mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 11:50:18 +08:00
Allow variable img size
This commit is contained in:
parent
151233399c
commit
448b9cedab
@ -17,7 +17,7 @@ re_numbers_at_start = re.compile(r"^[-\d]+\s*")
|
||||
|
||||
|
||||
class DatasetEntry:
|
||||
def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None):
|
||||
def __init__(self, filename=None, filename_text=None, latent_dist=None, latent_sample=None, cond=None, cond_text=None, pixel_values=None, img_shape=None):
|
||||
self.filename = filename
|
||||
self.filename_text = filename_text
|
||||
self.latent_dist = latent_dist
|
||||
@ -25,6 +25,7 @@ class DatasetEntry:
|
||||
self.cond = cond
|
||||
self.cond_text = cond_text
|
||||
self.pixel_values = pixel_values
|
||||
self.img_shape = img_shape
|
||||
|
||||
|
||||
class PersonalizedBase(Dataset):
|
||||
@ -33,8 +34,6 @@ class PersonalizedBase(Dataset):
|
||||
|
||||
self.placeholder_token = placeholder_token
|
||||
|
||||
self.width = width
|
||||
self.height = height
|
||||
self.flip = transforms.RandomHorizontalFlip(p=flip_p)
|
||||
|
||||
self.dataset = []
|
||||
@ -59,7 +58,11 @@ class PersonalizedBase(Dataset):
|
||||
if shared.state.interrupted:
|
||||
raise Exception("interrupted")
|
||||
try:
|
||||
image = Image.open(path).convert('RGB').resize((self.width, self.height), PIL.Image.BICUBIC)
|
||||
image = Image.open(path).convert('RGB')
|
||||
if width < 2000:
|
||||
image = image.resize((width, height), PIL.Image.BICUBIC)
|
||||
else:
|
||||
assert batch_size == 1, 'variable img size must have batch size 1'
|
||||
except Exception:
|
||||
continue
|
||||
|
||||
@ -88,14 +91,14 @@ class PersonalizedBase(Dataset):
|
||||
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
|
||||
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
|
||||
latent_sampling_method = "once"
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample, img_shape=image.size)
|
||||
elif latent_sampling_method == "deterministic":
|
||||
# Works only for DiagonalGaussianDistribution
|
||||
latent_dist.std = 0
|
||||
latent_sample = model.get_first_stage_encoding(latent_dist).squeeze().to(devices.cpu)
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample)
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_sample=latent_sample, img_shape=image.size)
|
||||
elif latent_sampling_method == "random":
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist)
|
||||
entry = DatasetEntry(filename=path, filename_text=filename_text, latent_dist=latent_dist, img_shape=image.size)
|
||||
|
||||
if not (self.tag_drop_out != 0 or self.shuffle_tags):
|
||||
entry.cond_text = self.create_text(filename_text)
|
||||
@ -151,6 +154,7 @@ class BatchLoader:
|
||||
self.cond_text = [entry.cond_text for entry in data]
|
||||
self.cond = [entry.cond for entry in data]
|
||||
self.latent_sample = torch.stack([entry.latent_sample for entry in data]).squeeze(1)
|
||||
self.img_shape = [entry.img_shape for entry in data]
|
||||
#self.emb_index = [entry.emb_index for entry in data]
|
||||
#print(self.latent_sample.device)
|
||||
|
||||
|
@ -451,8 +451,8 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
||||
else:
|
||||
p.prompt = batch.cond_text[0]
|
||||
p.steps = 20
|
||||
p.width = training_width
|
||||
p.height = training_height
|
||||
p.width = batch.img_shape[0][0]
|
||||
p.height = batch.img_shape[0][1]
|
||||
|
||||
preview_text = p.prompt
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user