From 5381405eaa1e809e5cfb97522bd4c19d3c946079 Mon Sep 17 00:00:00 2001 From: drhead <1313496+drhead@users.noreply.github.com> Date: Sat, 9 Dec 2023 14:09:28 -0500 Subject: [PATCH] re-derive sqrt alpha bar and sqrt one minus alphabar This is the only place these values are ever referenced outside of training code so this change is very justifiable and more consistent. --- modules/sd_samplers_timesteps.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index b17a8f93c..c4bd5c127 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -36,7 +36,7 @@ class CompVisTimestepsVDenoiser(torch.nn.Module): self.inner_model = model def predict_eps_from_z_and_v(self, x_t, t, v): - return self.inner_model.sqrt_alphas_cumprod[t.to(torch.int), None, None, None] * v + self.inner_model.sqrt_one_minus_alphas_cumprod[t.to(torch.int), None, None, None] * x_t + return torch.sqrt(self.inner_model.alphas_cumprod)[t.to(torch.int), None, None, None] * v + torch.sqrt(1 - self.inner_model.alphas_cumprod)[t.to(torch.int), None, None, None] * x_t def forward(self, input, timesteps, **kwargs): model_output = self.inner_model.apply_model(input, timesteps, **kwargs)