diff --git a/extensions-builtin/Lora/network_oft.py b/extensions-builtin/Lora/network_oft.py index ebe6740c5..3034a407e 100644 --- a/extensions-builtin/Lora/network_oft.py +++ b/extensions-builtin/Lora/network_oft.py @@ -29,98 +29,36 @@ class NetworkModuleOFT(network.NetworkModule): self.block_size = self.out_dim // self.num_blocks self.org_module: list[torch.Module] = [self.sd_module] - #self.org_weight = self.org_module[0].weight.to(self.org_module[0].weight.device, copy=True) - init_multiplier = self.multiplier() * self.calc_scale() - self.last_multiplier = init_multiplier - - self.R = self.get_weight(self.oft_blocks, init_multiplier) - - self.hooks = [] - self.merged_weight = self.merge_weight() - - #self.apply_to() - self.applied = False - self.merged = False - - def merge_weight(self): - org_weight = self.org_module[0].weight - R = self.R.to(org_weight.device, dtype=org_weight.dtype) + def merge_weight(self, R_weight, org_weight): + R_weight = R_weight.to(org_weight.device, dtype=org_weight.dtype) if org_weight.dim() == 4: - weight = torch.einsum("oihw, op -> pihw", org_weight, R) + weight = torch.einsum("oihw, op -> pihw", org_weight, R_weight) else: - weight = torch.einsum("oi, op -> pi", org_weight, R) + weight = torch.einsum("oi, op -> pi", org_weight, R_weight) return weight - def replace_weight(self, new_weight): - org_sd = self.org_module[0].state_dict() - org_sd['weight'] = new_weight - self.org_module[0].load_state_dict(org_sd) - self.merged = True - - def restore_weight(self): - pass - #org_sd = self.org_module[0].state_dict() - #org_sd['weight'] = self.org_weight - #self.org_module[0].load_state_dict(org_sd) - #self.merged = False - - # FIXME: hook forward method of original linear, but how do we undo the hook when we are done? - def apply_to(self): - if not self.applied: - self.org_forward = self.org_module[0].forward - #self.org_module[0].forward = self.forward - prehook = self.org_module[0].register_forward_pre_hook(self.pre_forward_hook) - hook = self.org_module[0].register_forward_hook(self.forward_hook) - self.hooks.append(prehook) - self.hooks.append(hook) - self.applied = True - - def remove_from(self): - if self.applied: - for hook in self.hooks: - hook.remove() - self.hooks = [] - self.applied = False - def get_weight(self, oft_blocks, multiplier=None): - multiplier = multiplier.to(oft_blocks.device, dtype=oft_blocks.dtype) constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype) + block_Q = oft_blocks - oft_blocks.transpose(1, 2) norm_Q = torch.norm(block_Q.flatten()) new_norm_Q = torch.clamp(norm_Q, max=constraint) block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse()) + block_R_weighted = multiplier * block_R + (1 - multiplier) * m_I R = torch.block_diag(*block_R_weighted) return R def calc_updown(self, orig_weight): - if not self.applied: - self.apply_to() + R = self.get_weight(self.oft_blocks, self.multiplier()) + merged_weight = self.merge_weight(R, orig_weight) - self.merged_weight = self.merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - - updown = torch.zeros_like(orig_weight, device=orig_weight.device, dtype=orig_weight.dtype) + updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight output_shape = orig_weight.shape - orig_weight = self.merged_weight - #output_shape = self.oft_blocks.shape + orig_weight = orig_weight return self.finalize_updown(updown, orig_weight, output_shape) - - def pre_forward_hook(self, module, input): - #if not self.applied: - # self.apply_to() - - multiplier = self.multiplier() * self.calc_scale() - - if not multiplier==self.last_multiplier or not self.merged: - self.R = self.get_weight(self.oft_blocks, multiplier) - self.last_multiplier = multiplier - self.merged_weight = self.merge_weight() - self.replace_weight(self.merged_weight) - - def forward_hook(self, module, args, output): - pass \ No newline at end of file