone("https://github.com/crowsonkb/k-diffusion.git", repo_dir('k-diffusion'), "K-diffusion", k_diffusion_commit_hash)
|
||||||
|
git_clone("https://github.com/sczhou/CodeFormer.git", repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
||||||
|
git_clone("https://github.com/salesforce/BLIP.git", repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
||||||
|
|
||||||
|
if not is_installed("lpips"):
|
||||||
|
run_pip(f"install -r {os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}", "requirements for CodeFormer")
|
||||||
|
|
||||||
|
run_pip(f"install -r {requirements_file}", "requirements for Web UI")
|
||||||
|
|
||||||
|
sys.argv += args
|
||||||
|
|
||||||
|
if "--exit" in args:
|
||||||
|
print("Exiting because of --exit argument")
|
||||||
|
exit(0)
|
||||||
|
|
||||||
if "--exit" in args:
|
|
||||||
print("Exiting because of --exit argument")
|
|
||||||
exit(0)
|
|
||||||
|
|
||||||
def start_webui():
|
def start_webui():
|
||||||
print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}")
|
print(f"Launching Web UI with arguments: {' '.join(sys.argv[1:])}")
|
||||||
import webui
|
import webui
|
||||||
webui.webui()
|
webui.webui()
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
|
prepare_enviroment()
|
||||||
start_webui()
|
start_webui()
|
||||||
|
@ -10,13 +10,11 @@ from basicsr.utils.download_util import load_file_from_url
|
|||||||
import modules.upscaler
|
import modules.upscaler
|
||||||
from modules import devices, modelloader
|
from modules import devices, modelloader
|
||||||
from modules.bsrgan_model_arch import RRDBNet
|
from modules.bsrgan_model_arch import RRDBNet
|
||||||
from modules.paths import models_path
|
|
||||||
|
|
||||||
|
|
||||||
class UpscalerBSRGAN(modules.upscaler.Upscaler):
|
class UpscalerBSRGAN(modules.upscaler.Upscaler):
|
||||||
def __init__(self, dirname):
|
def __init__(self, dirname):
|
||||||
self.name = "BSRGAN"
|
self.name = "BSRGAN"
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
self.model_name = "BSRGAN 4x"
|
self.model_name = "BSRGAN 4x"
|
||||||
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth"
|
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/BSRGAN.pth"
|
||||||
self.user_path = dirname
|
self.user_path = dirname
|
||||||
|
73
modules/deepbooru.py
Normal file
73
modules/deepbooru.py
Normal file
@ -0,0 +1,73 @@
|
|||||||
|
import os.path
|
||||||
|
from concurrent.futures import ProcessPoolExecutor
|
||||||
|
from multiprocessing import get_context
|
||||||
|
|
||||||
|
|
||||||
|
def _load_tf_and_return_tags(pil_image, threshold):
|
||||||
|
import deepdanbooru as dd
|
||||||
|
import tensorflow as tf
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
this_folder = os.path.dirname(__file__)
|
||||||
|
model_path = os.path.abspath(os.path.join(this_folder, '..', 'models', 'deepbooru'))
|
||||||
|
if not os.path.exists(os.path.join(model_path, 'project.json')):
|
||||||
|
# there is no point importing these every time
|
||||||
|
import zipfile
|
||||||
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
|
load_file_from_url(r"https://github.com/KichangKim/DeepDanbooru/releases/download/v3-20211112-sgd-e28/deepdanbooru-v3-20211112-sgd-e28.zip",
|
||||||
|
model_path)
|
||||||
|
with zipfile.ZipFile(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"), "r") as zip_ref:
|
||||||
|
zip_ref.extractall(model_path)
|
||||||
|
os.remove(os.path.join(model_path, "deepdanbooru-v3-20211112-sgd-e28.zip"))
|
||||||
|
|
||||||
|
tags = dd.project.load_tags_from_project(model_path)
|
||||||
|
model = dd.project.load_model_from_project(
|
||||||
|
model_path, compile_model=True
|
||||||
|
)
|
||||||
|
|
||||||
|
width = model.input_shape[2]
|
||||||
|
height = model.input_shape[1]
|
||||||
|
image = np.array(pil_image)
|
||||||
|
image = tf.image.resize(
|
||||||
|
image,
|
||||||
|
size=(height, width),
|
||||||
|
method=tf.image.ResizeMethod.AREA,
|
||||||
|
preserve_aspect_ratio=True,
|
||||||
|
)
|
||||||
|
image = image.numpy() # EagerTensor to np.array
|
||||||
|
image = dd.image.transform_and_pad_image(image, width, height)
|
||||||
|
image = image / 255.0
|
||||||
|
image_shape = image.shape
|
||||||
|
image = image.reshape((1, image_shape[0], image_shape[1], image_shape[2]))
|
||||||
|
|
||||||
|
y = model.predict(image)[0]
|
||||||
|
|
||||||
|
result_dict = {}
|
||||||
|
|
||||||
|
for i, tag in enumerate(tags):
|
||||||
|
result_dict[tag] = y[i]
|
||||||
|
result_tags_out = []
|
||||||
|
result_tags_print = []
|
||||||
|
for tag in tags:
|
||||||
|
if result_dict[tag] >= threshold:
|
||||||
|
if tag.startswith("rating:"):
|
||||||
|
continue
|
||||||
|
result_tags_out.append(tag)
|
||||||
|
result_tags_print.append(f'{result_dict[tag]} {tag}')
|
||||||
|
|
||||||
|
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
||||||
|
|
||||||
|
return ', '.join(result_tags_out).replace('_', ' ').replace(':', ' ')
|
||||||
|
|
||||||
|
|
||||||
|
def subprocess_init_no_cuda():
|
||||||
|
import os
|
||||||
|
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
|
||||||
|
|
||||||
|
|
||||||
|
def get_deepbooru_tags(pil_image, threshold=0.5):
|
||||||
|
context = get_context('spawn')
|
||||||
|
with ProcessPoolExecutor(initializer=subprocess_init_no_cuda, mp_context=context) as executor:
|
||||||
|
f = executor.submit(_load_tf_and_return_tags, pil_image, threshold, )
|
||||||
|
ret = f.result() # will rethrow any exceptions
|
||||||
|
return ret
|
@ -5,9 +5,8 @@ import torch
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
from basicsr.utils.download_util import load_file_from_url
|
from basicsr.utils.download_util import load_file_from_url
|
||||||
|
|
||||||
import modules.esrgam_model_arch as arch
|
import modules.esrgan_model_arch as arch
|
||||||
from modules import shared, modelloader, images, devices
|
from modules import shared, modelloader, images, devices
|
||||||
from modules.paths import models_path
|
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
|
|
||||||
@ -76,7 +75,6 @@ class UpscalerESRGAN(Upscaler):
|
|||||||
self.model_name = "ESRGAN_4x"
|
self.model_name = "ESRGAN_4x"
|
||||||
self.scalers = []
|
self.scalers = []
|
||||||
self.user_path = dirname
|
self.user_path = dirname
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
super().__init__()
|
super().__init__()
|
||||||
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
|
model_paths = self.find_models(ext_filter=[".pt", ".pth"])
|
||||||
scalers = []
|
scalers = []
|
||||||
|
@ -29,7 +29,7 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
|
|||||||
if extras_mode == 1:
|
if extras_mode == 1:
|
||||||
#convert file to pillow image
|
#convert file to pillow image
|
||||||
for img in image_folder:
|
for img in image_folder:
|
||||||
image = Image.fromarray(np.array(Image.open(img)))
|
image = Image.open(img)
|
||||||
imageArr.append(image)
|
imageArr.append(image)
|
||||||
imageNameArr.append(os.path.splitext(img.orig_name)[0])
|
imageNameArr.append(os.path.splitext(img.orig_name)[0])
|
||||||
else:
|
else:
|
||||||
@ -98,6 +98,10 @@ def run_extras(extras_mode, image, image_folder, gfpgan_visibility, codeformer_v
|
|||||||
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
|
no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo,
|
||||||
forced_filename=image_name if opts.use_original_name_batch else None)
|
forced_filename=image_name if opts.use_original_name_batch else None)
|
||||||
|
|
||||||
|
if opts.enable_pnginfo:
|
||||||
|
image.info = existing_pnginfo
|
||||||
|
image.info["extras"] = info
|
||||||
|
|
||||||
outputs.append(image)
|
outputs.append(image)
|
||||||
|
|
||||||
devices.torch_gc()
|
devices.torch_gc()
|
||||||
@ -169,9 +173,9 @@ def run_modelmerger(primary_model_name, secondary_model_name, interp_method, int
|
|||||||
|
|
||||||
print(f"Loading {secondary_model_info.filename}...")
|
print(f"Loading {secondary_model_info.filename}...")
|
||||||
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
|
secondary_model = torch.load(secondary_model_info.filename, map_location='cpu')
|
||||||
|
|
||||||
theta_0 = primary_model['state_dict']
|
theta_0 = sd_models.get_state_dict_from_checkpoint(primary_model)
|
||||||
theta_1 = secondary_model['state_dict']
|
theta_1 = sd_models.get_state_dict_from_checkpoint(secondary_model)
|
||||||
|
|
||||||
theta_funcs = {
|
theta_funcs = {
|
||||||
"Weighted Sum": weighted_sum,
|
"Weighted Sum": weighted_sum,
|
||||||
|
@ -40,27 +40,37 @@ class Hypernetwork:
|
|||||||
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1]))
|
||||||
|
|
||||||
|
|
||||||
def load_hypernetworks(path):
|
def list_hypernetworks(path):
|
||||||
res = {}
|
res = {}
|
||||||
|
|
||||||
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True):
|
||||||
try:
|
name = os.path.splitext(os.path.basename(filename))[0]
|
||||||
hn = Hypernetwork(filename)
|
res[name] = filename
|
||||||
res[hn.name] = hn
|
|
||||||
except Exception:
|
|
||||||
print(f"Error loading hypernetwork {filename}", file=sys.stderr)
|
|
||||||
print(traceback.format_exc(), file=sys.stderr)
|
|
||||||
|
|
||||||
return res
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def load_hypernetwork(filename):
|
||||||
|
path = shared.hypernetworks.get(filename, None)
|
||||||
|
if path is not None:
|
||||||
|
print(f"Loading hypernetwork {filename}")
|
||||||
|
try:
|
||||||
|
shared.loaded_hypernetwork = Hypernetwork(path)
|
||||||
|
except Exception:
|
||||||
|
print(f"Error loading hypernetwork {path}", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
else:
|
||||||
|
if shared.loaded_hypernetwork is not None:
|
||||||
|
print(f"Unloading hypernetwork")
|
||||||
|
|
||||||
|
shared.loaded_hypernetwork = None
|
||||||
|
|
||||||
|
|
||||||
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
def attention_CrossAttention_forward(self, x, context=None, mask=None):
|
||||||
h = self.heads
|
h = self.heads
|
||||||
|
|
||||||
q = self.to_q(x)
|
q = self.to_q(x)
|
||||||
context = default(context, x)
|
context = default(context, x)
|
||||||
|
|
||||||
hypernetwork = shared.selected_hypernetwork()
|
hypernetwork = shared.loaded_hypernetwork
|
||||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||||
|
|
||||||
if hypernetwork_layers is not None:
|
if hypernetwork_layers is not None:
|
||||||
|
@ -349,6 +349,38 @@ def get_next_sequence_number(path, basename):
|
|||||||
|
|
||||||
|
|
||||||
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
|
def save_image(image, path, basename, seed=None, prompt=None, extension='png', info=None, short_filename=False, no_prompt=False, grid=False, pnginfo_section_name='parameters', p=None, existing_info=None, forced_filename=None, suffix="", save_to_dirs=None):
|
||||||
|
'''Save an image.
|
||||||
|
|
||||||
|
Args:
|
||||||
|
image (`PIL.Image`):
|
||||||
|
The image to be saved.
|
||||||
|
path (`str`):
|
||||||
|
The directory to save the image. Note, the option `save_to_dirs` will make the image to be saved into a sub directory.
|
||||||
|
basename (`str`):
|
||||||
|
The base filename which will be applied to `filename pattern`.
|
||||||
|
seed, prompt, short_filename,
|
||||||
|
extension (`str`):
|
||||||
|
Image file extension, default is `png`.
|
||||||
|
pngsectionname (`str`):
|
||||||
|
Specify the name of the section which `info` will be saved in.
|
||||||
|
info (`str` or `PngImagePlugin.iTXt`):
|
||||||
|
PNG info chunks.
|
||||||
|
existing_info (`dict`):
|
||||||
|
Additional PNG info. `existing_info == {pngsectionname: info, ...}`
|
||||||
|
no_prompt:
|
||||||
|
TODO I don't know its meaning.
|
||||||
|
p (`StableDiffusionProcessing`)
|
||||||
|
forced_filename (`str`):
|
||||||
|
If specified, `basename` and filename pattern will be ignored.
|
||||||
|
save_to_dirs (bool):
|
||||||
|
If true, the image will be saved into a subdirectory of `path`.
|
||||||
|
|
||||||
|
Returns: (fullfn, txt_fullfn)
|
||||||
|
fullfn (`str`):
|
||||||
|
The full path of the saved imaged.
|
||||||
|
txt_fullfn (`str` or None):
|
||||||
|
If a text file is saved for this image, this will be its full path. Otherwise None.
|
||||||
|
'''
|
||||||
if short_filename or prompt is None or seed is None:
|
if short_filename or prompt is None or seed is None:
|
||||||
file_decoration = ""
|
file_decoration = ""
|
||||||
elif opts.save_to_dirs:
|
elif opts.save_to_dirs:
|
||||||
@ -424,10 +456,13 @@ def save_image(image, path, basename, seed=None, prompt=None, extension='png', i
|
|||||||
piexif.insert(exif_bytes(), fullfn_without_extension + ".jpg")
|
piexif.insert(exif_bytes(), fullfn_without_extension + ".jpg")
|
||||||
|
|
||||||
if opts.save_txt and info is not None:
|
if opts.save_txt and info is not None:
|
||||||
with open(f"{fullfn_without_extension}.txt", "w", encoding="utf8") as file:
|
txt_fullfn = f"{fullfn_without_extension}.txt"
|
||||||
|
with open(txt_fullfn, "w", encoding="utf8") as file:
|
||||||
file.write(info + "\n")
|
file.write(info + "\n")
|
||||||
|
else:
|
||||||
|
txt_fullfn = None
|
||||||
|
|
||||||
return fullfn
|
return fullfn, txt_fullfn
|
||||||
|
|
||||||
def addCaptionLines(lines,image,initialx,textfont):
|
def addCaptionLines(lines,image,initialx,textfont):
|
||||||
draw = ImageDraw.Draw(image)
|
draw = ImageDraw.Draw(image)
|
||||||
|
@ -7,13 +7,11 @@ from basicsr.utils.download_util import load_file_from_url
|
|||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
from modules.ldsr_model_arch import LDSR
|
from modules.ldsr_model_arch import LDSR
|
||||||
from modules import shared
|
from modules import shared
|
||||||
from modules.paths import models_path
|
|
||||||
|
|
||||||
|
|
||||||
class UpscalerLDSR(Upscaler):
|
class UpscalerLDSR(Upscaler):
|
||||||
def __init__(self, user_path):
|
def __init__(self, user_path):
|
||||||
self.name = "LDSR"
|
self.name = "LDSR"
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
self.user_path = user_path
|
self.user_path = user_path
|
||||||
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
|
self.model_url = "https://heibox.uni-heidelberg.de/f/578df07c8fc04ffbadf3/?dl=1"
|
||||||
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
|
self.yaml_url = "https://heibox.uni-heidelberg.de/f/31a76b13ea27482981b4/?dl=1"
|
||||||
|
@ -1,6 +1,7 @@
|
|||||||
import argparse
|
import argparse
|
||||||
import os
|
import os
|
||||||
import sys
|
import sys
|
||||||
|
import modules.safe
|
||||||
|
|
||||||
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
script_path = os.path.dirname(os.path.dirname(os.path.realpath(__file__)))
|
||||||
models_path = os.path.join(script_path, "models")
|
models_path = os.path.join(script_path, "models")
|
||||||
|
@ -46,6 +46,12 @@ def apply_color_correction(correction, image):
|
|||||||
return image
|
return image
|
||||||
|
|
||||||
|
|
||||||
|
def get_correct_sampler(p):
|
||||||
|
if isinstance(p, modules.processing.StableDiffusionProcessingTxt2Img):
|
||||||
|
return sd_samplers.samplers
|
||||||
|
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
|
||||||
|
return sd_samplers.samplers_for_img2img
|
||||||
|
|
||||||
class StableDiffusionProcessing:
|
class StableDiffusionProcessing:
|
||||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None):
|
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None):
|
||||||
self.sd_model = sd_model
|
self.sd_model = sd_model
|
||||||
@ -123,7 +129,7 @@ class Processed:
|
|||||||
self.index_of_first_image = index_of_first_image
|
self.index_of_first_image = index_of_first_image
|
||||||
self.styles = p.styles
|
self.styles = p.styles
|
||||||
self.job_timestamp = state.job_timestamp
|
self.job_timestamp = state.job_timestamp
|
||||||
self.clip_skip = opts.CLIP_ignore_last_layers
|
self.clip_skip = opts.CLIP_stop_at_last_layers
|
||||||
|
|
||||||
self.eta = p.eta
|
self.eta = p.eta
|
||||||
self.ddim_discretize = p.ddim_discretize
|
self.ddim_discretize = p.ddim_discretize
|
||||||
@ -268,16 +274,18 @@ def fix_seed(p):
|
|||||||
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
|
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0):
|
||||||
index = position_in_batch + iteration * p.batch_size
|
index = position_in_batch + iteration * p.batch_size
|
||||||
|
|
||||||
clip_skip = getattr(p, 'clip_skip', opts.CLIP_ignore_last_layers)
|
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
||||||
|
|
||||||
generation_params = {
|
generation_params = {
|
||||||
"Steps": p.steps,
|
"Steps": p.steps,
|
||||||
"Sampler": sd_samplers.samplers[p.sampler_index].name,
|
"Sampler": get_correct_sampler(p)[p.sampler_index].name,
|
||||||
"CFG scale": p.cfg_scale,
|
"CFG scale": p.cfg_scale,
|
||||||
"Seed": all_seeds[index],
|
"Seed": all_seeds[index],
|
||||||
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
||||||
"Size": f"{p.width}x{p.height}",
|
"Size": f"{p.width}x{p.height}",
|
||||||
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
||||||
|
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
|
||||||
|
"Hypernet": (None if shared.loaded_hypernetwork is None else shared.loaded_hypernetwork.name.replace(',', '').replace(':', '')),
|
||||||
"Batch size": (None if p.batch_size < 2 else p.batch_size),
|
"Batch size": (None if p.batch_size < 2 else p.batch_size),
|
||||||
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
|
"Batch pos": (None if p.batch_size < 2 else position_in_batch),
|
||||||
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
||||||
@ -285,7 +293,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration
|
|||||||
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
"Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
||||||
"Denoising strength": getattr(p, 'denoising_strength', None),
|
"Denoising strength": getattr(p, 'denoising_strength', None),
|
||||||
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
"Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta),
|
||||||
"Clip skip": None if clip_skip==0 else clip_skip,
|
"Clip skip": None if clip_skip <= 1 else clip_skip,
|
||||||
}
|
}
|
||||||
|
|
||||||
generation_params.update(p.extra_generation_params)
|
generation_params.update(p.extra_generation_params)
|
||||||
@ -445,7 +453,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
|
|
||||||
text = infotext(n, i)
|
text = infotext(n, i)
|
||||||
infotexts.append(text)
|
infotexts.append(text)
|
||||||
image.info["parameters"] = text
|
if opts.enable_pnginfo:
|
||||||
|
image.info["parameters"] = text
|
||||||
output_images.append(image)
|
output_images.append(image)
|
||||||
|
|
||||||
del x_samples_ddim
|
del x_samples_ddim
|
||||||
@ -464,7 +473,8 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
|||||||
if opts.return_grid:
|
if opts.return_grid:
|
||||||
text = infotext()
|
text = infotext()
|
||||||
infotexts.insert(0, text)
|
infotexts.insert(0, text)
|
||||||
grid.info["parameters"] = text
|
if opts.enable_pnginfo:
|
||||||
|
grid.info["parameters"] = text
|
||||||
output_images.insert(0, grid)
|
output_images.insert(0, grid)
|
||||||
index_of_first_image = 1
|
index_of_first_image = 1
|
||||||
|
|
||||||
|
@ -8,14 +8,12 @@ from basicsr.utils.download_util import load_file_from_url
|
|||||||
from realesrgan import RealESRGANer
|
from realesrgan import RealESRGANer
|
||||||
|
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
from modules.paths import models_path
|
|
||||||
from modules.shared import cmd_opts, opts
|
from modules.shared import cmd_opts, opts
|
||||||
|
|
||||||
|
|
||||||
class UpscalerRealESRGAN(Upscaler):
|
class UpscalerRealESRGAN(Upscaler):
|
||||||
def __init__(self, path):
|
def __init__(self, path):
|
||||||
self.name = "RealESRGAN"
|
self.name = "RealESRGAN"
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
self.user_path = path
|
self.user_path = path
|
||||||
super().__init__()
|
super().__init__()
|
||||||
try:
|
try:
|
||||||
|
89
modules/safe.py
Normal file
89
modules/safe.py
Normal file
@ -0,0 +1,89 @@
|
|||||||
|
# this code is adapted from the script contributed by anon from /h/
|
||||||
|
|
||||||
|
import io
|
||||||
|
import pickle
|
||||||
|
import collections
|
||||||
|
import sys
|
||||||
|
import traceback
|
||||||
|
|
||||||
|
import torch
|
||||||
|
import numpy
|
||||||
|
import _codecs
|
||||||
|
import zipfile
|
||||||
|
|
||||||
|
|
||||||
|
def encode(*args):
|
||||||
|
out = _codecs.encode(*args)
|
||||||
|
return out
|
||||||
|
|
||||||
|
|
||||||
|
class RestrictedUnpickler(pickle.Unpickler):
|
||||||
|
def persistent_load(self, saved_id):
|
||||||
|
assert saved_id[0] == 'storage'
|
||||||
|
return torch.storage._TypedStorage()
|
||||||
|
|
||||||
|
def find_class(self, module, name):
|
||||||
|
if module == 'collections' and name == 'OrderedDict':
|
||||||
|
return getattr(collections, name)
|
||||||
|
if module == 'torch._utils' and name in ['_rebuild_tensor_v2', '_rebuild_parameter']:
|
||||||
|
return getattr(torch._utils, name)
|
||||||
|
if module == 'torch' and name in ['FloatStorage', 'HalfStorage', 'IntStorage', 'LongStorage', 'DoubleStorage']:
|
||||||
|
return getattr(torch, name)
|
||||||
|
if module == 'torch.nn.modules.container' and name in ['ParameterDict']:
|
||||||
|
return getattr(torch.nn.modules.container, name)
|
||||||
|
if module == 'numpy.core.multiarray' and name == 'scalar':
|
||||||
|
return numpy.core.multiarray.scalar
|
||||||
|
if module == 'numpy' and name == 'dtype':
|
||||||
|
return numpy.dtype
|
||||||
|
if module == '_codecs' and name == 'encode':
|
||||||
|
return encode
|
||||||
|
if module == "pytorch_lightning.callbacks" and name == 'model_checkpoint':
|
||||||
|
import pytorch_lightning.callbacks
|
||||||
|
return pytorch_lightning.callbacks.model_checkpoint
|
||||||
|
if module == "pytorch_lightning.callbacks.model_checkpoint" and name == 'ModelCheckpoint':
|
||||||
|
import pytorch_lightning.callbacks.model_checkpoint
|
||||||
|
return pytorch_lightning.callbacks.model_checkpoint.ModelCheckpoint
|
||||||
|
if module == "__builtin__" and name == 'set':
|
||||||
|
return set
|
||||||
|
|
||||||
|
# Forbid everything else.
|
||||||
|
raise pickle.UnpicklingError(f"global '{module}/{name}' is forbidden")
|
||||||
|
|
||||||
|
|
||||||
|
def check_pt(filename):
|
||||||
|
try:
|
||||||
|
|
||||||
|
# new pytorch format is a zip file
|
||||||
|
with zipfile.ZipFile(filename) as z:
|
||||||
|
with z.open('archive/data.pkl') as file:
|
||||||
|
unpickler = RestrictedUnpickler(file)
|
||||||
|
unpickler.load()
|
||||||
|
|
||||||
|
except zipfile.BadZipfile:
|
||||||
|
|
||||||
|
# if it's not a zip file, it's an olf pytorch format, with five objects written to pickle
|
||||||
|
with open(filename, "rb") as file:
|
||||||
|
unpickler = RestrictedUnpickler(file)
|
||||||
|
for i in range(5):
|
||||||
|
unpickler.load()
|
||||||
|
|
||||||
|
|
||||||
|
def load(filename, *args, **kwargs):
|
||||||
|
from modules import shared
|
||||||
|
|
||||||
|
try:
|
||||||
|
if not shared.cmd_opts.disable_safe_unpickle:
|
||||||
|
check_pt(filename)
|
||||||
|
|
||||||
|
except Exception:
|
||||||
|
print(f"Error verifying pickled file from {filename}:", file=sys.stderr)
|
||||||
|
print(traceback.format_exc(), file=sys.stderr)
|
||||||
|
print(f"\nThe file may be malicious, so the program is not going to read it.", file=sys.stderr)
|
||||||
|
print(f"You can skip this check with --disable-safe-unpickle commandline argument.", file=sys.stderr)
|
||||||
|
return None
|
||||||
|
|
||||||
|
return unsafe_torch_load(filename, *args, **kwargs)
|
||||||
|
|
||||||
|
|
||||||
|
unsafe_torch_load = torch.load
|
||||||
|
torch.load = load
|
@ -9,14 +9,12 @@ from basicsr.utils.download_util import load_file_from_url
|
|||||||
|
|
||||||
import modules.upscaler
|
import modules.upscaler
|
||||||
from modules import devices, modelloader
|
from modules import devices, modelloader
|
||||||
from modules.paths import models_path
|
|
||||||
from modules.scunet_model_arch import SCUNet as net
|
from modules.scunet_model_arch import SCUNet as net
|
||||||
|
|
||||||
|
|
||||||
class UpscalerScuNET(modules.upscaler.Upscaler):
|
class UpscalerScuNET(modules.upscaler.Upscaler):
|
||||||
def __init__(self, dirname):
|
def __init__(self, dirname):
|
||||||
self.name = "ScuNET"
|
self.name = "ScuNET"
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
self.model_name = "ScuNET GAN"
|
self.model_name = "ScuNET GAN"
|
||||||
self.model_name2 = "ScuNET PSNR"
|
self.model_name2 = "ScuNET PSNR"
|
||||||
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
|
self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth"
|
||||||
|
@ -282,14 +282,12 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module):
|
|||||||
remade_batch_tokens_of_same_length = [x + [self.wrapped.tokenizer.eos_token_id] * (target_token_count - len(x)) for x in remade_batch_tokens]
|
remade_batch_tokens_of_same_length = [x + [self.wrapped.tokenizer.eos_token_id] * (target_token_count - len(x)) for x in remade_batch_tokens]
|
||||||
tokens = torch.asarray(remade_batch_tokens_of_same_length).to(device)
|
tokens = torch.asarray(remade_batch_tokens_of_same_length).to(device)
|
||||||
|
|
||||||
tmp = -opts.CLIP_ignore_last_layers
|
outputs = self.wrapped.transformer(input_ids=tokens, position_ids=position_ids, output_hidden_states=-opts.CLIP_stop_at_last_layers)
|
||||||
if (opts.CLIP_ignore_last_layers == 0):
|
if opts.CLIP_stop_at_last_layers > 1:
|
||||||
outputs = self.wrapped.transformer(input_ids=tokens, position_ids=position_ids)
|
z = outputs.hidden_states[-opts.CLIP_stop_at_last_layers]
|
||||||
z = outputs.last_hidden_state
|
|
||||||
else:
|
|
||||||
outputs = self.wrapped.transformer(input_ids=tokens, position_ids=position_ids, output_hidden_states=tmp)
|
|
||||||
z = outputs.hidden_states[tmp]
|
|
||||||
z = self.wrapped.transformer.text_model.final_layer_norm(z)
|
z = self.wrapped.transformer.text_model.final_layer_norm(z)
|
||||||
|
else:
|
||||||
|
z = outputs.last_hidden_state
|
||||||
|
|
||||||
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
||||||
batch_multipliers_of_same_length = [x + [1.0] * (target_token_count - len(x)) for x in batch_multipliers]
|
batch_multipliers_of_same_length = [x + [1.0] * (target_token_count - len(x)) for x in batch_multipliers]
|
||||||
|
@ -28,7 +28,7 @@ def split_cross_attention_forward_v1(self, x, context=None, mask=None):
|
|||||||
q_in = self.to_q(x)
|
q_in = self.to_q(x)
|
||||||
context = default(context, x)
|
context = default(context, x)
|
||||||
|
|
||||||
hypernetwork = shared.selected_hypernetwork()
|
hypernetwork = shared.loaded_hypernetwork
|
||||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||||
|
|
||||||
if hypernetwork_layers is not None:
|
if hypernetwork_layers is not None:
|
||||||
@ -68,7 +68,7 @@ def split_cross_attention_forward(self, x, context=None, mask=None):
|
|||||||
q_in = self.to_q(x)
|
q_in = self.to_q(x)
|
||||||
context = default(context, x)
|
context = default(context, x)
|
||||||
|
|
||||||
hypernetwork = shared.selected_hypernetwork()
|
hypernetwork = shared.loaded_hypernetwork
|
||||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||||
|
|
||||||
if hypernetwork_layers is not None:
|
if hypernetwork_layers is not None:
|
||||||
@ -132,7 +132,7 @@ def xformers_attention_forward(self, x, context=None, mask=None):
|
|||||||
h = self.heads
|
h = self.heads
|
||||||
q_in = self.to_q(x)
|
q_in = self.to_q(x)
|
||||||
context = default(context, x)
|
context = default(context, x)
|
||||||
hypernetwork = shared.selected_hypernetwork()
|
hypernetwork = shared.loaded_hypernetwork
|
||||||
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None)
|
||||||
if hypernetwork_layers is not None:
|
if hypernetwork_layers is not None:
|
||||||
k_in = self.to_k(hypernetwork_layers[0](context))
|
k_in = self.to_k(hypernetwork_layers[0](context))
|
||||||
|
@ -5,7 +5,6 @@ from collections import namedtuple
|
|||||||
import torch
|
import torch
|
||||||
from omegaconf import OmegaConf
|
from omegaconf import OmegaConf
|
||||||
|
|
||||||
|
|
||||||
from ldm.util import instantiate_from_config
|
from ldm.util import instantiate_from_config
|
||||||
|
|
||||||
from modules import shared, modelloader, devices
|
from modules import shared, modelloader, devices
|
||||||
@ -122,6 +121,13 @@ def select_checkpoint():
|
|||||||
return checkpoint_info
|
return checkpoint_info
|
||||||
|
|
||||||
|
|
||||||
|
def get_state_dict_from_checkpoint(pl_sd):
|
||||||
|
if "state_dict" in pl_sd:
|
||||||
|
return pl_sd["state_dict"]
|
||||||
|
|
||||||
|
return pl_sd
|
||||||
|
|
||||||
|
|
||||||
def load_model_weights(model, checkpoint_info):
|
def load_model_weights(model, checkpoint_info):
|
||||||
checkpoint_file = checkpoint_info.filename
|
checkpoint_file = checkpoint_info.filename
|
||||||
sd_model_hash = checkpoint_info.hash
|
sd_model_hash = checkpoint_info.hash
|
||||||
@ -131,11 +137,8 @@ def load_model_weights(model, checkpoint_info):
|
|||||||
pl_sd = torch.load(checkpoint_file, map_location="cpu")
|
pl_sd = torch.load(checkpoint_file, map_location="cpu")
|
||||||
if "global_step" in pl_sd:
|
if "global_step" in pl_sd:
|
||||||
print(f"Global Step: {pl_sd['global_step']}")
|
print(f"Global Step: {pl_sd['global_step']}")
|
||||||
|
|
||||||
if "state_dict" in pl_sd:
|
sd = get_state_dict_from_checkpoint(pl_sd)
|
||||||
sd = pl_sd["state_dict"]
|
|
||||||
else:
|
|
||||||
sd = pl_sd
|
|
||||||
|
|
||||||
model.load_state_dict(sd, strict=False)
|
model.load_state_dict(sd, strict=False)
|
||||||
|
|
||||||
@ -165,7 +168,7 @@ def load_model():
|
|||||||
checkpoint_info = select_checkpoint()
|
checkpoint_info = select_checkpoint()
|
||||||
|
|
||||||
if checkpoint_info.config != shared.cmd_opts.config:
|
if checkpoint_info.config != shared.cmd_opts.config:
|
||||||
print(f"Loading config from: {shared.cmd_opts.config}")
|
print(f"Loading config from: {checkpoint_info.config}")
|
||||||
|
|
||||||
sd_config = OmegaConf.load(checkpoint_info.config)
|
sd_config = OmegaConf.load(checkpoint_info.config)
|
||||||
sd_model = instantiate_from_config(sd_config.model)
|
sd_model = instantiate_from_config(sd_config.model)
|
||||||
@ -192,7 +195,8 @@ def reload_model_weights(sd_model, info=None):
|
|||||||
return
|
return
|
||||||
|
|
||||||
if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
|
if sd_model.sd_checkpoint_info.config != checkpoint_info.config:
|
||||||
return load_model()
|
shared.sd_model = load_model()
|
||||||
|
return shared.sd_model
|
||||||
|
|
||||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||||
lowvram.send_everything_to_cpu()
|
lowvram.send_everything_to_cpu()
|
||||||
|
@ -45,6 +45,7 @@ parser.add_argument("--swinir-models-path", type=str, help="Path to directory wi
|
|||||||
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(models_path, 'LDSR'))
|
parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(models_path, 'LDSR'))
|
||||||
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
|
parser.add_argument("--xformers", action='store_true', help="enable xformers for cross attention layers")
|
||||||
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
|
parser.add_argument("--force-enable-xformers", action='store_true', help="enable xformers for cross attention layers regardless of whether the checking code thinks you can run it; do not make bug reports if this fails to work")
|
||||||
|
parser.add_argument("--deepdanbooru", action='store_true', help="enable deepdanbooru interrogator")
|
||||||
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.")
|
parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.")
|
||||||
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
parser.add_argument("--disable-opt-split-attention", action='store_true', help="force-disables cross-attention layer optimization")
|
||||||
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
parser.add_argument("--opt-split-attention-v1", action='store_true', help="enable older version of split attention optimization that does not consume all the VRAM it can find")
|
||||||
@ -64,6 +65,7 @@ parser.add_argument("--autolaunch", action='store_true', help="open the webui UR
|
|||||||
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
|
parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False)
|
||||||
parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False)
|
parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False)
|
||||||
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
|
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
|
||||||
|
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
|
||||||
|
|
||||||
|
|
||||||
cmd_opts = parser.parse_args()
|
cmd_opts = parser.parse_args()
|
||||||
@ -78,11 +80,8 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram
|
|||||||
xformers_available = False
|
xformers_available = False
|
||||||
config_filename = cmd_opts.ui_settings_file
|
config_filename = cmd_opts.ui_settings_file
|
||||||
|
|
||||||
hypernetworks = hypernetwork.load_hypernetworks(os.path.join(models_path, 'hypernetworks'))
|
hypernetworks = hypernetwork.list_hypernetworks(os.path.join(models_path, 'hypernetworks'))
|
||||||
|
loaded_hypernetwork = None
|
||||||
|
|
||||||
def selected_hypernetwork():
|
|
||||||
return hypernetworks.get(opts.sd_hypernetwork, None)
|
|
||||||
|
|
||||||
|
|
||||||
class State:
|
class State:
|
||||||
@ -132,13 +131,14 @@ def realesrgan_models_names():
|
|||||||
|
|
||||||
|
|
||||||
class OptionInfo:
|
class OptionInfo:
|
||||||
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None):
|
def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, show_on_main_page=False):
|
||||||
self.default = default
|
self.default = default
|
||||||
self.label = label
|
self.label = label
|
||||||
self.component = component
|
self.component = component
|
||||||
self.component_args = component_args
|
self.component_args = component_args
|
||||||
self.onchange = onchange
|
self.onchange = onchange
|
||||||
self.section = None
|
self.section = None
|
||||||
|
self.show_on_main_page = show_on_main_page
|
||||||
|
|
||||||
|
|
||||||
def options_section(section_identifier, options_dict):
|
def options_section(section_identifier, options_dict):
|
||||||
@ -215,7 +215,7 @@ options_templates.update(options_section(('system', "System"), {
|
|||||||
}))
|
}))
|
||||||
|
|
||||||
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||||
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}),
|
"sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, show_on_main_page=True),
|
||||||
"sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}),
|
"sd_hypernetwork": OptionInfo("None", "Stable Diffusion finetune hypernetwork", gr.Dropdown, lambda: {"choices": ["None"] + [x for x in hypernetworks.keys()]}),
|
||||||
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
"img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."),
|
||||||
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
"save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"),
|
||||||
@ -225,7 +225,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
|||||||
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
"use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."),
|
||||||
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
|
"enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"),
|
||||||
"filter_nsfw": OptionInfo(False, "Filter NSFW content"),
|
"filter_nsfw": OptionInfo(False, "Filter NSFW content"),
|
||||||
'CLIP_ignore_last_layers': OptionInfo(0, "Ignore last layers of CLIP model", gr.Slider, {"minimum": 0, "maximum": 5, "step": 1}),
|
'CLIP_stop_at_last_layers': OptionInfo(1, "Stop At last layers of CLIP model", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}),
|
||||||
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
"random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}),
|
||||||
}))
|
}))
|
||||||
|
|
||||||
@ -240,10 +240,11 @@ options_templates.update(options_section(('interrogate', "Interrogate Options"),
|
|||||||
|
|
||||||
options_templates.update(options_section(('ui', "User interface"), {
|
options_templates.update(options_section(('ui', "User interface"), {
|
||||||
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
"show_progressbar": OptionInfo(True, "Show progressbar"),
|
||||||
"show_progress_every_n_steps": OptionInfo(0, "Show show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
"show_progress_every_n_steps": OptionInfo(0, "Show image creation progress every N sampling steps. Set 0 to disable.", gr.Slider, {"minimum": 0, "maximum": 32, "step": 1}),
|
||||||
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
"return_grid": OptionInfo(True, "Show grid in results for web"),
|
||||||
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
"do_not_show_images": OptionInfo(False, "Do not show any images in results for web"),
|
||||||
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
|
"add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"),
|
||||||
|
"add_model_name_to_info": OptionInfo(False, "Add model name to generation information"),
|
||||||
"font": OptionInfo("", "Font for image grids that have text"),
|
"font": OptionInfo("", "Font for image grids that have text"),
|
||||||
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
|
"js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"),
|
||||||
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
|
"js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"),
|
||||||
|
@ -8,7 +8,6 @@ from basicsr.utils.download_util import load_file_from_url
|
|||||||
from tqdm import tqdm
|
from tqdm import tqdm
|
||||||
|
|
||||||
from modules import modelloader
|
from modules import modelloader
|
||||||
from modules.paths import models_path
|
|
||||||
from modules.shared import cmd_opts, opts, device
|
from modules.shared import cmd_opts, opts, device
|
||||||
from modules.swinir_model_arch import SwinIR as net
|
from modules.swinir_model_arch import SwinIR as net
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
@ -25,7 +24,6 @@ class UpscalerSwinIR(Upscaler):
|
|||||||
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
|
"/003_realSR_BSRGAN_DFOWMFC_s64w8_SwinIR" \
|
||||||
"-L_x4_GAN.pth "
|
"-L_x4_GAN.pth "
|
||||||
self.model_name = "SwinIR 4x"
|
self.model_name = "SwinIR 4x"
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
|
||||||
self.user_path = dirname
|
self.user_path = dirname
|
||||||
super().__init__()
|
super().__init__()
|
||||||
scalers = []
|
scalers = []
|
||||||
|
136
modules/ui.py
136
modules/ui.py
@ -25,6 +25,8 @@ import gradio.routes
|
|||||||
from modules import sd_hijack
|
from modules import sd_hijack
|
||||||
from modules.paths import script_path
|
from modules.paths import script_path
|
||||||
from modules.shared import opts, cmd_opts
|
from modules.shared import opts, cmd_opts
|
||||||
|
if cmd_opts.deepdanbooru:
|
||||||
|
from modules.deepbooru import get_deepbooru_tags
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
from modules.sd_samplers import samplers, samplers_for_img2img
|
from modules.sd_samplers import samplers, samplers_for_img2img
|
||||||
from modules.sd_hijack import model_hijack
|
from modules.sd_hijack import model_hijack
|
||||||
@ -98,9 +100,10 @@ def send_gradio_gallery_to_image(x):
|
|||||||
return image_from_url_text(x[0])
|
return image_from_url_text(x[0])
|
||||||
|
|
||||||
|
|
||||||
def save_files(js_data, images, index):
|
def save_files(js_data, images, do_make_zip, index):
|
||||||
import csv
|
import csv
|
||||||
filenames = []
|
filenames = []
|
||||||
|
fullfns = []
|
||||||
|
|
||||||
#quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it
|
#quick dictionary to class object conversion. Its necessary due apply_filename_pattern requiring it
|
||||||
class MyObject:
|
class MyObject:
|
||||||
@ -137,14 +140,29 @@ def save_files(js_data, images, index):
|
|||||||
is_grid = image_index < p.index_of_first_image
|
is_grid = image_index < p.index_of_first_image
|
||||||
i = 0 if is_grid else (image_index - p.index_of_first_image)
|
i = 0 if is_grid else (image_index - p.index_of_first_image)
|
||||||
|
|
||||||
fullfn = save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs)
|
fullfn, txt_fullfn = save_image(image, path, "", seed=p.all_seeds[i], prompt=p.all_prompts[i], extension=extension, info=p.infotexts[image_index], grid=is_grid, p=p, save_to_dirs=save_to_dirs)
|
||||||
|
|
||||||
filename = os.path.relpath(fullfn, path)
|
filename = os.path.relpath(fullfn, path)
|
||||||
filenames.append(filename)
|
filenames.append(filename)
|
||||||
|
fullfns.append(fullfn)
|
||||||
|
if txt_fullfn:
|
||||||
|
filenames.append(os.path.basename(txt_fullfn))
|
||||||
|
fullfns.append(txt_fullfn)
|
||||||
|
|
||||||
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
|
writer.writerow([data["prompt"], data["seed"], data["width"], data["height"], data["sampler"], data["cfg_scale"], data["steps"], filenames[0], data["negative_prompt"]])
|
||||||
|
|
||||||
return '', '', plaintext_to_html(f"Saved: {filenames[0]}")
|
# Make Zip
|
||||||
|
if do_make_zip:
|
||||||
|
zip_filepath = os.path.join(path, "images.zip")
|
||||||
|
|
||||||
|
from zipfile import ZipFile
|
||||||
|
with ZipFile(zip_filepath, "w") as zip_file:
|
||||||
|
for i in range(len(fullfns)):
|
||||||
|
with open(fullfns[i], mode="rb") as f:
|
||||||
|
zip_file.writestr(filenames[i], f.read())
|
||||||
|
fullfns.insert(0, zip_filepath)
|
||||||
|
|
||||||
|
return gr.File.update(value=fullfns, visible=True), '', '', plaintext_to_html(f"Saved: {filenames[0]}")
|
||||||
|
|
||||||
|
|
||||||
def wrap_gradio_call(func, extra_outputs=None):
|
def wrap_gradio_call(func, extra_outputs=None):
|
||||||
@ -292,6 +310,11 @@ def interrogate(image):
|
|||||||
return gr_show(True) if prompt is None else prompt
|
return gr_show(True) if prompt is None else prompt
|
||||||
|
|
||||||
|
|
||||||
|
def interrogate_deepbooru(image):
|
||||||
|
prompt = get_deepbooru_tags(image)
|
||||||
|
return gr_show(True) if prompt is None else prompt
|
||||||
|
|
||||||
|
|
||||||
def create_seed_inputs():
|
def create_seed_inputs():
|
||||||
with gr.Row():
|
with gr.Row():
|
||||||
with gr.Box():
|
with gr.Box():
|
||||||
@ -428,15 +451,20 @@ def create_toprow(is_img2img):
|
|||||||
outputs=[],
|
outputs=[],
|
||||||
)
|
)
|
||||||
|
|
||||||
with gr.Row():
|
with gr.Row(scale=1):
|
||||||
if is_img2img:
|
if is_img2img:
|
||||||
interrogate = gr.Button('Interrogate', elem_id="interrogate")
|
interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate")
|
||||||
|
if cmd_opts.deepdanbooru:
|
||||||
|
deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
|
||||||
|
else:
|
||||||
|
deepbooru = None
|
||||||
else:
|
else:
|
||||||
interrogate = None
|
interrogate = None
|
||||||
|
deepbooru = None
|
||||||
prompt_style_apply = gr.Button('Apply style', elem_id="style_apply")
|
prompt_style_apply = gr.Button('Apply style', elem_id="style_apply")
|
||||||
save_style = gr.Button('Create style', elem_id="style_create")
|
save_style = gr.Button('Create style', elem_id="style_create")
|
||||||
|
|
||||||
return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, interrogate, prompt_style_apply, save_style, paste, token_counter, token_button
|
return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, interrogate, deepbooru, prompt_style_apply, save_style, paste, token_counter, token_button
|
||||||
|
|
||||||
|
|
||||||
def setup_progressbar(progressbar, preview, id_part, textinfo=None):
|
def setup_progressbar(progressbar, preview, id_part, textinfo=None):
|
||||||
@ -465,7 +493,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
import modules.txt2img
|
import modules.txt2img
|
||||||
|
|
||||||
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
|
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
|
||||||
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, txt2img_prompt_style_apply, txt2img_save_style, paste, token_counter, token_button = create_toprow(is_img2img=False)
|
txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, paste, token_counter, token_button = create_toprow(is_img2img=False)
|
||||||
dummy_component = gr.Label(visible=False)
|
dummy_component = gr.Label(visible=False)
|
||||||
|
|
||||||
with gr.Row(elem_id='txt2img_progress_row'):
|
with gr.Row(elem_id='txt2img_progress_row'):
|
||||||
@ -521,6 +549,12 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
||||||
open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
open_txt2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
||||||
|
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
html_info = gr.HTML()
|
html_info = gr.HTML()
|
||||||
generation_info = gr.Textbox(visible=False)
|
generation_info = gr.Textbox(visible=False)
|
||||||
@ -570,13 +604,15 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
|
|
||||||
save.click(
|
save.click(
|
||||||
fn=wrap_gradio_call(save_files),
|
fn=wrap_gradio_call(save_files),
|
||||||
_js="(x, y, z) => [x, y, selected_gallery_index()]",
|
_js="(x, y, z, w) => [x, y, z, selected_gallery_index()]",
|
||||||
inputs=[
|
inputs=[
|
||||||
generation_info,
|
generation_info,
|
||||||
txt2img_gallery,
|
txt2img_gallery,
|
||||||
|
do_make_zip,
|
||||||
html_info,
|
html_info,
|
||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
|
download_files,
|
||||||
html_info,
|
html_info,
|
||||||
html_info,
|
html_info,
|
||||||
html_info,
|
html_info,
|
||||||
@ -617,7 +653,7 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter])
|
token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter])
|
||||||
|
|
||||||
with gr.Blocks(analytics_enabled=False) as img2img_interface:
|
with gr.Blocks(analytics_enabled=False) as img2img_interface:
|
||||||
img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_prompt_style_apply, img2img_save_style, paste, token_counter, token_button = create_toprow(is_img2img=True)
|
img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, paste, token_counter, token_button = create_toprow(is_img2img=True)
|
||||||
|
|
||||||
with gr.Row(elem_id='img2img_progress_row'):
|
with gr.Row(elem_id='img2img_progress_row'):
|
||||||
with gr.Column(scale=1):
|
with gr.Column(scale=1):
|
||||||
@ -701,6 +737,12 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
button_id = "hidden_element" if shared.cmd_opts.hide_ui_dir_config else 'open_folder'
|
||||||
open_img2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
open_img2img_folder = gr.Button(folder_symbol, elem_id=button_id)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
do_make_zip = gr.Checkbox(label="Make Zip when Save?", value=False)
|
||||||
|
|
||||||
|
with gr.Row():
|
||||||
|
download_files = gr.File(None, file_count="multiple", interactive=False, show_label=False, visible=False)
|
||||||
|
|
||||||
with gr.Group():
|
with gr.Group():
|
||||||
html_info = gr.HTML()
|
html_info = gr.HTML()
|
||||||
generation_info = gr.Textbox(visible=False)
|
generation_info = gr.Textbox(visible=False)
|
||||||
@ -774,15 +816,24 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
outputs=[img2img_prompt],
|
outputs=[img2img_prompt],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
if cmd_opts.deepdanbooru:
|
||||||
|
img2img_deepbooru.click(
|
||||||
|
fn=interrogate_deepbooru,
|
||||||
|
inputs=[init_img],
|
||||||
|
outputs=[img2img_prompt],
|
||||||
|
)
|
||||||
|
|
||||||
save.click(
|
save.click(
|
||||||
fn=wrap_gradio_call(save_files),
|
fn=wrap_gradio_call(save_files),
|
||||||
_js="(x, y, z) => [x, y, selected_gallery_index()]",
|
_js="(x, y, z, w) => [x, y, z, selected_gallery_index()]",
|
||||||
inputs=[
|
inputs=[
|
||||||
generation_info,
|
generation_info,
|
||||||
img2img_gallery,
|
img2img_gallery,
|
||||||
html_info
|
do_make_zip,
|
||||||
|
html_info,
|
||||||
],
|
],
|
||||||
outputs=[
|
outputs=[
|
||||||
|
download_files,
|
||||||
html_info,
|
html_info,
|
||||||
html_info,
|
html_info,
|
||||||
html_info,
|
html_info,
|
||||||
@ -1104,6 +1155,15 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
component_dict = {}
|
component_dict = {}
|
||||||
|
|
||||||
def open_folder(f):
|
def open_folder(f):
|
||||||
|
if not os.path.isdir(f):
|
||||||
|
print(f"""
|
||||||
|
WARNING
|
||||||
|
An open_folder request was made with an argument that is not a folder.
|
||||||
|
This could be an error or a malicious attempt to run code on your computer.
|
||||||
|
Requested path was: {f}
|
||||||
|
""", file=sys.stderr)
|
||||||
|
return
|
||||||
|
|
||||||
if not shared.cmd_opts.hide_ui_dir_config:
|
if not shared.cmd_opts.hide_ui_dir_config:
|
||||||
path = os.path.normpath(f)
|
path = os.path.normpath(f)
|
||||||
if platform.system() == "Windows":
|
if platform.system() == "Windows":
|
||||||
@ -1117,10 +1177,13 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
changed = 0
|
changed = 0
|
||||||
|
|
||||||
for key, value, comp in zip(opts.data_labels.keys(), args, components):
|
for key, value, comp in zip(opts.data_labels.keys(), args, components):
|
||||||
if not opts.same_type(value, opts.data_labels[key].default):
|
if comp != dummy_component and not opts.same_type(value, opts.data_labels[key].default):
|
||||||
return f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}"
|
return f"Bad value for setting {key}: {value}; expecting {type(opts.data_labels[key].default).__name__}", opts.dumpjson()
|
||||||
|
|
||||||
for key, value, comp in zip(opts.data_labels.keys(), args, components):
|
for key, value, comp in zip(opts.data_labels.keys(), args, components):
|
||||||
|
if comp == dummy_component:
|
||||||
|
continue
|
||||||
|
|
||||||
comp_args = opts.data_labels[key].component_args
|
comp_args = opts.data_labels[key].component_args
|
||||||
if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False:
|
if comp_args and isinstance(comp_args, dict) and comp_args.get('visible') is False:
|
||||||
continue
|
continue
|
||||||
@ -1138,6 +1201,21 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
|
|
||||||
return f'{changed} settings changed.', opts.dumpjson()
|
return f'{changed} settings changed.', opts.dumpjson()
|
||||||
|
|
||||||
|
def run_settings_single(value, key):
|
||||||
|
if not opts.same_type(value, opts.data_labels[key].default):
|
||||||
|
return gr.update(visible=True), opts.dumpjson()
|
||||||
|
|
||||||
|
oldval = opts.data.get(key, None)
|
||||||
|
opts.data[key] = value
|
||||||
|
|
||||||
|
if oldval != value:
|
||||||
|
if opts.data_labels[key].onchange is not None:
|
||||||
|
opts.data_labels[key].onchange()
|
||||||
|
|
||||||
|
opts.save(shared.config_filename)
|
||||||
|
|
||||||
|
return gr.update(value=value), opts.dumpjson()
|
||||||
|
|
||||||
with gr.Blocks(analytics_enabled=False) as settings_interface:
|
with gr.Blocks(analytics_enabled=False) as settings_interface:
|
||||||
settings_submit = gr.Button(value="Apply settings", variant='primary')
|
settings_submit = gr.Button(value="Apply settings", variant='primary')
|
||||||
result = gr.HTML()
|
result = gr.HTML()
|
||||||
@ -1145,6 +1223,8 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
settings_cols = 3
|
settings_cols = 3
|
||||||
items_per_col = int(len(opts.data_labels) * 0.9 / settings_cols)
|
items_per_col = int(len(opts.data_labels) * 0.9 / settings_cols)
|
||||||
|
|
||||||
|
quicksettings_list = []
|
||||||
|
|
||||||
cols_displayed = 0
|
cols_displayed = 0
|
||||||
items_displayed = 0
|
items_displayed = 0
|
||||||
previous_section = None
|
previous_section = None
|
||||||
@ -1167,10 +1247,14 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
|
|
||||||
gr.HTML(elem_id="settings_header_text_{}".format(item.section[0]), value='<h1 class="gr-button-lg">{}</h1>'.format(item.section[1]))
|
gr.HTML(elem_id="settings_header_text_{}".format(item.section[0]), value='<h1 class="gr-button-lg">{}</h1>'.format(item.section[1]))
|
||||||
|
|
||||||
component = create_setting_component(k)
|
if item.show_on_main_page:
|
||||||
component_dict[k] = component
|
quicksettings_list.append((i, k, item))
|
||||||
components.append(component)
|
components.append(dummy_component)
|
||||||
items_displayed += 1
|
else:
|
||||||
|
component = create_setting_component(k)
|
||||||
|
component_dict[k] = component
|
||||||
|
components.append(component)
|
||||||
|
items_displayed += 1
|
||||||
|
|
||||||
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
|
request_notifications = gr.Button(value='Request browser notifications', elem_id="request_notifications")
|
||||||
request_notifications.click(
|
request_notifications.click(
|
||||||
@ -1184,7 +1268,6 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary')
|
reload_script_bodies = gr.Button(value='Reload custom script bodies (No ui updates, No restart)', variant='secondary')
|
||||||
restart_gradio = gr.Button(value='Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)', variant='primary')
|
restart_gradio = gr.Button(value='Restart Gradio and Refresh components (Custom Scripts, ui.py, js and css only)', variant='primary')
|
||||||
|
|
||||||
|
|
||||||
def reload_scripts():
|
def reload_scripts():
|
||||||
modules.scripts.reload_script_body_only()
|
modules.scripts.reload_script_body_only()
|
||||||
|
|
||||||
@ -1231,7 +1314,11 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
css += css_hide_progressbar
|
css += css_hide_progressbar
|
||||||
|
|
||||||
with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo:
|
with gr.Blocks(css=css, analytics_enabled=False, title="Stable Diffusion") as demo:
|
||||||
|
with gr.Row(elem_id="quicksettings"):
|
||||||
|
for i, k, item in quicksettings_list:
|
||||||
|
component = create_setting_component(k)
|
||||||
|
component_dict[k] = component
|
||||||
|
|
||||||
settings_interface.gradio_ref = demo
|
settings_interface.gradio_ref = demo
|
||||||
|
|
||||||
with gr.Tabs() as tabs:
|
with gr.Tabs() as tabs:
|
||||||
@ -1248,7 +1335,16 @@ def create_ui(wrap_gradio_gpu_call):
|
|||||||
inputs=components,
|
inputs=components,
|
||||||
outputs=[result, text_settings],
|
outputs=[result, text_settings],
|
||||||
)
|
)
|
||||||
|
|
||||||
|
for i, k, item in quicksettings_list:
|
||||||
|
component = component_dict[k]
|
||||||
|
|
||||||
|
component.change(
|
||||||
|
fn=lambda value, k=k: run_settings_single(value, key=k),
|
||||||
|
inputs=[component],
|
||||||
|
outputs=[component, text_settings],
|
||||||
|
)
|
||||||
|
|
||||||
def modelmerger(*args):
|
def modelmerger(*args):
|
||||||
try:
|
try:
|
||||||
results = modules.extras.run_modelmerger(*args)
|
results = modules.extras.run_modelmerger(*args)
|
||||||
|
@ -36,10 +36,11 @@ class Upscaler:
|
|||||||
self.half = not modules.shared.cmd_opts.no_half
|
self.half = not modules.shared.cmd_opts.no_half
|
||||||
self.pre_pad = 0
|
self.pre_pad = 0
|
||||||
self.mod_scale = None
|
self.mod_scale = None
|
||||||
if self.name is not None and create_dirs:
|
|
||||||
|
if self.model_path is None and self.name:
|
||||||
self.model_path = os.path.join(models_path, self.name)
|
self.model_path = os.path.join(models_path, self.name)
|
||||||
if not os.path.exists(self.model_path):
|
if self.model_path and create_dirs:
|
||||||
os.makedirs(self.model_path)
|
os.makedirs(self.model_path, exist_ok=True)
|
||||||
|
|
||||||
try:
|
try:
|
||||||
import cv2
|
import cv2
|
||||||
|
@ -10,7 +10,6 @@ from modules.processing import Processed, process_images
|
|||||||
from PIL import Image
|
from PIL import Image
|
||||||
from modules.shared import opts, cmd_opts, state
|
from modules.shared import opts, cmd_opts, state
|
||||||
|
|
||||||
|
|
||||||
class Script(scripts.Script):
|
class Script(scripts.Script):
|
||||||
def title(self):
|
def title(self):
|
||||||
return "Prompts from file or textbox"
|
return "Prompts from file or textbox"
|
||||||
@ -29,6 +28,9 @@ class Script(scripts.Script):
|
|||||||
checkbox_txt.change(fn=lambda x: [gr.File.update(visible = not x), gr.TextArea.update(visible = x)], inputs=[checkbox_txt], outputs=[file, prompt_txt])
|
checkbox_txt.change(fn=lambda x: [gr.File.update(visible = not x), gr.TextArea.update(visible = x)], inputs=[checkbox_txt], outputs=[file, prompt_txt])
|
||||||
return [checkbox_txt, file, prompt_txt]
|
return [checkbox_txt, file, prompt_txt]
|
||||||
|
|
||||||
|
def on_show(self, checkbox_txt, file, prompt_txt):
|
||||||
|
return [ gr.Checkbox.update(visible = True), gr.File.update(visible = not checkbox_txt), gr.TextArea.update(visible = checkbox_txt) ]
|
||||||
|
|
||||||
def run(self, p, checkbox_txt, data: bytes, prompt_txt: str):
|
def run(self, p, checkbox_txt, data: bytes, prompt_txt: str):
|
||||||
if (checkbox_txt):
|
if (checkbox_txt):
|
||||||
lines = [x.strip() for x in prompt_txt.splitlines()]
|
lines = [x.strip() for x in prompt_txt.splitlines()]
|
||||||
|
@ -10,8 +10,8 @@ import numpy as np
|
|||||||
import modules.scripts as scripts
|
import modules.scripts as scripts
|
||||||
import gradio as gr
|
import gradio as gr
|
||||||
|
|
||||||
from modules import images
|
from modules import images, hypernetwork
|
||||||
from modules.processing import process_images, Processed
|
from modules.processing import process_images, Processed, get_correct_sampler
|
||||||
from modules.shared import opts, cmd_opts, state
|
from modules.shared import opts, cmd_opts, state
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
import modules.sd_samplers
|
import modules.sd_samplers
|
||||||
@ -56,15 +56,17 @@ def apply_order(p, x, xs):
|
|||||||
p.prompt = prompt_tmp + p.prompt
|
p.prompt = prompt_tmp + p.prompt
|
||||||
|
|
||||||
|
|
||||||
samplers_dict = {}
|
def build_samplers_dict(p):
|
||||||
for i, sampler in enumerate(modules.sd_samplers.samplers):
|
samplers_dict = {}
|
||||||
samplers_dict[sampler.name.lower()] = i
|
for i, sampler in enumerate(get_correct_sampler(p)):
|
||||||
for alias in sampler.aliases:
|
samplers_dict[sampler.name.lower()] = i
|
||||||
samplers_dict[alias.lower()] = i
|
for alias in sampler.aliases:
|
||||||
|
samplers_dict[alias.lower()] = i
|
||||||
|
return samplers_dict
|
||||||
|
|
||||||
|
|
||||||
def apply_sampler(p, x, xs):
|
def apply_sampler(p, x, xs):
|
||||||
sampler_index = samplers_dict.get(x.lower(), None)
|
sampler_index = build_samplers_dict(p).get(x.lower(), None)
|
||||||
if sampler_index is None:
|
if sampler_index is None:
|
||||||
raise RuntimeError(f"Unknown sampler: {x}")
|
raise RuntimeError(f"Unknown sampler: {x}")
|
||||||
|
|
||||||
@ -78,8 +80,11 @@ def apply_checkpoint(p, x, xs):
|
|||||||
|
|
||||||
|
|
||||||
def apply_hypernetwork(p, x, xs):
|
def apply_hypernetwork(p, x, xs):
|
||||||
hn = shared.hypernetworks.get(x, None)
|
hypernetwork.load_hypernetwork(x)
|
||||||
opts.data["sd_hypernetwork"] = hn.name if hn is not None else 'None'
|
|
||||||
|
|
||||||
|
def apply_clip_skip(p, x, xs):
|
||||||
|
opts.data["CLIP_stop_at_last_layers"] = x
|
||||||
|
|
||||||
|
|
||||||
def format_value_add_label(p, opt, x):
|
def format_value_add_label(p, opt, x):
|
||||||
@ -133,6 +138,7 @@ axis_options = [
|
|||||||
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
|
AxisOption("Sigma max", float, apply_field("s_tmax"), format_value_add_label),
|
||||||
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label),
|
AxisOption("Sigma noise", float, apply_field("s_noise"), format_value_add_label),
|
||||||
AxisOption("Eta", float, apply_field("eta"), format_value_add_label),
|
AxisOption("Eta", float, apply_field("eta"), format_value_add_label),
|
||||||
|
AxisOption("Clip skip", int, apply_clip_skip, format_value_add_label),
|
||||||
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
|
AxisOptionImg2Img("Denoising", float, apply_field("denoising_strength"), format_value_add_label), # as it is now all AxisOptionImg2Img items must go after AxisOption ones
|
||||||
]
|
]
|
||||||
|
|
||||||
@ -143,7 +149,7 @@ def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend):
|
|||||||
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
|
ver_texts = [[images.GridAnnotation(y)] for y in y_labels]
|
||||||
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
|
hor_texts = [[images.GridAnnotation(x)] for x in x_labels]
|
||||||
|
|
||||||
first_pocessed = None
|
first_processed = None
|
||||||
|
|
||||||
state.job_count = len(xs) * len(ys) * p.n_iter
|
state.job_count = len(xs) * len(ys) * p.n_iter
|
||||||
|
|
||||||
@ -152,8 +158,8 @@ def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend):
|
|||||||
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
|
state.job = f"{ix + iy * len(xs) + 1} out of {len(xs) * len(ys)}"
|
||||||
|
|
||||||
processed = cell(x, y)
|
processed = cell(x, y)
|
||||||
if first_pocessed is None:
|
if first_processed is None:
|
||||||
first_pocessed = processed
|
first_processed = processed
|
||||||
|
|
||||||
try:
|
try:
|
||||||
res.append(processed.images[0])
|
res.append(processed.images[0])
|
||||||
@ -164,9 +170,9 @@ def draw_xy_grid(p, xs, ys, x_labels, y_labels, cell, draw_legend):
|
|||||||
if draw_legend:
|
if draw_legend:
|
||||||
grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts)
|
grid = images.draw_grid_annotations(grid, res[0].width, res[0].height, hor_texts, ver_texts)
|
||||||
|
|
||||||
first_pocessed.images = [grid]
|
first_processed.images = [grid]
|
||||||
|
|
||||||
return first_pocessed
|
return first_processed
|
||||||
|
|
||||||
|
|
||||||
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
|
re_range = re.compile(r"\s*([+-]?\s*\d+)\s*-\s*([+-]?\s*\d+)(?:\s*\(([+-]\d+)\s*\))?\s*")
|
||||||
@ -196,10 +202,11 @@ class Script(scripts.Script):
|
|||||||
return [x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds]
|
return [x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds]
|
||||||
|
|
||||||
def run(self, p, x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds):
|
def run(self, p, x_type, x_values, y_type, y_values, draw_legend, no_fixed_seeds):
|
||||||
modules.processing.fix_seed(p)
|
if not no_fixed_seeds:
|
||||||
p.batch_size = 1
|
modules.processing.fix_seed(p)
|
||||||
|
|
||||||
initial_hn = opts.sd_hypernetwork
|
p.batch_size = 1
|
||||||
|
CLIP_stop_at_last_layers = opts.CLIP_stop_at_last_layers
|
||||||
|
|
||||||
def process_axis(opt, vals):
|
def process_axis(opt, vals):
|
||||||
if opt.label == 'Nothing':
|
if opt.label == 'Nothing':
|
||||||
@ -214,7 +221,6 @@ class Script(scripts.Script):
|
|||||||
m = re_range.fullmatch(val)
|
m = re_range.fullmatch(val)
|
||||||
mc = re_range_count.fullmatch(val)
|
mc = re_range_count.fullmatch(val)
|
||||||
if m is not None:
|
if m is not None:
|
||||||
|
|
||||||
start = int(m.group(1))
|
start = int(m.group(1))
|
||||||
end = int(m.group(2))+1
|
end = int(m.group(2))+1
|
||||||
step = int(m.group(3)) if m.group(3) is not None else 1
|
step = int(m.group(3)) if m.group(3) is not None else 1
|
||||||
@ -256,6 +262,17 @@ class Script(scripts.Script):
|
|||||||
valslist = list(permutations(valslist))
|
valslist = list(permutations(valslist))
|
||||||
|
|
||||||
valslist = [opt.type(x) for x in valslist]
|
valslist = [opt.type(x) for x in valslist]
|
||||||
|
|
||||||
|
# Confirm options are valid before starting
|
||||||
|
if opt.label == "Sampler":
|
||||||
|
samplers_dict = build_samplers_dict(p)
|
||||||
|
for sampler_val in valslist:
|
||||||
|
if sampler_val.lower() not in samplers_dict.keys():
|
||||||
|
raise RuntimeError(f"Unknown sampler: {sampler_val}")
|
||||||
|
elif opt.label == "Checkpoint name":
|
||||||
|
for ckpt_val in valslist:
|
||||||
|
if modules.sd_models.get_closet_checkpoint_match(ckpt_val) is None:
|
||||||
|
raise RuntimeError(f"Checkpoint for {ckpt_val} not found")
|
||||||
|
|
||||||
return valslist
|
return valslist
|
||||||
|
|
||||||
@ -308,6 +325,8 @@ class Script(scripts.Script):
|
|||||||
# restore checkpoint in case it was changed by axes
|
# restore checkpoint in case it was changed by axes
|
||||||
modules.sd_models.reload_model_weights(shared.sd_model)
|
modules.sd_models.reload_model_weights(shared.sd_model)
|
||||||
|
|
||||||
opts.data["sd_hypernetwork"] = initial_hn
|
hypernetwork.load_hypernetwork(opts.sd_hypernetwork)
|
||||||
|
|
||||||
|
opts.data["CLIP_stop_at_last_layers"] = CLIP_stop_at_last_layers
|
||||||
|
|
||||||
return processed
|
return processed
|
||||||
|
17
style.css
17
style.css
@ -103,7 +103,12 @@
|
|||||||
|
|
||||||
#style_apply, #style_create, #interrogate{
|
#style_apply, #style_create, #interrogate{
|
||||||
margin: 0.75em 0.25em 0.25em 0.25em;
|
margin: 0.75em 0.25em 0.25em 0.25em;
|
||||||
min-width: 3em;
|
min-width: 5em;
|
||||||
|
}
|
||||||
|
|
||||||
|
#style_apply, #style_create, #deepbooru{
|
||||||
|
margin: 0.75em 0.25em 0.25em 0.25em;
|
||||||
|
min-width: 5em;
|
||||||
}
|
}
|
||||||
|
|
||||||
#style_pos_col, #style_neg_col{
|
#style_pos_col, #style_neg_col{
|
||||||
@ -448,3 +453,13 @@ input[type="range"]{
|
|||||||
.context-menu-items a:hover{
|
.context-menu-items a:hover{
|
||||||
background: #a55000;
|
background: #a55000;
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#quicksettings > div{
|
||||||
|
border: none;
|
||||||
|
background: none;
|
||||||
|
}
|
||||||
|
|
||||||
|
#quicksettings > div > div{
|
||||||
|
max-width: 32em;
|
||||||
|
padding: 0;
|
||||||
|
}
|
||||||
|
Binary file not shown.
Before Width: | Height: | Size: 526 KiB After Width: | Height: | Size: 329 KiB |
3
webui.py
3
webui.py
@ -82,6 +82,9 @@ modules.scripts.load_scripts(os.path.join(script_path, "scripts"))
|
|||||||
shared.sd_model = modules.sd_models.load_model()
|
shared.sd_model = modules.sd_models.load_model()
|
||||||
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model)))
|
||||||
|
|
||||||
|
loaded_hypernetwork = modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)
|
||||||
|
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||||
|
|
||||||
|
|
||||||
def webui():
|
def webui():
|
||||||
# make the program just exit at ctrl+c without waiting for anything
|
# make the program just exit at ctrl+c without waiting for anything
|
||||||
|
Loading…
Reference in New Issue
Block a user