mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-19 21:00:14 +08:00
Merge pull request #2324 from HunterVacui/interrogate_include_ranks_in_output
Interrogate: add option to include ranks in output
This commit is contained in:
commit
4f73e057a9
@ -19,6 +19,7 @@ def get_deepbooru_tags(pil_image):
|
|||||||
release_process()
|
release_process()
|
||||||
|
|
||||||
|
|
||||||
|
OPT_INCLUDE_RANKS = "include_ranks"
|
||||||
def create_deepbooru_opts():
|
def create_deepbooru_opts():
|
||||||
from modules import shared
|
from modules import shared
|
||||||
|
|
||||||
@ -26,6 +27,7 @@ def create_deepbooru_opts():
|
|||||||
"use_spaces": shared.opts.deepbooru_use_spaces,
|
"use_spaces": shared.opts.deepbooru_use_spaces,
|
||||||
"use_escape": shared.opts.deepbooru_escape,
|
"use_escape": shared.opts.deepbooru_escape,
|
||||||
"alpha_sort": shared.opts.deepbooru_sort_alpha,
|
"alpha_sort": shared.opts.deepbooru_sort_alpha,
|
||||||
|
OPT_INCLUDE_RANKS: shared.opts.interrogate_return_ranks,
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
@ -113,6 +115,7 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_o
|
|||||||
alpha_sort = deepbooru_opts['alpha_sort']
|
alpha_sort = deepbooru_opts['alpha_sort']
|
||||||
use_spaces = deepbooru_opts['use_spaces']
|
use_spaces = deepbooru_opts['use_spaces']
|
||||||
use_escape = deepbooru_opts['use_escape']
|
use_escape = deepbooru_opts['use_escape']
|
||||||
|
include_ranks = deepbooru_opts['include_ranks']
|
||||||
|
|
||||||
width = model.input_shape[2]
|
width = model.input_shape[2]
|
||||||
height = model.input_shape[1]
|
height = model.input_shape[1]
|
||||||
@ -151,19 +154,20 @@ def get_deepbooru_tags_from_model(model, tags, pil_image, threshold, deepbooru_o
|
|||||||
if alpha_sort:
|
if alpha_sort:
|
||||||
sort_ndx = 1
|
sort_ndx = 1
|
||||||
|
|
||||||
# sort by reverse by likelihood and normal for alpha
|
# sort by reverse by likelihood and normal for alpha, and format tag text as requested
|
||||||
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
|
unsorted_tags_in_theshold.sort(key=lambda y: y[sort_ndx], reverse=(not alpha_sort))
|
||||||
for weight, tag in unsorted_tags_in_theshold:
|
for weight, tag in unsorted_tags_in_theshold:
|
||||||
result_tags_out.append(tag)
|
# note: tag_outformat will still have a colon if include_ranks is True
|
||||||
|
tag_outformat = tag.replace(':', ' ')
|
||||||
|
if use_spaces:
|
||||||
|
tag_outformat = tag_outformat.replace('_', ' ')
|
||||||
|
if use_escape:
|
||||||
|
tag_outformat = re.sub(re_special, r'\\\1', tag_outformat)
|
||||||
|
if include_ranks:
|
||||||
|
tag_outformat += f":{weight:.3f}"
|
||||||
|
|
||||||
|
result_tags_out.append(tag_outformat)
|
||||||
|
|
||||||
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
print('\n'.join(sorted(result_tags_print, reverse=True)))
|
||||||
|
|
||||||
tags_text = ', '.join(result_tags_out)
|
return ', '.join(result_tags_out)
|
||||||
|
|
||||||
if use_spaces:
|
|
||||||
tags_text = tags_text.replace('_', ' ')
|
|
||||||
|
|
||||||
if use_escape:
|
|
||||||
tags_text = re.sub(re_special, r'\\\1', tags_text)
|
|
||||||
|
|
||||||
return tags_text.replace(':', ' ')
|
|
||||||
|
@ -123,7 +123,7 @@ class InterrogateModels:
|
|||||||
|
|
||||||
return caption[0]
|
return caption[0]
|
||||||
|
|
||||||
def interrogate(self, pil_image):
|
def interrogate(self, pil_image, include_ranks=False):
|
||||||
res = None
|
res = None
|
||||||
|
|
||||||
try:
|
try:
|
||||||
@ -156,7 +156,10 @@ class InterrogateModels:
|
|||||||
for name, topn, items in self.categories:
|
for name, topn, items in self.categories:
|
||||||
matches = self.rank(image_features, items, top_count=topn)
|
matches = self.rank(image_features, items, top_count=topn)
|
||||||
for match, score in matches:
|
for match, score in matches:
|
||||||
res += ", " + match
|
if include_ranks:
|
||||||
|
res += ", " + match
|
||||||
|
else:
|
||||||
|
res += f", ({match}:{score})"
|
||||||
|
|
||||||
except Exception:
|
except Exception:
|
||||||
print(f"Error interrogating", file=sys.stderr)
|
print(f"Error interrogating", file=sys.stderr)
|
||||||
|
@ -255,6 +255,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
|||||||
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
options_templates.update(options_section(('interrogate', "Interrogate Options"), {
|
||||||
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
|
"interrogate_keep_models_in_memory": OptionInfo(False, "Interrogate: keep models in VRAM"),
|
||||||
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
|
"interrogate_use_builtin_artists": OptionInfo(True, "Interrogate: use artists from artists.csv"),
|
||||||
|
"interrogate_return_ranks": OptionInfo(False, "Interrogate: include ranks of model tags matches in results (Has no effect on caption-based interrogators)."),
|
||||||
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
|
"interrogate_clip_num_beams": OptionInfo(1, "Interrogate: num_beams for BLIP", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}),
|
||||||
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
"interrogate_clip_min_length": OptionInfo(24, "Interrogate: minimum description length (excluding artists, etc..)", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}),
|
||||||
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
"interrogate_clip_max_length": OptionInfo(48, "Interrogate: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}),
|
||||||
|
@ -17,7 +17,9 @@ def preprocess(process_src, process_dst, process_width, process_height, process_
|
|||||||
shared.interrogator.load()
|
shared.interrogator.load()
|
||||||
|
|
||||||
if process_caption_deepbooru:
|
if process_caption_deepbooru:
|
||||||
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, deepbooru.create_deepbooru_opts())
|
db_opts = deepbooru.create_deepbooru_opts()
|
||||||
|
db_opts[deepbooru.OPT_INCLUDE_RANKS] = False
|
||||||
|
deepbooru.create_deepbooru_process(opts.interrogate_deepbooru_score_threshold, db_opts)
|
||||||
|
|
||||||
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)
|
preprocess_work(process_src, process_dst, process_width, process_height, process_flip, process_split, process_caption, process_caption_deepbooru)
|
||||||
|
|
||||||
|
Loading…
Reference in New Issue
Block a user