diff --git a/modules/hypernetwork.py b/modules/hypernetwork.py deleted file mode 100644 index 7bbc443e5..000000000 --- a/modules/hypernetwork.py +++ /dev/null @@ -1,103 +0,0 @@ -import glob -import os -import sys -import traceback - -import torch - -from ldm.util import default -from modules import devices, shared -import torch -from torch import einsum -from einops import rearrange, repeat - - -class HypernetworkModule(torch.nn.Module): - def __init__(self, dim, state_dict): - super().__init__() - - self.linear1 = torch.nn.Linear(dim, dim * 2) - self.linear2 = torch.nn.Linear(dim * 2, dim) - - self.load_state_dict(state_dict, strict=True) - self.to(devices.device) - - def forward(self, x): - return x + (self.linear2(self.linear1(x))) - - -class Hypernetwork: - filename = None - name = None - - def __init__(self, filename): - self.filename = filename - self.name = os.path.splitext(os.path.basename(filename))[0] - self.layers = {} - - state_dict = torch.load(filename, map_location='cpu') - for size, sd in state_dict.items(): - self.layers[size] = (HypernetworkModule(size, sd[0]), HypernetworkModule(size, sd[1])) - - -def list_hypernetworks(path): - res = {} - for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True): - name = os.path.splitext(os.path.basename(filename))[0] - res[name] = filename - return res - - -def load_hypernetwork(filename): - path = shared.hypernetworks.get(filename, None) - if path is not None: - print(f"Loading hypernetwork {filename}") - try: - shared.loaded_hypernetwork = Hypernetwork(path) - except Exception: - print(f"Error loading hypernetwork {path}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - else: - if shared.loaded_hypernetwork is not None: - print(f"Unloading hypernetwork") - - shared.loaded_hypernetwork = None - - -def apply_hypernetwork(hypernetwork, context): - hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) - - if hypernetwork_layers is None: - return context, context - - context_k = hypernetwork_layers[0](context) - context_v = hypernetwork_layers[1](context) - return context_k, context_v - - -def attention_CrossAttention_forward(self, x, context=None, mask=None): - h = self.heads - - q = self.to_q(x) - context = default(context, x) - - context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context) - k = self.to_k(context_k) - v = self.to_v(context_v) - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - sim = einsum('b i d, b j d -> b i j', q, k) * self.scale - - if mask is not None: - mask = rearrange(mask, 'b ... -> b (...)') - max_neg_value = -torch.finfo(sim.dtype).max - mask = repeat(mask, 'b j -> (b h) () j', h=h) - sim.masked_fill_(~mask, max_neg_value) - - # attention, what we cannot get enough of - attn = sim.softmax(dim=-1) - - out = einsum('b i j, b j d -> b i d', attn, v) - out = rearrange(out, '(b h) n d -> b n (h d)', h=h) - return self.to_out(out) diff --git a/modules/hypernetwork/hypernetwork.py b/modules/hypernetwork/hypernetwork.py index a3d6a47ef..aa701bda5 100644 --- a/modules/hypernetwork/hypernetwork.py +++ b/modules/hypernetwork/hypernetwork.py @@ -26,10 +26,11 @@ class HypernetworkModule(torch.nn.Module): if state_dict is not None: self.load_state_dict(state_dict, strict=True) else: - self.linear1.weight.data.fill_(0.0001) - self.linear1.bias.data.fill_(0.0001) - self.linear2.weight.data.fill_(0.0001) - self.linear2.bias.data.fill_(0.0001) + + self.linear1.weight.data.normal_(mean=0.0, std=0.01) + self.linear1.bias.data.zero_() + self.linear2.weight.data.normal_(mean=0.0, std=0.01) + self.linear2.bias.data.zero_() self.to(devices.device) @@ -92,41 +93,54 @@ class Hypernetwork: self.sd_checkpoint_name = state_dict.get('sd_checkpoint_name', None) -def load_hypernetworks(path): +def list_hypernetworks(path): res = {} - - for filename in glob.iglob(path + '**/*.pt', recursive=True): - try: - hn = Hypernetwork() - hn.load(filename) - res[hn.name] = hn - except Exception: - print(f"Error loading hypernetwork {filename}", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - + for filename in glob.iglob(os.path.join(path, '**/*.pt'), recursive=True): + name = os.path.splitext(os.path.basename(filename))[0] + res[name] = filename return res +def load_hypernetwork(filename): + path = shared.hypernetworks.get(filename, None) + if path is not None: + print(f"Loading hypernetwork {filename}") + try: + shared.loaded_hypernetwork = Hypernetwork() + shared.loaded_hypernetwork.load(path) + + except Exception: + print(f"Error loading hypernetwork {path}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + else: + if shared.loaded_hypernetwork is not None: + print(f"Unloading hypernetwork") + + shared.loaded_hypernetwork = None + + +def apply_hypernetwork(hypernetwork, context, layer=None): + hypernetwork_layers = (hypernetwork.layers if hypernetwork is not None else {}).get(context.shape[2], None) + + if hypernetwork_layers is None: + return context, context + + if layer is not None: + layer.hyper_k = hypernetwork_layers[0] + layer.hyper_v = hypernetwork_layers[1] + + context_k = hypernetwork_layers[0](context) + context_v = hypernetwork_layers[1](context) + return context_k, context_v + + def attention_CrossAttention_forward(self, x, context=None, mask=None): h = self.heads q = self.to_q(x) context = default(context, x) - hypernetwork_layers = (shared.hypernetwork.layers if shared.hypernetwork is not None else {}).get(context.shape[2], None) - - if hypernetwork_layers is not None: - hypernetwork_k, hypernetwork_v = hypernetwork_layers - - self.hypernetwork_k = hypernetwork_k - self.hypernetwork_v = hypernetwork_v - - context_k = hypernetwork_k(context) - context_v = hypernetwork_v(context) - else: - context_k = context - context_v = context - + context_k, context_v = apply_hypernetwork(shared.loaded_hypernetwork, context, self) k = self.to_k(context_k) v = self.to_v(context_v) @@ -151,7 +165,9 @@ def attention_CrossAttention_forward(self, x, context=None, mask=None): def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, steps, create_image_every, save_hypernetwork_every, template_file, preview_image_prompt): assert hypernetwork_name, 'embedding not selected' - shared.hypernetwork = shared.hypernetworks[hypernetwork_name] + path = shared.hypernetworks.get(hypernetwork_name, None) + shared.loaded_hypernetwork = Hypernetwork() + shared.loaded_hypernetwork.load(path) shared.state.textinfo = "Initializing hypernetwork training..." shared.state.job_count = steps @@ -176,9 +192,9 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." with torch.autocast("cuda"): - ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, width=512, height=512, repeats=1, placeholder_token=hypernetwork_name, model=shared.sd_model, device=devices.device, template_file=template_file) - hypernetwork = shared.hypernetworks[hypernetwork_name] + hypernetwork = shared.loaded_hypernetwork weights = hypernetwork.weights() for weight in weights: weight.requires_grad = True @@ -194,7 +210,7 @@ def train_hypernetwork(hypernetwork_name, learn_rate, data_root, log_directory, if ititial_step > steps: return hypernetwork, filename - pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) + pbar = tqdm.tqdm(enumerate(ds), total=steps - ititial_step) for i, (x, text) in pbar: hypernetwork.step = i + ititial_step diff --git a/modules/hypernetwork/ui.py b/modules/hypernetwork/ui.py index 525f978c5..f6d1d0a35 100644 --- a/modules/hypernetwork/ui.py +++ b/modules/hypernetwork/ui.py @@ -6,24 +6,24 @@ import gradio as gr import modules.textual_inversion.textual_inversion import modules.textual_inversion.preprocess from modules import sd_hijack, shared +from modules.hypernetwork import hypernetwork def create_hypernetwork(name): fn = os.path.join(shared.cmd_opts.hypernetwork_dir, f"{name}.pt") assert not os.path.exists(fn), f"file {fn} already exists" - hypernetwork = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) - hypernetwork.save(fn) + hypernet = modules.hypernetwork.hypernetwork.Hypernetwork(name=name) + hypernet.save(fn) shared.reload_hypernetworks() - shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None) return gr.Dropdown.update(choices=sorted([x for x in shared.hypernetworks.keys()])), f"Created: {fn}", "" def train_hypernetwork(*args): - initial_hypernetwork = shared.hypernetwork + initial_hypernetwork = shared.loaded_hypernetwork try: sd_hijack.undo_optimizations() @@ -38,6 +38,6 @@ Hypernetwork saved to {html.escape(filename)} except Exception: raise finally: - shared.hypernetwork = initial_hypernetwork + shared.loaded_hypernetwork = initial_hypernetwork sd_hijack.apply_optimizations() diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py index 25cb67a4e..27e571fcd 100644 --- a/modules/sd_hijack_optimizations.py +++ b/modules/sd_hijack_optimizations.py @@ -8,7 +8,8 @@ from torch import einsum from ldm.util import default from einops import rearrange -from modules import shared, hypernetwork +from modules import shared +from modules.hypernetwork import hypernetwork if shared.cmd_opts.xformers or shared.cmd_opts.force_enable_xformers: diff --git a/modules/shared.py b/modules/shared.py index 14b40d70d..8753015e5 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -13,7 +13,8 @@ import modules.memmon import modules.sd_models import modules.styles import modules.devices as devices -from modules import sd_samplers, hypernetwork +from modules import sd_samplers +from modules.hypernetwork import hypernetwork from modules.paths import models_path, script_path, sd_path sd_model_file = os.path.join(script_path, 'model.ckpt') @@ -29,6 +30,7 @@ parser.add_argument("--no-half-vae", action='store_true', help="do not switch th parser.add_argument("--no-progressbar-hiding", action='store_true', help="do not hide progressbar in gradio UI (we hide it because it slows down ML if you have hardware acceleration in browser)") parser.add_argument("--max-batch-count", type=int, default=16, help="maximum batch count value for the UI") parser.add_argument("--embeddings-dir", type=str, default=os.path.join(script_path, 'embeddings'), help="embeddings directory for textual inversion (default: embeddings)") +parser.add_argument("--hypernetwork-dir", type=str, default=os.path.join(models_path, 'hypernetworks'), help="hypernetwork directory") parser.add_argument("--allow-code", action='store_true', help="allow custom script execution from webui") parser.add_argument("--medvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a little speed for low VRM usage") parser.add_argument("--lowvram", action='store_true', help="enable stable diffusion model optimizations for sacrificing a lot of speed for very low VRM usage") @@ -82,10 +84,17 @@ parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram xformers_available = False config_filename = cmd_opts.ui_settings_file -hypernetworks = hypernetwork.list_hypernetworks(os.path.join(models_path, 'hypernetworks')) +hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) loaded_hypernetwork = None +def reload_hypernetworks(): + global hypernetworks + + hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) + hypernetwork.load_hypernetwork(opts.sd_hypernetwork) + + class State: skipped = False interrupted = False diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index 5965c5a06..d69779504 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -156,7 +156,7 @@ def create_embedding(name, num_vectors_per_token, init_text='*'): return fn -def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file): +def train_embedding(embedding_name, learn_rate, data_root, log_directory, training_width, training_height, steps, num_repeats, create_image_every, save_embedding_every, template_file, preview_image_prompt): assert embedding_name, 'embedding not selected' shared.state.textinfo = "Initializing textual inversion training..." @@ -238,12 +238,14 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') + preview_text = text if preview_image_prompt == "" else preview_image_prompt + p = processing.StableDiffusionProcessingTxt2Img( sd_model=shared.sd_model, - prompt=text, + prompt=preview_text, steps=20, - height=training_height, - width=training_width, + height=training_height, + width=training_width, do_not_save_grid=True, do_not_save_samples=True, ) @@ -254,7 +256,7 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, traini shared.state.current_image = image image.save(last_saved_image) - last_saved_image += f", prompt: {text}" + last_saved_image += f", prompt: {preview_text}" shared.state.job_no = embedding.step diff --git a/modules/ui.py b/modules/ui.py index 10b1ee3a9..df6530590 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1023,7 +1023,7 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="") with gr.Column(): - create_embedding = gr.Button(value="Create", variant='primary') + create_embedding = gr.Button(value="Create embedding", variant='primary') with gr.Group(): gr.HTML(value="

Create a new hypernetwork

") @@ -1035,7 +1035,7 @@ def create_ui(wrap_gradio_gpu_call): gr.HTML(value="") with gr.Column(): - create_hypernetwork = gr.Button(value="Create", variant='primary') + create_hypernetwork = gr.Button(value="Create hypernetwork", variant='primary') with gr.Group(): gr.HTML(value="

Preprocess images

") @@ -1147,6 +1147,7 @@ def create_ui(wrap_gradio_gpu_call): create_image_every, save_embedding_every, template_file, + preview_image_prompt, ], outputs=[ ti_output, diff --git a/scripts/xy_grid.py b/scripts/xy_grid.py index 42e1489c4..0af5993ce 100644 --- a/scripts/xy_grid.py +++ b/scripts/xy_grid.py @@ -10,7 +10,8 @@ import numpy as np import modules.scripts as scripts import gradio as gr -from modules import images, hypernetwork +from modules import images +from modules.hypernetwork import hypernetwork from modules.processing import process_images, Processed, get_correct_sampler from modules.shared import opts, cmd_opts, state import modules.shared as shared diff --git a/webui.py b/webui.py index 7c2005519..ba2156c84 100644 --- a/webui.py +++ b/webui.py @@ -29,6 +29,7 @@ from modules import devices from modules import modelloader from modules.paths import script_path from modules.shared import cmd_opts +import modules.hypernetwork.hypernetwork modelloader.cleanup_models() modules.sd_models.setup_model() @@ -77,22 +78,12 @@ def wrap_gradio_gpu_call(func, extra_outputs=None): return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs) -def set_hypernetwork(): - shared.hypernetwork = shared.hypernetworks.get(shared.opts.sd_hypernetwork, None) - - -shared.reload_hypernetworks() -shared.opts.onchange("sd_hypernetwork", set_hypernetwork) -set_hypernetwork() - - modules.scripts.load_scripts(os.path.join(script_path, "scripts")) shared.sd_model = modules.sd_models.load_model() shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights(shared.sd_model))) -loaded_hypernetwork = modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork) -shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) +shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetwork.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork))) def webui(): @@ -117,7 +108,7 @@ def webui(): prevent_thread_lock=True ) - app.add_middleware(GZipMiddleware,minimum_size=1000) + app.add_middleware(GZipMiddleware, minimum_size=1000) while 1: time.sleep(0.5)