mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-21 13:50:12 +08:00
Use devices.autocast instead of torch.autocast
This commit is contained in:
parent
21effd629d
commit
4d5f1691dd
@ -495,7 +495,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, batch_size, gradient_step,
|
|||||||
if shared.state.interrupted:
|
if shared.state.interrupted:
|
||||||
break
|
break
|
||||||
|
|
||||||
with torch.autocast("cuda"):
|
with devices.autocast():
|
||||||
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
x = batch.latent_sample.to(devices.device, non_blocking=pin_memory)
|
||||||
if tag_drop_out != 0 or shuffle_tags:
|
if tag_drop_out != 0 or shuffle_tags:
|
||||||
shared.sd_model.cond_stage_model.to(devices.device)
|
shared.sd_model.cond_stage_model.to(devices.device)
|
||||||
|
@ -148,8 +148,7 @@ class InterrogateModels:
|
|||||||
|
|
||||||
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
|
clip_image = self.clip_preprocess(pil_image).unsqueeze(0).type(self.dtype).to(devices.device_interrogate)
|
||||||
|
|
||||||
precision_scope = torch.autocast if shared.cmd_opts.precision == "autocast" else contextlib.nullcontext
|
with torch.no_grad(), devices.autocast():
|
||||||
with torch.no_grad(), precision_scope("cuda"):
|
|
||||||
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
|
image_features = self.clip_model.encode_image(clip_image).type(self.dtype)
|
||||||
|
|
||||||
image_features /= image_features.norm(dim=-1, keepdim=True)
|
image_features /= image_features.norm(dim=-1, keepdim=True)
|
||||||
|
@ -13,10 +13,6 @@ from modules.swinir_model_arch import SwinIR as net
|
|||||||
from modules.swinir_model_arch_v2 import Swin2SR as net2
|
from modules.swinir_model_arch_v2 import Swin2SR as net2
|
||||||
from modules.upscaler import Upscaler, UpscalerData
|
from modules.upscaler import Upscaler, UpscalerData
|
||||||
|
|
||||||
precision_scope = (
|
|
||||||
torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
|
|
||||||
)
|
|
||||||
|
|
||||||
|
|
||||||
class UpscalerSwinIR(Upscaler):
|
class UpscalerSwinIR(Upscaler):
|
||||||
def __init__(self, dirname):
|
def __init__(self, dirname):
|
||||||
@ -112,7 +108,7 @@ def upscale(
|
|||||||
img = np.moveaxis(img, 2, 0) / 255
|
img = np.moveaxis(img, 2, 0) / 255
|
||||||
img = torch.from_numpy(img).float()
|
img = torch.from_numpy(img).float()
|
||||||
img = img.unsqueeze(0).to(devices.device_swinir)
|
img = img.unsqueeze(0).to(devices.device_swinir)
|
||||||
with torch.no_grad(), precision_scope("cuda"):
|
with torch.no_grad(), devices.autocast():
|
||||||
_, _, h_old, w_old = img.size()
|
_, _, h_old, w_old = img.size()
|
||||||
h_pad = (h_old // window_size + 1) * window_size - h_old
|
h_pad = (h_old // window_size + 1) * window_size - h_old
|
||||||
w_pad = (w_old // window_size + 1) * window_size - w_old
|
w_pad = (w_old // window_size + 1) * window_size - w_old
|
||||||
|
@ -82,7 +82,7 @@ class PersonalizedBase(Dataset):
|
|||||||
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
|
torchdata = torch.from_numpy(npimage).permute(2, 0, 1).to(device=device, dtype=torch.float32)
|
||||||
latent_sample = None
|
latent_sample = None
|
||||||
|
|
||||||
with torch.autocast("cuda"):
|
with devices.autocast():
|
||||||
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
|
latent_dist = model.encode_first_stage(torchdata.unsqueeze(dim=0))
|
||||||
|
|
||||||
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
|
if latent_sampling_method == "once" or (latent_sampling_method == "deterministic" and not isinstance(latent_dist, DiagonalGaussianDistribution)):
|
||||||
@ -101,7 +101,7 @@ class PersonalizedBase(Dataset):
|
|||||||
entry.cond_text = self.create_text(filename_text)
|
entry.cond_text = self.create_text(filename_text)
|
||||||
|
|
||||||
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
|
if include_cond and not (self.tag_drop_out != 0 or self.shuffle_tags):
|
||||||
with torch.autocast("cuda"):
|
with devices.autocast():
|
||||||
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
|
entry.cond = cond_model([entry.cond_text]).to(devices.cpu).squeeze(0)
|
||||||
|
|
||||||
self.dataset.append(entry)
|
self.dataset.append(entry)
|
||||||
|
@ -316,7 +316,7 @@ def train_embedding(embedding_name, learn_rate, batch_size, gradient_step, data_
|
|||||||
if shared.state.interrupted:
|
if shared.state.interrupted:
|
||||||
break
|
break
|
||||||
|
|
||||||
with torch.autocast("cuda"):
|
with devices.autocast():
|
||||||
# c = stack_conds(batch.cond).to(devices.device)
|
# c = stack_conds(batch.cond).to(devices.device)
|
||||||
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
|
# mask = torch.tensor(batch.emb_index).to(devices.device, non_blocking=pin_memory)
|
||||||
# print(mask)
|
# print(mask)
|
||||||
|
Loading…
Reference in New Issue
Block a user