mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-04 13:55:06 +08:00
Merge pull request #12599 from AUTOMATIC1111/ram_optim
RAM optimization round 2
This commit is contained in:
commit
448d6bef37
@ -304,7 +304,10 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn
|
||||
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
|
||||
|
||||
weights_backup = getattr(self, "network_weights_backup", None)
|
||||
if weights_backup is None:
|
||||
if weights_backup is None and wanted_names != ():
|
||||
if current_names != ():
|
||||
raise RuntimeError("no backup weights found and current weights are not unchanged")
|
||||
|
||||
if isinstance(self, torch.nn.MultiheadAttention):
|
||||
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
|
||||
else:
|
||||
|
@ -155,10 +155,16 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, state_dict, device):
|
||||
def __init__(self, state_dict, device, weight_dtype_conversion=None):
|
||||
super().__init__()
|
||||
self.state_dict = state_dict
|
||||
self.device = device
|
||||
self.weight_dtype_conversion = weight_dtype_conversion or {}
|
||||
self.default_dtype = self.weight_dtype_conversion.get('')
|
||||
|
||||
def get_weight_dtype(self, key):
|
||||
key_first_term, _ = key.split('.', 1)
|
||||
return self.weight_dtype_conversion.get(key_first_term, self.default_dtype)
|
||||
|
||||
def __enter__(self):
|
||||
if shared.cmd_opts.disable_model_loading_ram_optimization:
|
||||
@ -167,23 +173,60 @@ class LoadStateDictOnMeta(ReplaceHelper):
|
||||
sd = self.state_dict
|
||||
device = self.device
|
||||
|
||||
def load_from_state_dict(original, self, state_dict, prefix, *args, **kwargs):
|
||||
params = [(name, param) for name, param in self._parameters.items() if param is not None and param.is_meta]
|
||||
def load_from_state_dict(original, module, state_dict, prefix, *args, **kwargs):
|
||||
used_param_keys = []
|
||||
|
||||
for name, param in params:
|
||||
if param.is_meta:
|
||||
self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device), requires_grad=param.requires_grad)
|
||||
for name, param in module._parameters.items():
|
||||
if param is None:
|
||||
continue
|
||||
|
||||
original(self, state_dict, prefix, *args, **kwargs)
|
||||
|
||||
for name, _ in params:
|
||||
key = prefix + name
|
||||
if key in sd:
|
||||
del sd[key]
|
||||
sd_param = sd.pop(key, None)
|
||||
if sd_param is not None:
|
||||
state_dict[key] = sd_param.to(dtype=self.get_weight_dtype(key))
|
||||
used_param_keys.append(key)
|
||||
|
||||
if param.is_meta:
|
||||
dtype = sd_param.dtype if sd_param is not None else param.dtype
|
||||
module._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device, dtype=dtype), requires_grad=param.requires_grad)
|
||||
|
||||
for name in module._buffers:
|
||||
key = prefix + name
|
||||
|
||||
sd_param = sd.pop(key, None)
|
||||
if sd_param is not None:
|
||||
state_dict[key] = sd_param
|
||||
used_param_keys.append(key)
|
||||
|
||||
original(module, state_dict, prefix, *args, **kwargs)
|
||||
|
||||
for key in used_param_keys:
|
||||
state_dict.pop(key, None)
|
||||
|
||||
def load_state_dict(original, module, state_dict, strict=True):
|
||||
"""torch makes a lot of copies of the dictionary with weights, so just deleting entries from state_dict does not help
|
||||
because the same values are stored in multiple copies of the dict. The trick used here is to give torch a dict with
|
||||
all weights on meta device, i.e. deleted, and then it doesn't matter how many copies torch makes.
|
||||
|
||||
In _load_from_state_dict, the correct weight will be obtained from a single dict with the right weights (sd).
|
||||
|
||||
The dangerous thing about this is if _load_from_state_dict is not called, (if some exotic module overloads
|
||||
the function and does not call the original) the state dict will just fail to load because weights
|
||||
would be on the meta device.
|
||||
"""
|
||||
|
||||
if state_dict == sd:
|
||||
state_dict = {k: v.to(device="meta", dtype=v.dtype) for k, v in state_dict.items()}
|
||||
|
||||
original(module, state_dict, strict=strict)
|
||||
|
||||
module_load_state_dict = self.replace(torch.nn.Module, 'load_state_dict', lambda *args, **kwargs: load_state_dict(module_load_state_dict, *args, **kwargs))
|
||||
module_load_from_state_dict = self.replace(torch.nn.Module, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(module_load_from_state_dict, *args, **kwargs))
|
||||
linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs))
|
||||
conv2d_load_from_state_dict = self.replace(torch.nn.Conv2d, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(conv2d_load_from_state_dict, *args, **kwargs))
|
||||
mha_load_from_state_dict = self.replace(torch.nn.MultiheadAttention, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(mha_load_from_state_dict, *args, **kwargs))
|
||||
layer_norm_load_from_state_dict = self.replace(torch.nn.LayerNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(layer_norm_load_from_state_dict, *args, **kwargs))
|
||||
group_norm_load_from_state_dict = self.replace(torch.nn.GroupNorm, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(group_norm_load_from_state_dict, *args, **kwargs))
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.restore()
|
||||
|
@ -343,7 +343,10 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
|
||||
model.to(memory_format=torch.channels_last)
|
||||
timer.record("apply channels_last")
|
||||
|
||||
if not shared.cmd_opts.no_half:
|
||||
if shared.cmd_opts.no_half:
|
||||
model.float()
|
||||
timer.record("apply float()")
|
||||
else:
|
||||
vae = model.first_stage_model
|
||||
depth_model = getattr(model, 'depth_model', None)
|
||||
|
||||
@ -518,6 +521,13 @@ def send_model_to_cpu(m):
|
||||
devices.torch_gc()
|
||||
|
||||
|
||||
def model_target_device():
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
return devices.cpu
|
||||
else:
|
||||
return devices.device
|
||||
|
||||
|
||||
def send_model_to_device(m):
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
lowvram.setup_for_low_vram(m, shared.cmd_opts.medvram)
|
||||
@ -579,7 +589,15 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
|
||||
|
||||
timer.record("create model")
|
||||
|
||||
with sd_disable_initialization.LoadStateDictOnMeta(state_dict, devices.cpu):
|
||||
if shared.cmd_opts.no_half:
|
||||
weight_dtype_conversion = None
|
||||
else:
|
||||
weight_dtype_conversion = {
|
||||
'first_stage_model': None,
|
||||
'': torch.float16,
|
||||
}
|
||||
|
||||
with sd_disable_initialization.LoadStateDictOnMeta(state_dict, device=model_target_device(), weight_dtype_conversion=weight_dtype_conversion):
|
||||
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
|
||||
timer.record("load weights from state dict")
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user