diff --git a/modules/textual_inversion/autocrop.py b/modules/textual_inversion/autocrop.py index caaf18c8c..01a92b128 100644 --- a/modules/textual_inversion/autocrop.py +++ b/modules/textual_inversion/autocrop.py @@ -1,4 +1,5 @@ import cv2 +import requests import os from collections import defaultdict from math import log, sqrt @@ -293,6 +294,25 @@ def is_square(w, h): return w == h +def download_and_cache_models(dirname): + download_url = 'https://github.com/opencv/opencv_zoo/blob/91fb0290f50896f38a0ab1e558b74b16bc009428/models/face_detection_yunet/face_detection_yunet_2022mar.onnx?raw=true' + model_file_name = 'face_detection_yunet.onnx' + + if not os.path.exists(dirname): + os.makedirs(dirname) + + cache_file = os.path.join(dirname, model_file_name) + if not os.path.exists(cache_file): + print(f"downloading face detection model from '{download_url}' to '{cache_file}'") + response = requests.get(download_url) + with open(cache_file, "wb") as f: + f.write(response.content) + + if os.path.exists(cache_file): + return cache_file + return None + + class PointOfInterest: def __init__(self, x, y, weight=1.0, size=10): self.x = x diff --git a/modules/textual_inversion/preprocess.py b/modules/textual_inversion/preprocess.py index 1e4d4de8e..e13b18945 100644 --- a/modules/textual_inversion/preprocess.py +++ b/modules/textual_inversion/preprocess.py @@ -7,6 +7,7 @@ import tqdm import time from modules import shared, images +from modules.paths import models_path from modules.shared import opts, cmd_opts from modules.textual_inversion import autocrop if cmd_opts.deepdanbooru: @@ -146,14 +147,22 @@ def preprocess_work(process_src, process_dst, process_width, process_height, pre save_pic(splitted, index, existing_caption=existing_caption) process_default_resize = False - if process_entropy_focus and img.height != img.width: + if process_focal_crop and img.height != img.width: + + dnn_model_path = None + try: + dnn_model_path = autocrop.download_and_cache_models(os.path.join(models_path, "opencv")) + except Exception as e: + print("Unable to load face detection model for auto crop selection. Falling back to lower quality haar method.", e) + autocrop_settings = autocrop.Settings( crop_width = width, crop_height = height, face_points_weight = process_focal_crop_face_weight, entropy_points_weight = process_focal_crop_entropy_weight, corner_points_weight = process_focal_crop_edges_weight, - annotate_image = process_focal_crop_debug + annotate_image = process_focal_crop_debug, + dnn_model_path = dnn_model_path, ) for focal in autocrop.crop_image(img, autocrop_settings): save_pic(focal, index, existing_caption=existing_caption) diff --git a/requirements.txt b/requirements.txt index da1969cf4..75b37c4ff 100644 --- a/requirements.txt +++ b/requirements.txt @@ -8,6 +8,8 @@ gradio==3.5 invisible-watermark numpy omegaconf +opencv-python +requests piexif Pillow pytorch_lightning