mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
Merge branch 'dev' into dev
This commit is contained in:
commit
56c3f94ba3
1
.github/workflows/run_tests.yaml
vendored
1
.github/workflows/run_tests.yaml
vendored
@ -41,6 +41,7 @@ jobs:
|
||||
--skip-prepare-environment
|
||||
--skip-torch-cuda-test
|
||||
--test-server
|
||||
--do-not-download-clip
|
||||
--no-half
|
||||
--disable-opt-split-attention
|
||||
--use-cpu all
|
||||
|
36
CHANGELOG.md
36
CHANGELOG.md
@ -1,9 +1,35 @@
|
||||
## 1.5.1
|
||||
|
||||
### Minor:
|
||||
* support parsing text encoder blocks in some new LoRAs
|
||||
* delete scale checker script due to user demand
|
||||
|
||||
### Extensions and API:
|
||||
* add postprocess_batch_list script callback
|
||||
|
||||
### Bug Fixes:
|
||||
* fix TI training for SD1
|
||||
* fix reload altclip model error
|
||||
* prepend the pythonpath instead of overriding it
|
||||
* fix typo in SD_WEBUI_RESTARTING
|
||||
* if txt2img/img2img raises an exception, finally call state.end()
|
||||
* fix composable diffusion weight parsing
|
||||
* restyle Startup profile for black users
|
||||
* fix webui not launching with --nowebui
|
||||
* catch exception for non git extensions
|
||||
* fix some options missing from /sdapi/v1/options
|
||||
* fix for extension update status always saying "unknown"
|
||||
* fix display of extra network cards that have `<>` in the name
|
||||
* update lora extension to work with python 3.8
|
||||
|
||||
|
||||
## 1.5.0
|
||||
|
||||
### Features:
|
||||
* SD XL support
|
||||
* user metadata system for custom networks
|
||||
* extended Lora metadata editor: set activation text, default weight, view tags, training info
|
||||
* Lora extension rework to include other types of networks (all that were previously handled by LyCORIS extension)
|
||||
* show github stars for extenstions
|
||||
* img2img batch mode can read extra stuff from png info
|
||||
* img2img batch works with subdirectories
|
||||
@ -11,6 +37,9 @@
|
||||
* restyle time taken/VRAM display
|
||||
* add textual inversion hashes to infotext
|
||||
* optimization: cache git extension repo information
|
||||
* move generate button next to the generated picture for mobile clients
|
||||
* hide cards for networks of incompatible Stable Diffusion version in Lora extra networks interface
|
||||
* skip installing packages with pip if they all are already installed - startup speedup of about 2 seconds
|
||||
|
||||
### Minor:
|
||||
* checkbox to check/uncheck all extensions in the Installed tab
|
||||
@ -25,6 +54,8 @@
|
||||
* speedup extra networks listing
|
||||
* added `[none]` filename token.
|
||||
* removed thumbs extra networks view mode (use settings tab to change width/height/scale to get thumbs)
|
||||
* add always_discard_next_to_last_sigma option to XYZ plot
|
||||
* automatically switch to 32-bit float VAE if the generated picture has NaNs without the need for `--no-half-vae` commandline flag.
|
||||
|
||||
### Extensions and API:
|
||||
* api endpoints: /sdapi/v1/server-kill, /sdapi/v1/server-restart, /sdapi/v1/server-stop
|
||||
@ -53,9 +84,8 @@
|
||||
* fix: check fill size none zero when resize (fixes #11425)
|
||||
* use submit and blur for quick settings textbox
|
||||
* save img2img batch with images.save_image()
|
||||
*
|
||||
|
||||
|
||||
* prevent running preload.py for disabled extensions
|
||||
* fix: previously, model name was added together with directory name to infotext and to [model_name] filename pattern; directory name is now not included
|
||||
|
||||
|
||||
## 1.4.1
|
||||
|
@ -88,7 +88,7 @@ A browser interface based on Gradio library for Stable Diffusion.
|
||||
- [Alt-Diffusion](https://arxiv.org/abs/2211.06679) support - see [wiki](https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#alt-diffusion) for instructions
|
||||
- Now without any bad letters!
|
||||
- Load checkpoints in safetensors format
|
||||
- Eased resolution restriction: generated image's domension must be a multiple of 8 rather than 64
|
||||
- Eased resolution restriction: generated image's dimension must be a multiple of 8 rather than 64
|
||||
- Now with a license!
|
||||
- Reorder elements in the UI from settings screen
|
||||
|
||||
@ -168,5 +168,7 @@ Licenses for borrowed code can be found in `Settings -> Licenses` screen, and al
|
||||
- Security advice - RyotaK
|
||||
- UniPC sampler - Wenliang Zhao - https://github.com/wl-zhao/UniPC
|
||||
- TAESD - Ollin Boer Bohan - https://github.com/madebyollin/taesd
|
||||
- LyCORIS - KohakuBlueleaf
|
||||
- Restart sampling - lambertae - https://github.com/Newbeeer/diffusion_restart_sampling
|
||||
- Initial Gradio script - posted on 4chan by an Anonymous user. Thank you Anonymous user.
|
||||
- (You)
|
||||
|
@ -1,5 +1,5 @@
|
||||
from modules import extra_networks, shared
|
||||
import lora
|
||||
import networks
|
||||
|
||||
|
||||
class ExtraNetworkLora(extra_networks.ExtraNetwork):
|
||||
@ -9,24 +9,38 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
|
||||
def activate(self, p, params_list):
|
||||
additional = shared.opts.sd_lora
|
||||
|
||||
if additional != "None" and additional in lora.available_loras and not any(x for x in params_list if x.items[0] == additional):
|
||||
if additional != "None" and additional in networks.available_networks and not any(x for x in params_list if x.items[0] == additional):
|
||||
p.all_prompts = [x + f"<lora:{additional}:{shared.opts.extra_networks_default_multiplier}>" for x in p.all_prompts]
|
||||
params_list.append(extra_networks.ExtraNetworkParams(items=[additional, shared.opts.extra_networks_default_multiplier]))
|
||||
|
||||
names = []
|
||||
multipliers = []
|
||||
te_multipliers = []
|
||||
unet_multipliers = []
|
||||
dyn_dims = []
|
||||
for params in params_list:
|
||||
assert params.items
|
||||
|
||||
names.append(params.items[0])
|
||||
multipliers.append(float(params.items[1]) if len(params.items) > 1 else 1.0)
|
||||
names.append(params.positional[0])
|
||||
|
||||
lora.load_loras(names, multipliers)
|
||||
te_multiplier = float(params.positional[1]) if len(params.positional) > 1 else 1.0
|
||||
te_multiplier = float(params.named.get("te", te_multiplier))
|
||||
|
||||
unet_multiplier = float(params.positional[2]) if len(params.positional) > 2 else te_multiplier
|
||||
unet_multiplier = float(params.named.get("unet", unet_multiplier))
|
||||
|
||||
dyn_dim = int(params.positional[3]) if len(params.positional) > 3 else None
|
||||
dyn_dim = int(params.named["dyn"]) if "dyn" in params.named else dyn_dim
|
||||
|
||||
te_multipliers.append(te_multiplier)
|
||||
unet_multipliers.append(unet_multiplier)
|
||||
dyn_dims.append(dyn_dim)
|
||||
|
||||
networks.load_networks(names, te_multipliers, unet_multipliers, dyn_dims)
|
||||
|
||||
if shared.opts.lora_add_hashes_to_infotext:
|
||||
lora_hashes = []
|
||||
for item in lora.loaded_loras:
|
||||
shorthash = item.lora_on_disk.shorthash
|
||||
network_hashes = []
|
||||
for item in networks.loaded_networks:
|
||||
shorthash = item.network_on_disk.shorthash
|
||||
if not shorthash:
|
||||
continue
|
||||
|
||||
@ -36,10 +50,10 @@ class ExtraNetworkLora(extra_networks.ExtraNetwork):
|
||||
|
||||
alias = alias.replace(":", "").replace(",", "")
|
||||
|
||||
lora_hashes.append(f"{alias}: {shorthash}")
|
||||
network_hashes.append(f"{alias}: {shorthash}")
|
||||
|
||||
if lora_hashes:
|
||||
p.extra_generation_params["Lora hashes"] = ", ".join(lora_hashes)
|
||||
if network_hashes:
|
||||
p.extra_generation_params["Lora hashes"] = ", ".join(network_hashes)
|
||||
|
||||
def deactivate(self, p):
|
||||
pass
|
||||
|
@ -1,537 +1,9 @@
|
||||
import os
|
||||
import re
|
||||
import torch
|
||||
from typing import Union
|
||||
import networks
|
||||
|
||||
from modules import shared, devices, sd_models, errors, scripts, sd_hijack, hashes, cache
|
||||
list_available_loras = networks.list_available_networks
|
||||
|
||||
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
|
||||
|
||||
re_digits = re.compile(r"\d+")
|
||||
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
|
||||
re_compiled = {}
|
||||
|
||||
suffix_conversion = {
|
||||
"attentions": {},
|
||||
"resnets": {
|
||||
"conv1": "in_layers_2",
|
||||
"conv2": "out_layers_3",
|
||||
"time_emb_proj": "emb_layers_1",
|
||||
"conv_shortcut": "skip_connection",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def convert_diffusers_name_to_compvis(key, is_sd2):
|
||||
def match(match_list, regex_text):
|
||||
regex = re_compiled.get(regex_text)
|
||||
if regex is None:
|
||||
regex = re.compile(regex_text)
|
||||
re_compiled[regex_text] = regex
|
||||
|
||||
r = re.match(regex, key)
|
||||
if not r:
|
||||
return False
|
||||
|
||||
match_list.clear()
|
||||
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
|
||||
return True
|
||||
|
||||
m = []
|
||||
|
||||
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
||||
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
||||
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
||||
|
||||
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
|
||||
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
|
||||
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
|
||||
|
||||
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
||||
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
||||
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
||||
|
||||
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
|
||||
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
|
||||
|
||||
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
|
||||
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
|
||||
|
||||
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
|
||||
if is_sd2:
|
||||
if 'mlp_fc1' in m[1]:
|
||||
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
||||
elif 'mlp_fc2' in m[1]:
|
||||
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
||||
else:
|
||||
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
||||
|
||||
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
||||
|
||||
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
|
||||
if 'mlp_fc1' in m[1]:
|
||||
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
||||
elif 'mlp_fc2' in m[1]:
|
||||
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
||||
else:
|
||||
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
||||
|
||||
return key
|
||||
|
||||
|
||||
class LoraOnDisk:
|
||||
def __init__(self, name, filename):
|
||||
self.name = name
|
||||
self.filename = filename
|
||||
self.metadata = {}
|
||||
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
|
||||
|
||||
def read_metadata():
|
||||
metadata = sd_models.read_metadata_from_safetensors(filename)
|
||||
metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text
|
||||
|
||||
return metadata
|
||||
|
||||
if self.is_safetensors:
|
||||
try:
|
||||
self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata)
|
||||
except Exception as e:
|
||||
errors.display(e, f"reading lora {filename}")
|
||||
|
||||
if self.metadata:
|
||||
m = {}
|
||||
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
|
||||
m[k] = v
|
||||
|
||||
self.metadata = m
|
||||
|
||||
self.alias = self.metadata.get('ss_output_name', self.name)
|
||||
|
||||
self.hash = None
|
||||
self.shorthash = None
|
||||
self.set_hash(
|
||||
self.metadata.get('sshs_model_hash') or
|
||||
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
|
||||
''
|
||||
)
|
||||
|
||||
def set_hash(self, v):
|
||||
self.hash = v
|
||||
self.shorthash = self.hash[0:12]
|
||||
|
||||
if self.shorthash:
|
||||
available_lora_hash_lookup[self.shorthash] = self
|
||||
|
||||
def read_hash(self):
|
||||
if not self.hash:
|
||||
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')
|
||||
|
||||
def get_alias(self):
|
||||
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in forbidden_lora_aliases:
|
||||
return self.name
|
||||
else:
|
||||
return self.alias
|
||||
|
||||
|
||||
class LoraModule:
|
||||
def __init__(self, name, lora_on_disk: LoraOnDisk):
|
||||
self.name = name
|
||||
self.lora_on_disk = lora_on_disk
|
||||
self.multiplier = 1.0
|
||||
self.modules = {}
|
||||
self.mtime = None
|
||||
|
||||
self.mentioned_name = None
|
||||
"""the text that was used to add lora to prompt - can be either name or an alias"""
|
||||
|
||||
|
||||
class LoraUpDownModule:
|
||||
def __init__(self):
|
||||
self.up = None
|
||||
self.down = None
|
||||
self.alpha = None
|
||||
|
||||
|
||||
def assign_lora_names_to_compvis_modules(sd_model):
|
||||
lora_layer_mapping = {}
|
||||
|
||||
if shared.sd_model.is_sdxl:
|
||||
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
|
||||
if not hasattr(embedder, 'wrapped'):
|
||||
continue
|
||||
|
||||
for name, module in embedder.wrapped.named_modules():
|
||||
lora_name = f'{i}_{name.replace(".", "_")}'
|
||||
lora_layer_mapping[lora_name] = module
|
||||
module.lora_layer_name = lora_name
|
||||
else:
|
||||
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
|
||||
lora_name = name.replace(".", "_")
|
||||
lora_layer_mapping[lora_name] = module
|
||||
module.lora_layer_name = lora_name
|
||||
|
||||
for name, module in shared.sd_model.model.named_modules():
|
||||
lora_name = name.replace(".", "_")
|
||||
lora_layer_mapping[lora_name] = module
|
||||
module.lora_layer_name = lora_name
|
||||
|
||||
sd_model.lora_layer_mapping = lora_layer_mapping
|
||||
|
||||
|
||||
def load_lora(name, lora_on_disk):
|
||||
lora = LoraModule(name, lora_on_disk)
|
||||
lora.mtime = os.path.getmtime(lora_on_disk.filename)
|
||||
|
||||
sd = sd_models.read_state_dict(lora_on_disk.filename)
|
||||
|
||||
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
|
||||
if not hasattr(shared.sd_model, 'lora_layer_mapping'):
|
||||
assign_lora_names_to_compvis_modules(shared.sd_model)
|
||||
|
||||
keys_failed_to_match = {}
|
||||
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.lora_layer_mapping
|
||||
|
||||
for key_lora, weight in sd.items():
|
||||
key_lora_without_lora_parts, lora_key = key_lora.split(".", 1)
|
||||
|
||||
key = convert_diffusers_name_to_compvis(key_lora_without_lora_parts, is_sd2)
|
||||
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
|
||||
|
||||
if sd_module is None:
|
||||
m = re_x_proj.match(key)
|
||||
if m:
|
||||
sd_module = shared.sd_model.lora_layer_mapping.get(m.group(1), None)
|
||||
|
||||
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
|
||||
if sd_module is None and "lora_unet" in key_lora_without_lora_parts:
|
||||
key = key_lora_without_lora_parts.replace("lora_unet", "diffusion_model")
|
||||
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
|
||||
elif sd_module is None and "lora_te1_text_model" in key_lora_without_lora_parts:
|
||||
key = key_lora_without_lora_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
||||
sd_module = shared.sd_model.lora_layer_mapping.get(key, None)
|
||||
|
||||
if sd_module is None:
|
||||
keys_failed_to_match[key_lora] = key
|
||||
continue
|
||||
|
||||
lora_module = lora.modules.get(key, None)
|
||||
if lora_module is None:
|
||||
lora_module = LoraUpDownModule()
|
||||
lora.modules[key] = lora_module
|
||||
|
||||
if lora_key == "alpha":
|
||||
lora_module.alpha = weight.item()
|
||||
continue
|
||||
|
||||
if type(sd_module) == torch.nn.Linear:
|
||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
elif type(sd_module) == torch.nn.modules.linear.NonDynamicallyQuantizableLinear:
|
||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
elif type(sd_module) == torch.nn.MultiheadAttention:
|
||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (1, 1):
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
||||
elif type(sd_module) == torch.nn.Conv2d and weight.shape[2:] == (3, 3):
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (3, 3), bias=False)
|
||||
else:
|
||||
print(f'Lora layer {key_lora} matched a layer with unsupported type: {type(sd_module).__name__}')
|
||||
continue
|
||||
raise AssertionError(f"Lora layer {key_lora} matched a layer with unsupported type: {type(sd_module).__name__}")
|
||||
|
||||
with torch.no_grad():
|
||||
module.weight.copy_(weight)
|
||||
|
||||
module.to(device=devices.cpu, dtype=devices.dtype)
|
||||
|
||||
if lora_key == "lora_up.weight":
|
||||
lora_module.up = module
|
||||
elif lora_key == "lora_down.weight":
|
||||
lora_module.down = module
|
||||
else:
|
||||
raise AssertionError(f"Bad Lora layer name: {key_lora} - must end in lora_up.weight, lora_down.weight or alpha")
|
||||
|
||||
if keys_failed_to_match:
|
||||
print(f"Failed to match keys when loading Lora {lora_on_disk.filename}: {keys_failed_to_match}")
|
||||
|
||||
return lora
|
||||
|
||||
|
||||
def load_loras(names, multipliers=None):
|
||||
already_loaded = {}
|
||||
|
||||
for lora in loaded_loras:
|
||||
if lora.name in names:
|
||||
already_loaded[lora.name] = lora
|
||||
|
||||
loaded_loras.clear()
|
||||
|
||||
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
|
||||
if any(x is None for x in loras_on_disk):
|
||||
list_available_loras()
|
||||
|
||||
loras_on_disk = [available_lora_aliases.get(name, None) for name in names]
|
||||
|
||||
failed_to_load_loras = []
|
||||
|
||||
for i, name in enumerate(names):
|
||||
lora = already_loaded.get(name, None)
|
||||
|
||||
lora_on_disk = loras_on_disk[i]
|
||||
|
||||
if lora_on_disk is not None:
|
||||
if lora is None or os.path.getmtime(lora_on_disk.filename) > lora.mtime:
|
||||
try:
|
||||
lora = load_lora(name, lora_on_disk)
|
||||
except Exception as e:
|
||||
errors.display(e, f"loading Lora {lora_on_disk.filename}")
|
||||
continue
|
||||
|
||||
lora.mentioned_name = name
|
||||
|
||||
lora_on_disk.read_hash()
|
||||
|
||||
if lora is None:
|
||||
failed_to_load_loras.append(name)
|
||||
print(f"Couldn't find Lora with name {name}")
|
||||
continue
|
||||
|
||||
lora.multiplier = multipliers[i] if multipliers else 1.0
|
||||
loaded_loras.append(lora)
|
||||
|
||||
if failed_to_load_loras:
|
||||
sd_hijack.model_hijack.comments.append("Failed to find Loras: " + ", ".join(failed_to_load_loras))
|
||||
|
||||
|
||||
def lora_calc_updown(lora, module, target):
|
||||
with torch.no_grad():
|
||||
up = module.up.weight.to(target.device, dtype=target.dtype)
|
||||
down = module.down.weight.to(target.device, dtype=target.dtype)
|
||||
|
||||
if up.shape[2:] == (1, 1) and down.shape[2:] == (1, 1):
|
||||
updown = (up.squeeze(2).squeeze(2) @ down.squeeze(2).squeeze(2)).unsqueeze(2).unsqueeze(3)
|
||||
elif up.shape[2:] == (3, 3) or down.shape[2:] == (3, 3):
|
||||
updown = torch.nn.functional.conv2d(down.permute(1, 0, 2, 3), up).permute(1, 0, 2, 3)
|
||||
else:
|
||||
updown = up @ down
|
||||
|
||||
updown = updown * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
||||
|
||||
return updown
|
||||
|
||||
|
||||
def lora_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
|
||||
weights_backup = getattr(self, "lora_weights_backup", None)
|
||||
|
||||
if weights_backup is None:
|
||||
return
|
||||
|
||||
if isinstance(self, torch.nn.MultiheadAttention):
|
||||
self.in_proj_weight.copy_(weights_backup[0])
|
||||
self.out_proj.weight.copy_(weights_backup[1])
|
||||
else:
|
||||
self.weight.copy_(weights_backup)
|
||||
|
||||
|
||||
def lora_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
|
||||
"""
|
||||
Applies the currently selected set of Loras to the weights of torch layer self.
|
||||
If weights already have this particular set of loras applied, does nothing.
|
||||
If not, restores orginal weights from backup and alters weights according to loras.
|
||||
"""
|
||||
|
||||
lora_layer_name = getattr(self, 'lora_layer_name', None)
|
||||
if lora_layer_name is None:
|
||||
return
|
||||
|
||||
current_names = getattr(self, "lora_current_names", ())
|
||||
wanted_names = tuple((x.name, x.multiplier) for x in loaded_loras)
|
||||
|
||||
weights_backup = getattr(self, "lora_weights_backup", None)
|
||||
if weights_backup is None:
|
||||
if isinstance(self, torch.nn.MultiheadAttention):
|
||||
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
|
||||
else:
|
||||
weights_backup = self.weight.to(devices.cpu, copy=True)
|
||||
|
||||
self.lora_weights_backup = weights_backup
|
||||
|
||||
if current_names != wanted_names:
|
||||
lora_restore_weights_from_backup(self)
|
||||
|
||||
for lora in loaded_loras:
|
||||
module = lora.modules.get(lora_layer_name, None)
|
||||
if module is not None and hasattr(self, 'weight'):
|
||||
self.weight += lora_calc_updown(lora, module, self.weight)
|
||||
continue
|
||||
|
||||
module_q = lora.modules.get(lora_layer_name + "_q_proj", None)
|
||||
module_k = lora.modules.get(lora_layer_name + "_k_proj", None)
|
||||
module_v = lora.modules.get(lora_layer_name + "_v_proj", None)
|
||||
module_out = lora.modules.get(lora_layer_name + "_out_proj", None)
|
||||
|
||||
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
|
||||
updown_q = lora_calc_updown(lora, module_q, self.in_proj_weight)
|
||||
updown_k = lora_calc_updown(lora, module_k, self.in_proj_weight)
|
||||
updown_v = lora_calc_updown(lora, module_v, self.in_proj_weight)
|
||||
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
||||
|
||||
self.in_proj_weight += updown_qkv
|
||||
self.out_proj.weight += lora_calc_updown(lora, module_out, self.out_proj.weight)
|
||||
continue
|
||||
|
||||
if module is None:
|
||||
continue
|
||||
|
||||
print(f'failed to calculate lora weights for layer {lora_layer_name}')
|
||||
|
||||
self.lora_current_names = wanted_names
|
||||
|
||||
|
||||
def lora_forward(module, input, original_forward):
|
||||
"""
|
||||
Old way of applying Lora by executing operations during layer's forward.
|
||||
Stacking many loras this way results in big performance degradation.
|
||||
"""
|
||||
|
||||
if len(loaded_loras) == 0:
|
||||
return original_forward(module, input)
|
||||
|
||||
input = devices.cond_cast_unet(input)
|
||||
|
||||
lora_restore_weights_from_backup(module)
|
||||
lora_reset_cached_weight(module)
|
||||
|
||||
res = original_forward(module, input)
|
||||
|
||||
lora_layer_name = getattr(module, 'lora_layer_name', None)
|
||||
for lora in loaded_loras:
|
||||
module = lora.modules.get(lora_layer_name, None)
|
||||
if module is None:
|
||||
continue
|
||||
|
||||
module.up.to(device=devices.device)
|
||||
module.down.to(device=devices.device)
|
||||
|
||||
res = res + module.up(module.down(input)) * lora.multiplier * (module.alpha / module.up.weight.shape[1] if module.alpha else 1.0)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def lora_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
|
||||
self.lora_current_names = ()
|
||||
self.lora_weights_backup = None
|
||||
|
||||
|
||||
def lora_Linear_forward(self, input):
|
||||
if shared.opts.lora_functional:
|
||||
return lora_forward(self, input, torch.nn.Linear_forward_before_lora)
|
||||
|
||||
lora_apply_weights(self)
|
||||
|
||||
return torch.nn.Linear_forward_before_lora(self, input)
|
||||
|
||||
|
||||
def lora_Linear_load_state_dict(self, *args, **kwargs):
|
||||
lora_reset_cached_weight(self)
|
||||
|
||||
return torch.nn.Linear_load_state_dict_before_lora(self, *args, **kwargs)
|
||||
|
||||
|
||||
def lora_Conv2d_forward(self, input):
|
||||
if shared.opts.lora_functional:
|
||||
return lora_forward(self, input, torch.nn.Conv2d_forward_before_lora)
|
||||
|
||||
lora_apply_weights(self)
|
||||
|
||||
return torch.nn.Conv2d_forward_before_lora(self, input)
|
||||
|
||||
|
||||
def lora_Conv2d_load_state_dict(self, *args, **kwargs):
|
||||
lora_reset_cached_weight(self)
|
||||
|
||||
return torch.nn.Conv2d_load_state_dict_before_lora(self, *args, **kwargs)
|
||||
|
||||
|
||||
def lora_MultiheadAttention_forward(self, *args, **kwargs):
|
||||
lora_apply_weights(self)
|
||||
|
||||
return torch.nn.MultiheadAttention_forward_before_lora(self, *args, **kwargs)
|
||||
|
||||
|
||||
def lora_MultiheadAttention_load_state_dict(self, *args, **kwargs):
|
||||
lora_reset_cached_weight(self)
|
||||
|
||||
return torch.nn.MultiheadAttention_load_state_dict_before_lora(self, *args, **kwargs)
|
||||
|
||||
|
||||
def list_available_loras():
|
||||
available_loras.clear()
|
||||
available_lora_aliases.clear()
|
||||
forbidden_lora_aliases.clear()
|
||||
available_lora_hash_lookup.clear()
|
||||
forbidden_lora_aliases.update({"none": 1, "Addams": 1})
|
||||
|
||||
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
|
||||
|
||||
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
||||
for filename in candidates:
|
||||
if os.path.isdir(filename):
|
||||
continue
|
||||
|
||||
name = os.path.splitext(os.path.basename(filename))[0]
|
||||
try:
|
||||
entry = LoraOnDisk(name, filename)
|
||||
except OSError: # should catch FileNotFoundError and PermissionError etc.
|
||||
errors.report(f"Failed to load LoRA {name} from {filename}", exc_info=True)
|
||||
continue
|
||||
|
||||
available_loras[name] = entry
|
||||
|
||||
if entry.alias in available_lora_aliases:
|
||||
forbidden_lora_aliases[entry.alias.lower()] = 1
|
||||
|
||||
available_lora_aliases[name] = entry
|
||||
available_lora_aliases[entry.alias] = entry
|
||||
|
||||
|
||||
re_lora_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
|
||||
|
||||
|
||||
def infotext_pasted(infotext, params):
|
||||
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
|
||||
return # if the other extension is active, it will handle those fields, no need to do anything
|
||||
|
||||
added = []
|
||||
|
||||
for k in params:
|
||||
if not k.startswith("AddNet Model "):
|
||||
continue
|
||||
|
||||
num = k[13:]
|
||||
|
||||
if params.get("AddNet Module " + num) != "LoRA":
|
||||
continue
|
||||
|
||||
name = params.get("AddNet Model " + num)
|
||||
if name is None:
|
||||
continue
|
||||
|
||||
m = re_lora_name.match(name)
|
||||
if m:
|
||||
name = m.group(1)
|
||||
|
||||
multiplier = params.get("AddNet Weight A " + num, "1.0")
|
||||
|
||||
added.append(f"<lora:{name}:{multiplier}>")
|
||||
|
||||
if added:
|
||||
params["Prompt"] += "\n" + "".join(added)
|
||||
|
||||
|
||||
available_loras = {}
|
||||
available_lora_aliases = {}
|
||||
available_lora_hash_lookup = {}
|
||||
forbidden_lora_aliases = {}
|
||||
loaded_loras = []
|
||||
|
||||
list_available_loras()
|
||||
available_loras = networks.available_networks
|
||||
available_lora_aliases = networks.available_network_aliases
|
||||
available_lora_hash_lookup = networks.available_network_hash_lookup
|
||||
forbidden_lora_aliases = networks.forbidden_network_aliases
|
||||
loaded_loras = networks.loaded_networks
|
||||
|
21
extensions-builtin/Lora/lyco_helpers.py
Normal file
21
extensions-builtin/Lora/lyco_helpers.py
Normal file
@ -0,0 +1,21 @@
|
||||
import torch
|
||||
|
||||
|
||||
def make_weight_cp(t, wa, wb):
|
||||
temp = torch.einsum('i j k l, j r -> i r k l', t, wb)
|
||||
return torch.einsum('i j k l, i r -> r j k l', temp, wa)
|
||||
|
||||
|
||||
def rebuild_conventional(up, down, shape, dyn_dim=None):
|
||||
up = up.reshape(up.size(0), -1)
|
||||
down = down.reshape(down.size(0), -1)
|
||||
if dyn_dim is not None:
|
||||
up = up[:, :dyn_dim]
|
||||
down = down[:dyn_dim, :]
|
||||
return (up @ down).reshape(shape)
|
||||
|
||||
|
||||
def rebuild_cp_decomposition(up, down, mid):
|
||||
up = up.reshape(up.size(0), -1)
|
||||
down = down.reshape(down.size(0), -1)
|
||||
return torch.einsum('n m k l, i n, m j -> i j k l', mid, up, down)
|
155
extensions-builtin/Lora/network.py
Normal file
155
extensions-builtin/Lora/network.py
Normal file
@ -0,0 +1,155 @@
|
||||
from __future__ import annotations
|
||||
import os
|
||||
from collections import namedtuple
|
||||
import enum
|
||||
|
||||
from modules import sd_models, cache, errors, hashes, shared
|
||||
|
||||
NetworkWeights = namedtuple('NetworkWeights', ['network_key', 'sd_key', 'w', 'sd_module'])
|
||||
|
||||
metadata_tags_order = {"ss_sd_model_name": 1, "ss_resolution": 2, "ss_clip_skip": 3, "ss_num_train_images": 10, "ss_tag_frequency": 20}
|
||||
|
||||
|
||||
class SdVersion(enum.Enum):
|
||||
Unknown = 1
|
||||
SD1 = 2
|
||||
SD2 = 3
|
||||
SDXL = 4
|
||||
|
||||
|
||||
class NetworkOnDisk:
|
||||
def __init__(self, name, filename):
|
||||
self.name = name
|
||||
self.filename = filename
|
||||
self.metadata = {}
|
||||
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
|
||||
|
||||
def read_metadata():
|
||||
metadata = sd_models.read_metadata_from_safetensors(filename)
|
||||
metadata.pop('ssmd_cover_images', None) # those are cover images, and they are too big to display in UI as text
|
||||
|
||||
return metadata
|
||||
|
||||
if self.is_safetensors:
|
||||
try:
|
||||
self.metadata = cache.cached_data_for_file('safetensors-metadata', "lora/" + self.name, filename, read_metadata)
|
||||
except Exception as e:
|
||||
errors.display(e, f"reading lora {filename}")
|
||||
|
||||
if self.metadata:
|
||||
m = {}
|
||||
for k, v in sorted(self.metadata.items(), key=lambda x: metadata_tags_order.get(x[0], 999)):
|
||||
m[k] = v
|
||||
|
||||
self.metadata = m
|
||||
|
||||
self.alias = self.metadata.get('ss_output_name', self.name)
|
||||
|
||||
self.hash = None
|
||||
self.shorthash = None
|
||||
self.set_hash(
|
||||
self.metadata.get('sshs_model_hash') or
|
||||
hashes.sha256_from_cache(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or
|
||||
''
|
||||
)
|
||||
|
||||
self.sd_version = self.detect_version()
|
||||
|
||||
def detect_version(self):
|
||||
if str(self.metadata.get('ss_base_model_version', "")).startswith("sdxl_"):
|
||||
return SdVersion.SDXL
|
||||
elif str(self.metadata.get('ss_v2', "")) == "True":
|
||||
return SdVersion.SD2
|
||||
elif len(self.metadata):
|
||||
return SdVersion.SD1
|
||||
|
||||
return SdVersion.Unknown
|
||||
|
||||
def set_hash(self, v):
|
||||
self.hash = v
|
||||
self.shorthash = self.hash[0:12]
|
||||
|
||||
if self.shorthash:
|
||||
import networks
|
||||
networks.available_network_hash_lookup[self.shorthash] = self
|
||||
|
||||
def read_hash(self):
|
||||
if not self.hash:
|
||||
self.set_hash(hashes.sha256(self.filename, "lora/" + self.name, use_addnet_hash=self.is_safetensors) or '')
|
||||
|
||||
def get_alias(self):
|
||||
import networks
|
||||
if shared.opts.lora_preferred_name == "Filename" or self.alias.lower() in networks.forbidden_network_aliases:
|
||||
return self.name
|
||||
else:
|
||||
return self.alias
|
||||
|
||||
|
||||
class Network: # LoraModule
|
||||
def __init__(self, name, network_on_disk: NetworkOnDisk):
|
||||
self.name = name
|
||||
self.network_on_disk = network_on_disk
|
||||
self.te_multiplier = 1.0
|
||||
self.unet_multiplier = 1.0
|
||||
self.dyn_dim = None
|
||||
self.modules = {}
|
||||
self.mtime = None
|
||||
|
||||
self.mentioned_name = None
|
||||
"""the text that was used to add the network to prompt - can be either name or an alias"""
|
||||
|
||||
|
||||
class ModuleType:
|
||||
def create_module(self, net: Network, weights: NetworkWeights) -> Network | None:
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModule:
|
||||
def __init__(self, net: Network, weights: NetworkWeights):
|
||||
self.network = net
|
||||
self.network_key = weights.network_key
|
||||
self.sd_key = weights.sd_key
|
||||
self.sd_module = weights.sd_module
|
||||
|
||||
if hasattr(self.sd_module, 'weight'):
|
||||
self.shape = self.sd_module.weight.shape
|
||||
|
||||
self.dim = None
|
||||
self.bias = weights.w.get("bias")
|
||||
self.alpha = weights.w["alpha"].item() if "alpha" in weights.w else None
|
||||
self.scale = weights.w["scale"].item() if "scale" in weights.w else None
|
||||
|
||||
def multiplier(self):
|
||||
if 'transformer' in self.sd_key[:20]:
|
||||
return self.network.te_multiplier
|
||||
else:
|
||||
return self.network.unet_multiplier
|
||||
|
||||
def calc_scale(self):
|
||||
if self.scale is not None:
|
||||
return self.scale
|
||||
if self.dim is not None and self.alpha is not None:
|
||||
return self.alpha / self.dim
|
||||
|
||||
return 1.0
|
||||
|
||||
def finalize_updown(self, updown, orig_weight, output_shape):
|
||||
if self.bias is not None:
|
||||
updown = updown.reshape(self.bias.shape)
|
||||
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
updown = updown.reshape(output_shape)
|
||||
|
||||
if len(output_shape) == 4:
|
||||
updown = updown.reshape(output_shape)
|
||||
|
||||
if orig_weight.size().numel() == updown.size().numel():
|
||||
updown = updown.reshape(orig_weight.shape)
|
||||
|
||||
return updown * self.calc_scale() * self.multiplier()
|
||||
|
||||
def calc_updown(self, target):
|
||||
raise NotImplementedError()
|
||||
|
||||
def forward(self, x, y):
|
||||
raise NotImplementedError()
|
||||
|
22
extensions-builtin/Lora/network_full.py
Normal file
22
extensions-builtin/Lora/network_full.py
Normal file
@ -0,0 +1,22 @@
|
||||
import network
|
||||
|
||||
|
||||
class ModuleTypeFull(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["diff"]):
|
||||
return NetworkModuleFull(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModuleFull(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.weight = weights.w.get("diff")
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
output_shape = self.weight.shape
|
||||
updown = self.weight.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
55
extensions-builtin/Lora/network_hada.py
Normal file
55
extensions-builtin/Lora/network_hada.py
Normal file
@ -0,0 +1,55 @@
|
||||
import lyco_helpers
|
||||
import network
|
||||
|
||||
|
||||
class ModuleTypeHada(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["hada_w1_a", "hada_w1_b", "hada_w2_a", "hada_w2_b"]):
|
||||
return NetworkModuleHada(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModuleHada(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
if hasattr(self.sd_module, 'weight'):
|
||||
self.shape = self.sd_module.weight.shape
|
||||
|
||||
self.w1a = weights.w["hada_w1_a"]
|
||||
self.w1b = weights.w["hada_w1_b"]
|
||||
self.dim = self.w1b.shape[0]
|
||||
self.w2a = weights.w["hada_w2_a"]
|
||||
self.w2b = weights.w["hada_w2_b"]
|
||||
|
||||
self.t1 = weights.w.get("hada_t1")
|
||||
self.t2 = weights.w.get("hada_t2")
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
|
||||
output_shape = [w1a.size(0), w1b.size(1)]
|
||||
|
||||
if self.t1 is not None:
|
||||
output_shape = [w1a.size(1), w1b.size(1)]
|
||||
t1 = self.t1.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b)
|
||||
output_shape += t1.shape[2:]
|
||||
else:
|
||||
if len(w1b.shape) == 4:
|
||||
output_shape += w1b.shape[2:]
|
||||
updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape)
|
||||
|
||||
if self.t2 is not None:
|
||||
t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
|
||||
else:
|
||||
updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape)
|
||||
|
||||
updown = updown1 * updown2
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
30
extensions-builtin/Lora/network_ia3.py
Normal file
30
extensions-builtin/Lora/network_ia3.py
Normal file
@ -0,0 +1,30 @@
|
||||
import network
|
||||
|
||||
|
||||
class ModuleTypeIa3(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["weight"]):
|
||||
return NetworkModuleIa3(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModuleIa3(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.w = weights.w["weight"]
|
||||
self.on_input = weights.w["on_input"].item()
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
w = self.w.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
|
||||
output_shape = [w.size(0), orig_weight.size(1)]
|
||||
if self.on_input:
|
||||
output_shape.reverse()
|
||||
else:
|
||||
w = w.reshape(-1, 1)
|
||||
|
||||
updown = orig_weight * w
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
64
extensions-builtin/Lora/network_lokr.py
Normal file
64
extensions-builtin/Lora/network_lokr.py
Normal file
@ -0,0 +1,64 @@
|
||||
import torch
|
||||
|
||||
import lyco_helpers
|
||||
import network
|
||||
|
||||
|
||||
class ModuleTypeLokr(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
has_1 = "lokr_w1" in weights.w or ("lokr_w1_a" in weights.w and "lokr_w1_b" in weights.w)
|
||||
has_2 = "lokr_w2" in weights.w or ("lokr_w2_a" in weights.w and "lokr_w2_b" in weights.w)
|
||||
if has_1 and has_2:
|
||||
return NetworkModuleLokr(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def make_kron(orig_shape, w1, w2):
|
||||
if len(w2.shape) == 4:
|
||||
w1 = w1.unsqueeze(2).unsqueeze(2)
|
||||
w2 = w2.contiguous()
|
||||
return torch.kron(w1, w2).reshape(orig_shape)
|
||||
|
||||
|
||||
class NetworkModuleLokr(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.w1 = weights.w.get("lokr_w1")
|
||||
self.w1a = weights.w.get("lokr_w1_a")
|
||||
self.w1b = weights.w.get("lokr_w1_b")
|
||||
self.dim = self.w1b.shape[0] if self.w1b is not None else self.dim
|
||||
self.w2 = weights.w.get("lokr_w2")
|
||||
self.w2a = weights.w.get("lokr_w2_a")
|
||||
self.w2b = weights.w.get("lokr_w2_b")
|
||||
self.dim = self.w2b.shape[0] if self.w2b is not None else self.dim
|
||||
self.t2 = weights.w.get("lokr_t2")
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
if self.w1 is not None:
|
||||
w1 = self.w1.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
else:
|
||||
w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w1 = w1a @ w1b
|
||||
|
||||
if self.w2 is not None:
|
||||
w2 = self.w2.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
elif self.t2 is None:
|
||||
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w2 = w2a @ w2b
|
||||
else:
|
||||
t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
w2 = lyco_helpers.make_weight_cp(t2, w2a, w2b)
|
||||
|
||||
output_shape = [w1.size(0) * w2.size(0), w1.size(1) * w2.size(1)]
|
||||
if len(orig_weight.shape) == 4:
|
||||
output_shape = orig_weight.shape
|
||||
|
||||
updown = make_kron(output_shape, w1, w2)
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
86
extensions-builtin/Lora/network_lora.py
Normal file
86
extensions-builtin/Lora/network_lora.py
Normal file
@ -0,0 +1,86 @@
|
||||
import torch
|
||||
|
||||
import lyco_helpers
|
||||
import network
|
||||
from modules import devices
|
||||
|
||||
|
||||
class ModuleTypeLora(network.ModuleType):
|
||||
def create_module(self, net: network.Network, weights: network.NetworkWeights):
|
||||
if all(x in weights.w for x in ["lora_up.weight", "lora_down.weight"]):
|
||||
return NetworkModuleLora(net, weights)
|
||||
|
||||
return None
|
||||
|
||||
|
||||
class NetworkModuleLora(network.NetworkModule):
|
||||
def __init__(self, net: network.Network, weights: network.NetworkWeights):
|
||||
super().__init__(net, weights)
|
||||
|
||||
self.up_model = self.create_module(weights.w, "lora_up.weight")
|
||||
self.down_model = self.create_module(weights.w, "lora_down.weight")
|
||||
self.mid_model = self.create_module(weights.w, "lora_mid.weight", none_ok=True)
|
||||
|
||||
self.dim = weights.w["lora_down.weight"].shape[0]
|
||||
|
||||
def create_module(self, weights, key, none_ok=False):
|
||||
weight = weights.get(key)
|
||||
|
||||
if weight is None and none_ok:
|
||||
return None
|
||||
|
||||
is_linear = type(self.sd_module) in [torch.nn.Linear, torch.nn.modules.linear.NonDynamicallyQuantizableLinear, torch.nn.MultiheadAttention]
|
||||
is_conv = type(self.sd_module) in [torch.nn.Conv2d]
|
||||
|
||||
if is_linear:
|
||||
weight = weight.reshape(weight.shape[0], -1)
|
||||
module = torch.nn.Linear(weight.shape[1], weight.shape[0], bias=False)
|
||||
elif is_conv and key == "lora_down.weight" or key == "dyn_up":
|
||||
if len(weight.shape) == 2:
|
||||
weight = weight.reshape(weight.shape[0], -1, 1, 1)
|
||||
|
||||
if weight.shape[2] != 1 or weight.shape[3] != 1:
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
||||
else:
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
||||
elif is_conv and key == "lora_mid.weight":
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], self.sd_module.kernel_size, self.sd_module.stride, self.sd_module.padding, bias=False)
|
||||
elif is_conv and key == "lora_up.weight" or key == "dyn_down":
|
||||
module = torch.nn.Conv2d(weight.shape[1], weight.shape[0], (1, 1), bias=False)
|
||||
else:
|
||||
raise AssertionError(f'Lora layer {self.network_key} matched a layer with unsupported type: {type(self.sd_module).__name__}')
|
||||
|
||||
with torch.no_grad():
|
||||
if weight.shape != module.weight.shape:
|
||||
weight = weight.reshape(module.weight.shape)
|
||||
module.weight.copy_(weight)
|
||||
|
||||
module.to(device=devices.cpu, dtype=devices.dtype)
|
||||
module.weight.requires_grad_(False)
|
||||
|
||||
return module
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
up = self.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
down = self.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
|
||||
output_shape = [up.size(0), down.size(1)]
|
||||
if self.mid_model is not None:
|
||||
# cp-decomposition
|
||||
mid = self.mid_model.weight.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid)
|
||||
output_shape += mid.shape[2:]
|
||||
else:
|
||||
if len(down.shape) == 4:
|
||||
output_shape += down.shape[2:]
|
||||
updown = lyco_helpers.rebuild_conventional(up, down, output_shape, self.network.dyn_dim)
|
||||
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
|
||||
def forward(self, x, y):
|
||||
self.up_model.to(device=devices.device)
|
||||
self.down_model.to(device=devices.device)
|
||||
|
||||
return y + self.up_model(self.down_model(x)) * self.multiplier() * self.calc_scale()
|
||||
|
||||
|
468
extensions-builtin/Lora/networks.py
Normal file
468
extensions-builtin/Lora/networks.py
Normal file
@ -0,0 +1,468 @@
|
||||
import os
|
||||
import re
|
||||
|
||||
import network
|
||||
import network_lora
|
||||
import network_hada
|
||||
import network_ia3
|
||||
import network_lokr
|
||||
import network_full
|
||||
|
||||
import torch
|
||||
from typing import Union
|
||||
|
||||
from modules import shared, devices, sd_models, errors, scripts, sd_hijack
|
||||
|
||||
module_types = [
|
||||
network_lora.ModuleTypeLora(),
|
||||
network_hada.ModuleTypeHada(),
|
||||
network_ia3.ModuleTypeIa3(),
|
||||
network_lokr.ModuleTypeLokr(),
|
||||
network_full.ModuleTypeFull(),
|
||||
]
|
||||
|
||||
|
||||
re_digits = re.compile(r"\d+")
|
||||
re_x_proj = re.compile(r"(.*)_([qkv]_proj)$")
|
||||
re_compiled = {}
|
||||
|
||||
suffix_conversion = {
|
||||
"attentions": {},
|
||||
"resnets": {
|
||||
"conv1": "in_layers_2",
|
||||
"conv2": "out_layers_3",
|
||||
"time_emb_proj": "emb_layers_1",
|
||||
"conv_shortcut": "skip_connection",
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
def convert_diffusers_name_to_compvis(key, is_sd2):
|
||||
def match(match_list, regex_text):
|
||||
regex = re_compiled.get(regex_text)
|
||||
if regex is None:
|
||||
regex = re.compile(regex_text)
|
||||
re_compiled[regex_text] = regex
|
||||
|
||||
r = re.match(regex, key)
|
||||
if not r:
|
||||
return False
|
||||
|
||||
match_list.clear()
|
||||
match_list.extend([int(x) if re.match(re_digits, x) else x for x in r.groups()])
|
||||
return True
|
||||
|
||||
m = []
|
||||
|
||||
if match(m, r"lora_unet_conv_in(.*)"):
|
||||
return f'diffusion_model_input_blocks_0_0{m[0]}'
|
||||
|
||||
if match(m, r"lora_unet_conv_out(.*)"):
|
||||
return f'diffusion_model_out_2{m[0]}'
|
||||
|
||||
if match(m, r"lora_unet_time_embedding_linear_(\d+)(.*)"):
|
||||
return f"diffusion_model_time_embed_{m[0] * 2 - 2}{m[1]}"
|
||||
|
||||
if match(m, r"lora_unet_down_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
||||
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
||||
return f"diffusion_model_input_blocks_{1 + m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
||||
|
||||
if match(m, r"lora_unet_mid_block_(attentions|resnets)_(\d+)_(.+)"):
|
||||
suffix = suffix_conversion.get(m[0], {}).get(m[2], m[2])
|
||||
return f"diffusion_model_middle_block_{1 if m[0] == 'attentions' else m[1] * 2}_{suffix}"
|
||||
|
||||
if match(m, r"lora_unet_up_blocks_(\d+)_(attentions|resnets)_(\d+)_(.+)"):
|
||||
suffix = suffix_conversion.get(m[1], {}).get(m[3], m[3])
|
||||
return f"diffusion_model_output_blocks_{m[0] * 3 + m[2]}_{1 if m[1] == 'attentions' else 0}_{suffix}"
|
||||
|
||||
if match(m, r"lora_unet_down_blocks_(\d+)_downsamplers_0_conv"):
|
||||
return f"diffusion_model_input_blocks_{3 + m[0] * 3}_0_op"
|
||||
|
||||
if match(m, r"lora_unet_up_blocks_(\d+)_upsamplers_0_conv"):
|
||||
return f"diffusion_model_output_blocks_{2 + m[0] * 3}_{2 if m[0]>0 else 1}_conv"
|
||||
|
||||
if match(m, r"lora_te_text_model_encoder_layers_(\d+)_(.+)"):
|
||||
if is_sd2:
|
||||
if 'mlp_fc1' in m[1]:
|
||||
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
||||
elif 'mlp_fc2' in m[1]:
|
||||
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
||||
else:
|
||||
return f"model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
||||
|
||||
return f"transformer_text_model_encoder_layers_{m[0]}_{m[1]}"
|
||||
|
||||
if match(m, r"lora_te2_text_model_encoder_layers_(\d+)_(.+)"):
|
||||
if 'mlp_fc1' in m[1]:
|
||||
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc1', 'mlp_c_fc')}"
|
||||
elif 'mlp_fc2' in m[1]:
|
||||
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('mlp_fc2', 'mlp_c_proj')}"
|
||||
else:
|
||||
return f"1_model_transformer_resblocks_{m[0]}_{m[1].replace('self_attn', 'attn')}"
|
||||
|
||||
return key
|
||||
|
||||
|
||||
def assign_network_names_to_compvis_modules(sd_model):
|
||||
network_layer_mapping = {}
|
||||
|
||||
if shared.sd_model.is_sdxl:
|
||||
for i, embedder in enumerate(shared.sd_model.conditioner.embedders):
|
||||
if not hasattr(embedder, 'wrapped'):
|
||||
continue
|
||||
|
||||
for name, module in embedder.wrapped.named_modules():
|
||||
network_name = f'{i}_{name.replace(".", "_")}'
|
||||
network_layer_mapping[network_name] = module
|
||||
module.network_layer_name = network_name
|
||||
else:
|
||||
for name, module in shared.sd_model.cond_stage_model.wrapped.named_modules():
|
||||
network_name = name.replace(".", "_")
|
||||
network_layer_mapping[network_name] = module
|
||||
module.network_layer_name = network_name
|
||||
|
||||
for name, module in shared.sd_model.model.named_modules():
|
||||
network_name = name.replace(".", "_")
|
||||
network_layer_mapping[network_name] = module
|
||||
module.network_layer_name = network_name
|
||||
|
||||
sd_model.network_layer_mapping = network_layer_mapping
|
||||
|
||||
|
||||
def load_network(name, network_on_disk):
|
||||
net = network.Network(name, network_on_disk)
|
||||
net.mtime = os.path.getmtime(network_on_disk.filename)
|
||||
|
||||
sd = sd_models.read_state_dict(network_on_disk.filename)
|
||||
|
||||
# this should not be needed but is here as an emergency fix for an unknown error people are experiencing in 1.2.0
|
||||
if not hasattr(shared.sd_model, 'network_layer_mapping'):
|
||||
assign_network_names_to_compvis_modules(shared.sd_model)
|
||||
|
||||
keys_failed_to_match = {}
|
||||
is_sd2 = 'model_transformer_resblocks' in shared.sd_model.network_layer_mapping
|
||||
|
||||
matched_networks = {}
|
||||
|
||||
for key_network, weight in sd.items():
|
||||
key_network_without_network_parts, network_part = key_network.split(".", 1)
|
||||
|
||||
key = convert_diffusers_name_to_compvis(key_network_without_network_parts, is_sd2)
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
|
||||
if sd_module is None:
|
||||
m = re_x_proj.match(key)
|
||||
if m:
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(m.group(1), None)
|
||||
|
||||
# SDXL loras seem to already have correct compvis keys, so only need to replace "lora_unet" with "diffusion_model"
|
||||
if sd_module is None and "lora_unet" in key_network_without_network_parts:
|
||||
key = key_network_without_network_parts.replace("lora_unet", "diffusion_model")
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
elif sd_module is None and "lora_te1_text_model" in key_network_without_network_parts:
|
||||
key = key_network_without_network_parts.replace("lora_te1_text_model", "0_transformer_text_model")
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
|
||||
# some SD1 Loras also have correct compvis keys
|
||||
if sd_module is None:
|
||||
key = key_network_without_network_parts.replace("lora_te1_text_model", "transformer_text_model")
|
||||
sd_module = shared.sd_model.network_layer_mapping.get(key, None)
|
||||
|
||||
if sd_module is None:
|
||||
keys_failed_to_match[key_network] = key
|
||||
continue
|
||||
|
||||
if key not in matched_networks:
|
||||
matched_networks[key] = network.NetworkWeights(network_key=key_network, sd_key=key, w={}, sd_module=sd_module)
|
||||
|
||||
matched_networks[key].w[network_part] = weight
|
||||
|
||||
for key, weights in matched_networks.items():
|
||||
net_module = None
|
||||
for nettype in module_types:
|
||||
net_module = nettype.create_module(net, weights)
|
||||
if net_module is not None:
|
||||
break
|
||||
|
||||
if net_module is None:
|
||||
raise AssertionError(f"Could not find a module type (out of {', '.join([x.__class__.__name__ for x in module_types])}) that would accept those keys: {', '.join(weights.w)}")
|
||||
|
||||
net.modules[key] = net_module
|
||||
|
||||
if keys_failed_to_match:
|
||||
print(f"Failed to match keys when loading network {network_on_disk.filename}: {keys_failed_to_match}")
|
||||
|
||||
return net
|
||||
|
||||
|
||||
def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None):
|
||||
already_loaded = {}
|
||||
|
||||
for net in loaded_networks:
|
||||
if net.name in names:
|
||||
already_loaded[net.name] = net
|
||||
|
||||
loaded_networks.clear()
|
||||
|
||||
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
|
||||
if any(x is None for x in networks_on_disk):
|
||||
list_available_networks()
|
||||
|
||||
networks_on_disk = [available_network_aliases.get(name, None) for name in names]
|
||||
|
||||
failed_to_load_networks = []
|
||||
|
||||
for i, name in enumerate(names):
|
||||
net = already_loaded.get(name, None)
|
||||
|
||||
network_on_disk = networks_on_disk[i]
|
||||
|
||||
if network_on_disk is not None:
|
||||
if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime:
|
||||
try:
|
||||
net = load_network(name, network_on_disk)
|
||||
except Exception as e:
|
||||
errors.display(e, f"loading network {network_on_disk.filename}")
|
||||
continue
|
||||
|
||||
net.mentioned_name = name
|
||||
|
||||
network_on_disk.read_hash()
|
||||
|
||||
if net is None:
|
||||
failed_to_load_networks.append(name)
|
||||
print(f"Couldn't find network with name {name}")
|
||||
continue
|
||||
|
||||
net.te_multiplier = te_multipliers[i] if te_multipliers else 1.0
|
||||
net.unet_multiplier = unet_multipliers[i] if unet_multipliers else 1.0
|
||||
net.dyn_dim = dyn_dims[i] if dyn_dims else 1.0
|
||||
loaded_networks.append(net)
|
||||
|
||||
if failed_to_load_networks:
|
||||
sd_hijack.model_hijack.comments.append("Failed to find networks: " + ", ".join(failed_to_load_networks))
|
||||
|
||||
|
||||
def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
|
||||
weights_backup = getattr(self, "network_weights_backup", None)
|
||||
|
||||
if weights_backup is None:
|
||||
return
|
||||
|
||||
if isinstance(self, torch.nn.MultiheadAttention):
|
||||
self.in_proj_weight.copy_(weights_backup[0])
|
||||
self.out_proj.weight.copy_(weights_backup[1])
|
||||
else:
|
||||
self.weight.copy_(weights_backup)
|
||||
|
||||
|
||||
def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]):
|
||||
"""
|
||||
Applies the currently selected set of networks to the weights of torch layer self.
|
||||
If weights already have this particular set of networks applied, does nothing.
|
||||
If not, restores orginal weights from backup and alters weights according to networks.
|
||||
"""
|
||||
|
||||
network_layer_name = getattr(self, 'network_layer_name', None)
|
||||
if network_layer_name is None:
|
||||
return
|
||||
|
||||
current_names = getattr(self, "network_current_names", ())
|
||||
wanted_names = tuple((x.name, x.te_multiplier, x.unet_multiplier, x.dyn_dim) for x in loaded_networks)
|
||||
|
||||
weights_backup = getattr(self, "network_weights_backup", None)
|
||||
if weights_backup is None:
|
||||
if isinstance(self, torch.nn.MultiheadAttention):
|
||||
weights_backup = (self.in_proj_weight.to(devices.cpu, copy=True), self.out_proj.weight.to(devices.cpu, copy=True))
|
||||
else:
|
||||
weights_backup = self.weight.to(devices.cpu, copy=True)
|
||||
|
||||
self.network_weights_backup = weights_backup
|
||||
|
||||
if current_names != wanted_names:
|
||||
network_restore_weights_from_backup(self)
|
||||
|
||||
for net in loaded_networks:
|
||||
module = net.modules.get(network_layer_name, None)
|
||||
if module is not None and hasattr(self, 'weight'):
|
||||
with torch.no_grad():
|
||||
updown = module.calc_updown(self.weight)
|
||||
|
||||
if len(self.weight.shape) == 4 and self.weight.shape[1] == 9:
|
||||
# inpainting model. zero pad updown to make channel[1] 4 to 9
|
||||
updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5))
|
||||
|
||||
self.weight += updown
|
||||
continue
|
||||
|
||||
module_q = net.modules.get(network_layer_name + "_q_proj", None)
|
||||
module_k = net.modules.get(network_layer_name + "_k_proj", None)
|
||||
module_v = net.modules.get(network_layer_name + "_v_proj", None)
|
||||
module_out = net.modules.get(network_layer_name + "_out_proj", None)
|
||||
|
||||
if isinstance(self, torch.nn.MultiheadAttention) and module_q and module_k and module_v and module_out:
|
||||
with torch.no_grad():
|
||||
updown_q = module_q.calc_updown(self.in_proj_weight)
|
||||
updown_k = module_k.calc_updown(self.in_proj_weight)
|
||||
updown_v = module_v.calc_updown(self.in_proj_weight)
|
||||
updown_qkv = torch.vstack([updown_q, updown_k, updown_v])
|
||||
updown_out = module_out.calc_updown(self.out_proj.weight)
|
||||
|
||||
self.in_proj_weight += updown_qkv
|
||||
self.out_proj.weight += updown_out
|
||||
continue
|
||||
|
||||
if module is None:
|
||||
continue
|
||||
|
||||
print(f'failed to calculate network weights for layer {network_layer_name}')
|
||||
|
||||
self.network_current_names = wanted_names
|
||||
|
||||
|
||||
def network_forward(module, input, original_forward):
|
||||
"""
|
||||
Old way of applying Lora by executing operations during layer's forward.
|
||||
Stacking many loras this way results in big performance degradation.
|
||||
"""
|
||||
|
||||
if len(loaded_networks) == 0:
|
||||
return original_forward(module, input)
|
||||
|
||||
input = devices.cond_cast_unet(input)
|
||||
|
||||
network_restore_weights_from_backup(module)
|
||||
network_reset_cached_weight(module)
|
||||
|
||||
y = original_forward(module, input)
|
||||
|
||||
network_layer_name = getattr(module, 'network_layer_name', None)
|
||||
for lora in loaded_networks:
|
||||
module = lora.modules.get(network_layer_name, None)
|
||||
if module is None:
|
||||
continue
|
||||
|
||||
y = module.forward(y, input)
|
||||
|
||||
return y
|
||||
|
||||
|
||||
def network_reset_cached_weight(self: Union[torch.nn.Conv2d, torch.nn.Linear]):
|
||||
self.network_current_names = ()
|
||||
self.network_weights_backup = None
|
||||
|
||||
|
||||
def network_Linear_forward(self, input):
|
||||
if shared.opts.lora_functional:
|
||||
return network_forward(self, input, torch.nn.Linear_forward_before_network)
|
||||
|
||||
network_apply_weights(self)
|
||||
|
||||
return torch.nn.Linear_forward_before_network(self, input)
|
||||
|
||||
|
||||
def network_Linear_load_state_dict(self, *args, **kwargs):
|
||||
network_reset_cached_weight(self)
|
||||
|
||||
return torch.nn.Linear_load_state_dict_before_network(self, *args, **kwargs)
|
||||
|
||||
|
||||
def network_Conv2d_forward(self, input):
|
||||
if shared.opts.lora_functional:
|
||||
return network_forward(self, input, torch.nn.Conv2d_forward_before_network)
|
||||
|
||||
network_apply_weights(self)
|
||||
|
||||
return torch.nn.Conv2d_forward_before_network(self, input)
|
||||
|
||||
|
||||
def network_Conv2d_load_state_dict(self, *args, **kwargs):
|
||||
network_reset_cached_weight(self)
|
||||
|
||||
return torch.nn.Conv2d_load_state_dict_before_network(self, *args, **kwargs)
|
||||
|
||||
|
||||
def network_MultiheadAttention_forward(self, *args, **kwargs):
|
||||
network_apply_weights(self)
|
||||
|
||||
return torch.nn.MultiheadAttention_forward_before_network(self, *args, **kwargs)
|
||||
|
||||
|
||||
def network_MultiheadAttention_load_state_dict(self, *args, **kwargs):
|
||||
network_reset_cached_weight(self)
|
||||
|
||||
return torch.nn.MultiheadAttention_load_state_dict_before_network(self, *args, **kwargs)
|
||||
|
||||
|
||||
def list_available_networks():
|
||||
available_networks.clear()
|
||||
available_network_aliases.clear()
|
||||
forbidden_network_aliases.clear()
|
||||
available_network_hash_lookup.clear()
|
||||
forbidden_network_aliases.update({"none": 1, "Addams": 1})
|
||||
|
||||
os.makedirs(shared.cmd_opts.lora_dir, exist_ok=True)
|
||||
|
||||
candidates = list(shared.walk_files(shared.cmd_opts.lora_dir, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
||||
candidates += list(shared.walk_files(shared.cmd_opts.lyco_dir_backcompat, allowed_extensions=[".pt", ".ckpt", ".safetensors"]))
|
||||
for filename in candidates:
|
||||
if os.path.isdir(filename):
|
||||
continue
|
||||
|
||||
name = os.path.splitext(os.path.basename(filename))[0]
|
||||
try:
|
||||
entry = network.NetworkOnDisk(name, filename)
|
||||
except OSError: # should catch FileNotFoundError and PermissionError etc.
|
||||
errors.report(f"Failed to load network {name} from {filename}", exc_info=True)
|
||||
continue
|
||||
|
||||
available_networks[name] = entry
|
||||
|
||||
if entry.alias in available_network_aliases:
|
||||
forbidden_network_aliases[entry.alias.lower()] = 1
|
||||
|
||||
available_network_aliases[name] = entry
|
||||
available_network_aliases[entry.alias] = entry
|
||||
|
||||
|
||||
re_network_name = re.compile(r"(.*)\s*\([0-9a-fA-F]+\)")
|
||||
|
||||
|
||||
def infotext_pasted(infotext, params):
|
||||
if "AddNet Module 1" in [x[1] for x in scripts.scripts_txt2img.infotext_fields]:
|
||||
return # if the other extension is active, it will handle those fields, no need to do anything
|
||||
|
||||
added = []
|
||||
|
||||
for k in params:
|
||||
if not k.startswith("AddNet Model "):
|
||||
continue
|
||||
|
||||
num = k[13:]
|
||||
|
||||
if params.get("AddNet Module " + num) != "LoRA":
|
||||
continue
|
||||
|
||||
name = params.get("AddNet Model " + num)
|
||||
if name is None:
|
||||
continue
|
||||
|
||||
m = re_network_name.match(name)
|
||||
if m:
|
||||
name = m.group(1)
|
||||
|
||||
multiplier = params.get("AddNet Weight A " + num, "1.0")
|
||||
|
||||
added.append(f"<lora:{name}:{multiplier}>")
|
||||
|
||||
if added:
|
||||
params["Prompt"] += "\n" + "".join(added)
|
||||
|
||||
|
||||
available_networks = {}
|
||||
available_network_aliases = {}
|
||||
loaded_networks = []
|
||||
available_network_hash_lookup = {}
|
||||
forbidden_network_aliases = {}
|
||||
|
||||
list_available_networks()
|
@ -4,3 +4,4 @@ from modules import paths
|
||||
|
||||
def preload(parser):
|
||||
parser.add_argument("--lora-dir", type=str, help="Path to directory with Lora networks.", default=os.path.join(paths.models_path, 'Lora'))
|
||||
parser.add_argument("--lyco-dir-backcompat", type=str, help="Path to directory with LyCORIS networks (for backawards compatibility; can also use --lyco-dir).", default=os.path.join(paths.models_path, 'LyCORIS'))
|
||||
|
@ -4,69 +4,76 @@ import torch
|
||||
import gradio as gr
|
||||
from fastapi import FastAPI
|
||||
|
||||
import lora
|
||||
import network
|
||||
import networks
|
||||
import lora # noqa:F401
|
||||
import extra_networks_lora
|
||||
import ui_extra_networks_lora
|
||||
from modules import script_callbacks, ui_extra_networks, extra_networks, shared
|
||||
|
||||
def unload():
|
||||
torch.nn.Linear.forward = torch.nn.Linear_forward_before_lora
|
||||
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_lora
|
||||
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_lora
|
||||
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_lora
|
||||
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_lora
|
||||
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_lora
|
||||
torch.nn.Linear.forward = torch.nn.Linear_forward_before_network
|
||||
torch.nn.Linear._load_from_state_dict = torch.nn.Linear_load_state_dict_before_network
|
||||
torch.nn.Conv2d.forward = torch.nn.Conv2d_forward_before_network
|
||||
torch.nn.Conv2d._load_from_state_dict = torch.nn.Conv2d_load_state_dict_before_network
|
||||
torch.nn.MultiheadAttention.forward = torch.nn.MultiheadAttention_forward_before_network
|
||||
torch.nn.MultiheadAttention._load_from_state_dict = torch.nn.MultiheadAttention_load_state_dict_before_network
|
||||
|
||||
|
||||
def before_ui():
|
||||
ui_extra_networks.register_page(ui_extra_networks_lora.ExtraNetworksPageLora())
|
||||
extra_networks.register_extra_network(extra_networks_lora.ExtraNetworkLora())
|
||||
|
||||
extra_network = extra_networks_lora.ExtraNetworkLora()
|
||||
extra_networks.register_extra_network(extra_network)
|
||||
extra_networks.register_extra_network_alias(extra_network, "lyco")
|
||||
|
||||
|
||||
if not hasattr(torch.nn, 'Linear_forward_before_lora'):
|
||||
torch.nn.Linear_forward_before_lora = torch.nn.Linear.forward
|
||||
if not hasattr(torch.nn, 'Linear_forward_before_network'):
|
||||
torch.nn.Linear_forward_before_network = torch.nn.Linear.forward
|
||||
|
||||
if not hasattr(torch.nn, 'Linear_load_state_dict_before_lora'):
|
||||
torch.nn.Linear_load_state_dict_before_lora = torch.nn.Linear._load_from_state_dict
|
||||
if not hasattr(torch.nn, 'Linear_load_state_dict_before_network'):
|
||||
torch.nn.Linear_load_state_dict_before_network = torch.nn.Linear._load_from_state_dict
|
||||
|
||||
if not hasattr(torch.nn, 'Conv2d_forward_before_lora'):
|
||||
torch.nn.Conv2d_forward_before_lora = torch.nn.Conv2d.forward
|
||||
if not hasattr(torch.nn, 'Conv2d_forward_before_network'):
|
||||
torch.nn.Conv2d_forward_before_network = torch.nn.Conv2d.forward
|
||||
|
||||
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_lora'):
|
||||
torch.nn.Conv2d_load_state_dict_before_lora = torch.nn.Conv2d._load_from_state_dict
|
||||
if not hasattr(torch.nn, 'Conv2d_load_state_dict_before_network'):
|
||||
torch.nn.Conv2d_load_state_dict_before_network = torch.nn.Conv2d._load_from_state_dict
|
||||
|
||||
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_lora'):
|
||||
torch.nn.MultiheadAttention_forward_before_lora = torch.nn.MultiheadAttention.forward
|
||||
if not hasattr(torch.nn, 'MultiheadAttention_forward_before_network'):
|
||||
torch.nn.MultiheadAttention_forward_before_network = torch.nn.MultiheadAttention.forward
|
||||
|
||||
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_lora'):
|
||||
torch.nn.MultiheadAttention_load_state_dict_before_lora = torch.nn.MultiheadAttention._load_from_state_dict
|
||||
if not hasattr(torch.nn, 'MultiheadAttention_load_state_dict_before_network'):
|
||||
torch.nn.MultiheadAttention_load_state_dict_before_network = torch.nn.MultiheadAttention._load_from_state_dict
|
||||
|
||||
torch.nn.Linear.forward = lora.lora_Linear_forward
|
||||
torch.nn.Linear._load_from_state_dict = lora.lora_Linear_load_state_dict
|
||||
torch.nn.Conv2d.forward = lora.lora_Conv2d_forward
|
||||
torch.nn.Conv2d._load_from_state_dict = lora.lora_Conv2d_load_state_dict
|
||||
torch.nn.MultiheadAttention.forward = lora.lora_MultiheadAttention_forward
|
||||
torch.nn.MultiheadAttention._load_from_state_dict = lora.lora_MultiheadAttention_load_state_dict
|
||||
torch.nn.Linear.forward = networks.network_Linear_forward
|
||||
torch.nn.Linear._load_from_state_dict = networks.network_Linear_load_state_dict
|
||||
torch.nn.Conv2d.forward = networks.network_Conv2d_forward
|
||||
torch.nn.Conv2d._load_from_state_dict = networks.network_Conv2d_load_state_dict
|
||||
torch.nn.MultiheadAttention.forward = networks.network_MultiheadAttention_forward
|
||||
torch.nn.MultiheadAttention._load_from_state_dict = networks.network_MultiheadAttention_load_state_dict
|
||||
|
||||
script_callbacks.on_model_loaded(lora.assign_lora_names_to_compvis_modules)
|
||||
script_callbacks.on_model_loaded(networks.assign_network_names_to_compvis_modules)
|
||||
script_callbacks.on_script_unloaded(unload)
|
||||
script_callbacks.on_before_ui(before_ui)
|
||||
script_callbacks.on_infotext_pasted(lora.infotext_pasted)
|
||||
script_callbacks.on_infotext_pasted(networks.infotext_pasted)
|
||||
|
||||
|
||||
shared.options_templates.update(shared.options_section(('extra_networks', "Extra Networks"), {
|
||||
"sd_lora": shared.OptionInfo("None", "Add Lora to prompt", gr.Dropdown, lambda: {"choices": ["None", *lora.available_loras]}, refresh=lora.list_available_loras),
|
||||
"sd_lora": shared.OptionInfo("None", "Add network to prompt", gr.Dropdown, lambda: {"choices": ["None", *networks.available_networks]}, refresh=networks.list_available_networks),
|
||||
"lora_preferred_name": shared.OptionInfo("Alias from file", "When adding to prompt, refer to Lora by", gr.Radio, {"choices": ["Alias from file", "Filename"]}),
|
||||
"lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"),
|
||||
"lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"),
|
||||
"lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}),
|
||||
}))
|
||||
|
||||
|
||||
shared.options_templates.update(shared.options_section(('compatibility', "Compatibility"), {
|
||||
"lora_functional": shared.OptionInfo(False, "Lora: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
|
||||
"lora_functional": shared.OptionInfo(False, "Lora/Networks: use old method that takes longer when you have multiple Loras active and produces same results as kohya-ss/sd-webui-additional-networks extension"),
|
||||
}))
|
||||
|
||||
|
||||
def create_lora_json(obj: lora.LoraOnDisk):
|
||||
def create_lora_json(obj: network.NetworkOnDisk):
|
||||
return {
|
||||
"name": obj.name,
|
||||
"alias": obj.alias,
|
||||
@ -75,17 +82,17 @@ def create_lora_json(obj: lora.LoraOnDisk):
|
||||
}
|
||||
|
||||
|
||||
def api_loras(_: gr.Blocks, app: FastAPI):
|
||||
def api_networks(_: gr.Blocks, app: FastAPI):
|
||||
@app.get("/sdapi/v1/loras")
|
||||
async def get_loras():
|
||||
return [create_lora_json(obj) for obj in lora.available_loras.values()]
|
||||
return [create_lora_json(obj) for obj in networks.available_networks.values()]
|
||||
|
||||
@app.post("/sdapi/v1/refresh-loras")
|
||||
async def refresh_loras():
|
||||
return lora.list_available_loras()
|
||||
return networks.list_available_networks()
|
||||
|
||||
|
||||
script_callbacks.on_app_started(api_loras)
|
||||
script_callbacks.on_app_started(api_networks)
|
||||
|
||||
re_lora = re.compile("<lora:([^:]+):")
|
||||
|
||||
@ -98,19 +105,19 @@ def infotext_pasted(infotext, d):
|
||||
hashes = [x.strip().split(':', 1) for x in hashes.split(",")]
|
||||
hashes = {x[0].strip().replace(",", ""): x[1].strip() for x in hashes}
|
||||
|
||||
def lora_replacement(m):
|
||||
def network_replacement(m):
|
||||
alias = m.group(1)
|
||||
shorthash = hashes.get(alias)
|
||||
if shorthash is None:
|
||||
return m.group(0)
|
||||
|
||||
lora_on_disk = lora.available_lora_hash_lookup.get(shorthash)
|
||||
if lora_on_disk is None:
|
||||
network_on_disk = networks.available_network_hash_lookup.get(shorthash)
|
||||
if network_on_disk is None:
|
||||
return m.group(0)
|
||||
|
||||
return f'<lora:{lora_on_disk.get_alias()}:'
|
||||
return f'<lora:{network_on_disk.get_alias()}:'
|
||||
|
||||
d["Prompt"] = re.sub(re_lora, lora_replacement, d["Prompt"])
|
||||
d["Prompt"] = re.sub(re_lora, network_replacement, d["Prompt"])
|
||||
|
||||
|
||||
script_callbacks.on_infotext_pasted(infotext_pasted)
|
||||
|
@ -1,3 +1,4 @@
|
||||
import datetime
|
||||
import html
|
||||
import random
|
||||
|
||||
@ -46,14 +47,17 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
|
||||
def __init__(self, ui, tabname, page):
|
||||
super().__init__(ui, tabname, page)
|
||||
|
||||
self.select_sd_version = None
|
||||
|
||||
self.taginfo = None
|
||||
self.edit_activation_text = None
|
||||
self.slider_preferred_weight = None
|
||||
self.edit_notes = None
|
||||
|
||||
def save_lora_user_metadata(self, name, desc, activation_text, preferred_weight, notes):
|
||||
def save_lora_user_metadata(self, name, desc, sd_version, activation_text, preferred_weight, notes):
|
||||
user_metadata = self.get_user_metadata(name)
|
||||
user_metadata["description"] = desc
|
||||
user_metadata["sd version"] = sd_version
|
||||
user_metadata["activation text"] = activation_text
|
||||
user_metadata["preferred weight"] = preferred_weight
|
||||
user_metadata["notes"] = notes
|
||||
@ -68,6 +72,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
|
||||
keys = {
|
||||
'ss_sd_model_name': "Model:",
|
||||
'ss_clip_skip': "Clip skip:",
|
||||
'ss_network_module': "Kohya module:",
|
||||
}
|
||||
|
||||
for key, label in keys.items():
|
||||
@ -75,6 +80,10 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
|
||||
if value is not None and str(value) != "None":
|
||||
table.append((label, html.escape(value)))
|
||||
|
||||
ss_training_started_at = metadata.get('ss_training_started_at')
|
||||
if ss_training_started_at:
|
||||
table.append(("Date trained:", datetime.datetime.utcfromtimestamp(float(ss_training_started_at)).strftime('%Y-%m-%d %H:%M')))
|
||||
|
||||
ss_bucket_info = metadata.get("ss_bucket_info")
|
||||
if ss_bucket_info and "buckets" in ss_bucket_info:
|
||||
resolutions = {}
|
||||
@ -112,11 +121,11 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
|
||||
gradio_tags = [(tag, str(count)) for tag, count in tags[0:24]]
|
||||
|
||||
return [
|
||||
*values[0:4],
|
||||
*values[0:5],
|
||||
item.get("sd_version", "Unknown"),
|
||||
gr.HighlightedText.update(value=gradio_tags, visible=True if tags else False),
|
||||
user_metadata.get('activation text', ''),
|
||||
float(user_metadata.get('preferred weight', 0.0)),
|
||||
user_metadata.get('notes', ''),
|
||||
gr.update(visible=True if tags else False),
|
||||
gr.update(value=self.generate_random_prompt_from_tags(tags), visible=True if tags else False),
|
||||
]
|
||||
@ -141,10 +150,15 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
|
||||
|
||||
return ", ".join(sorted(res))
|
||||
|
||||
def create_extra_default_items_in_left_column(self):
|
||||
|
||||
# this would be a lot better as gr.Radio but I can't make it work
|
||||
self.select_sd_version = gr.Dropdown(['SD1', 'SD2', 'SDXL', 'Unknown'], value='Unknown', label='Stable Diffusion version', interactive=True)
|
||||
|
||||
def create_editor(self):
|
||||
self.create_default_editor_elems()
|
||||
|
||||
self.taginfo = gr.HighlightedText(label="Tags")
|
||||
self.taginfo = gr.HighlightedText(label="Training dataset tags")
|
||||
self.edit_activation_text = gr.Text(label='Activation text', info="Will be added to prompt along with Lora")
|
||||
self.slider_preferred_weight = gr.Slider(label='Preferred weight', info="Set to 0 to disable", minimum=0.0, maximum=2.0, step=0.01)
|
||||
|
||||
@ -153,7 +167,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
|
||||
random_prompt = gr.Textbox(label='Random prompt', lines=4, max_lines=4, interactive=False)
|
||||
|
||||
with gr.Column(scale=1, min_width=120):
|
||||
generate_random_prompt = gr.Button('Generate').style(full_width=True, size="lg")
|
||||
generate_random_prompt = gr.Button('Generate', size="lg", scale=1)
|
||||
|
||||
self.edit_notes = gr.TextArea(label='Notes', lines=4)
|
||||
|
||||
@ -178,10 +192,11 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
|
||||
self.edit_description,
|
||||
self.html_filedata,
|
||||
self.html_preview,
|
||||
self.edit_notes,
|
||||
self.select_sd_version,
|
||||
self.taginfo,
|
||||
self.edit_activation_text,
|
||||
self.slider_preferred_weight,
|
||||
self.edit_notes,
|
||||
row_random_prompt,
|
||||
random_prompt,
|
||||
]
|
||||
@ -192,6 +207,7 @@ class LoraUserMetadataEditor(ui_extra_networks_user_metadata.UserMetadataEditor)
|
||||
|
||||
edited_components = [
|
||||
self.edit_description,
|
||||
self.select_sd_version,
|
||||
self.edit_activation_text,
|
||||
self.slider_preferred_weight,
|
||||
self.edit_notes,
|
||||
|
@ -1,5 +1,7 @@
|
||||
import os
|
||||
import lora
|
||||
|
||||
import network
|
||||
import networks
|
||||
|
||||
from modules import shared, ui_extra_networks
|
||||
from modules.ui_extra_networks import quote_js
|
||||
@ -11,16 +13,15 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
|
||||
super().__init__('Lora')
|
||||
|
||||
def refresh(self):
|
||||
lora.list_available_loras()
|
||||
networks.list_available_networks()
|
||||
|
||||
def create_item(self, name, index=None):
|
||||
lora_on_disk = lora.available_loras.get(name)
|
||||
def create_item(self, name, index=None, enable_filter=True):
|
||||
lora_on_disk = networks.available_networks.get(name)
|
||||
|
||||
path, ext = os.path.splitext(lora_on_disk.filename)
|
||||
|
||||
alias = lora_on_disk.get_alias()
|
||||
|
||||
# in 1.5 filename changes to be full filename instead of path without extension, and metadata is dict instead of json string
|
||||
item = {
|
||||
"name": name,
|
||||
"filename": lora_on_disk.filename,
|
||||
@ -30,6 +31,7 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
|
||||
"local_preview": f"{path}.{shared.opts.samples_format}",
|
||||
"metadata": lora_on_disk.metadata,
|
||||
"sort_keys": {'default': index, **self.get_sort_keys(lora_on_disk.filename)},
|
||||
"sd_version": lora_on_disk.sd_version.name,
|
||||
}
|
||||
|
||||
self.read_user_metadata(item)
|
||||
@ -40,15 +42,37 @@ class ExtraNetworksPageLora(ui_extra_networks.ExtraNetworksPage):
|
||||
if activation_text:
|
||||
item["prompt"] += " + " + quote_js(" " + activation_text)
|
||||
|
||||
sd_version = item["user_metadata"].get("sd version")
|
||||
if sd_version in network.SdVersion.__members__:
|
||||
item["sd_version"] = sd_version
|
||||
sd_version = network.SdVersion[sd_version]
|
||||
else:
|
||||
sd_version = lora_on_disk.sd_version
|
||||
|
||||
if shared.opts.lora_show_all or not enable_filter:
|
||||
pass
|
||||
elif sd_version == network.SdVersion.Unknown:
|
||||
model_version = network.SdVersion.SDXL if shared.sd_model.is_sdxl else network.SdVersion.SD2 if shared.sd_model.is_sd2 else network.SdVersion.SD1
|
||||
if model_version.name in shared.opts.lora_hide_unknown_for_versions:
|
||||
return None
|
||||
elif shared.sd_model.is_sdxl and sd_version != network.SdVersion.SDXL:
|
||||
return None
|
||||
elif shared.sd_model.is_sd2 and sd_version != network.SdVersion.SD2:
|
||||
return None
|
||||
elif shared.sd_model.is_sd1 and sd_version != network.SdVersion.SD1:
|
||||
return None
|
||||
|
||||
return item
|
||||
|
||||
def list_items(self):
|
||||
for index, name in enumerate(lora.available_loras):
|
||||
for index, name in enumerate(networks.available_networks):
|
||||
item = self.create_item(name, index)
|
||||
|
||||
if item is not None:
|
||||
yield item
|
||||
|
||||
def allowed_directories_for_previews(self):
|
||||
return [shared.cmd_opts.lora_dir]
|
||||
return [shared.cmd_opts.lora_dir, shared.cmd_opts.lyco_dir_backcompat]
|
||||
|
||||
def create_user_metadata_editor(self, ui, tabname):
|
||||
return LoraUserMetadataEditor(ui, tabname, self)
|
||||
|
@ -1,8 +1,8 @@
|
||||
<div class='card' style={style} onclick={card_clicked} data-name="{name}" {sort_keys}>
|
||||
{background_image}
|
||||
<div class="button-row">
|
||||
{edit_button}
|
||||
{metadata_button}
|
||||
{edit_button}
|
||||
</div>
|
||||
<div class='actions'>
|
||||
<div class='additional'>
|
||||
|
@ -1,108 +0,0 @@
|
||||
(function() {
|
||||
var ignore = localStorage.getItem("bad-scale-ignore-it") == "ignore-it";
|
||||
|
||||
function getScale() {
|
||||
var ratio = 0,
|
||||
screen = window.screen,
|
||||
ua = navigator.userAgent.toLowerCase();
|
||||
|
||||
if (window.devicePixelRatio !== undefined) {
|
||||
ratio = window.devicePixelRatio;
|
||||
} else if (~ua.indexOf('msie')) {
|
||||
if (screen.deviceXDPI && screen.logicalXDPI) {
|
||||
ratio = screen.deviceXDPI / screen.logicalXDPI;
|
||||
}
|
||||
} else if (window.outerWidth !== undefined && window.innerWidth !== undefined) {
|
||||
ratio = window.outerWidth / window.innerWidth;
|
||||
}
|
||||
|
||||
return ratio == 0 ? 0 : Math.round(ratio * 100);
|
||||
}
|
||||
|
||||
var showing = false;
|
||||
|
||||
var div = document.createElement("div");
|
||||
div.style.position = "fixed";
|
||||
div.style.top = "0px";
|
||||
div.style.left = "0px";
|
||||
div.style.width = "100vw";
|
||||
div.style.backgroundColor = "firebrick";
|
||||
div.style.textAlign = "center";
|
||||
div.style.zIndex = 99;
|
||||
|
||||
var b = document.createElement("b");
|
||||
b.innerHTML = 'Bad Scale: ??% ';
|
||||
|
||||
div.appendChild(b);
|
||||
|
||||
var note1 = document.createElement("p");
|
||||
note1.innerHTML = "Change your browser or your computer settings!";
|
||||
note1.title = 'Just make sure "computer-scale" * "browser-scale" = 100% ,\n' +
|
||||
"you can keep your computer-scale and only change this page's scale,\n" +
|
||||
"for example: your computer-scale is 125%, just use [\"CTRL\"+\"-\"] to make your browser-scale of this page to 80%.";
|
||||
div.appendChild(note1);
|
||||
|
||||
var note2 = document.createElement("p");
|
||||
note2.innerHTML = " Otherwise, it will cause this page to not function properly!";
|
||||
note2.title = "When you click \"Copy image to: [inpaint sketch]\" in some img2img's tab,\n" +
|
||||
"if scale<100% the canvas will be invisible,\n" +
|
||||
"else if scale>100% this page will take large amount of memory and CPU performance.";
|
||||
div.appendChild(note2);
|
||||
|
||||
var btn = document.createElement("button");
|
||||
btn.innerHTML = "Click here to ignore";
|
||||
|
||||
div.appendChild(btn);
|
||||
|
||||
function tryShowTopBar(scale) {
|
||||
if (showing) return;
|
||||
|
||||
b.innerHTML = 'Bad Scale: ' + scale + '% ';
|
||||
|
||||
var updateScaleTimer = setInterval(function() {
|
||||
var newScale = getScale();
|
||||
b.innerHTML = 'Bad Scale: ' + newScale + '% ';
|
||||
if (newScale == 100) {
|
||||
var p = div.parentNode;
|
||||
if (p != null) p.removeChild(div);
|
||||
showing = false;
|
||||
clearInterval(updateScaleTimer);
|
||||
check();
|
||||
}
|
||||
}, 999);
|
||||
|
||||
btn.onclick = function() {
|
||||
clearInterval(updateScaleTimer);
|
||||
var p = div.parentNode;
|
||||
if (p != null) p.removeChild(div);
|
||||
ignore = true;
|
||||
showing = false;
|
||||
localStorage.setItem("bad-scale-ignore-it", "ignore-it");
|
||||
};
|
||||
|
||||
document.body.appendChild(div);
|
||||
}
|
||||
|
||||
function check() {
|
||||
if (!ignore) {
|
||||
var timer = setInterval(function() {
|
||||
var scale = getScale();
|
||||
if (scale != 100 && !ignore) {
|
||||
tryShowTopBar(scale);
|
||||
clearInterval(timer);
|
||||
}
|
||||
if (ignore) {
|
||||
clearInterval(timer);
|
||||
}
|
||||
}, 999);
|
||||
}
|
||||
}
|
||||
|
||||
if (document.readyState != "complete") {
|
||||
document.onreadystatechange = function() {
|
||||
if (document.readyState != "complete") check();
|
||||
};
|
||||
} else {
|
||||
check();
|
||||
}
|
||||
})();
|
@ -213,7 +213,7 @@ function popup(contents) {
|
||||
globalPopupInner.classList.add('global-popup-inner');
|
||||
globalPopup.appendChild(globalPopupInner);
|
||||
|
||||
gradioApp().appendChild(globalPopup);
|
||||
gradioApp().querySelector('.main').appendChild(globalPopup);
|
||||
}
|
||||
|
||||
globalPopupInner.innerHTML = '';
|
||||
|
@ -190,3 +190,14 @@ onUiUpdate(function(mutationRecords) {
|
||||
tooltipCheckTimer = setTimeout(processTooltipCheckNodes, 1000);
|
||||
}
|
||||
});
|
||||
|
||||
onUiLoaded(function() {
|
||||
for (var comp of window.gradio_config.components) {
|
||||
if (comp.props.webui_tooltip && comp.props.elem_id) {
|
||||
var elem = gradioApp().getElementById(comp.props.elem_id);
|
||||
if (elem) {
|
||||
elem.title = comp.props.webui_tooltip;
|
||||
}
|
||||
}
|
||||
}
|
||||
});
|
||||
|
@ -152,7 +152,11 @@ function submit() {
|
||||
showSubmitButtons('txt2img', false);
|
||||
|
||||
var id = randomId();
|
||||
try {
|
||||
localStorage.setItem("txt2img_task_id", id);
|
||||
} catch (e) {
|
||||
console.warn(`Failed to save txt2img task id to localStorage: ${e}`);
|
||||
}
|
||||
|
||||
requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function() {
|
||||
showSubmitButtons('txt2img', true);
|
||||
@ -171,7 +175,11 @@ function submit_img2img() {
|
||||
showSubmitButtons('img2img', false);
|
||||
|
||||
var id = randomId();
|
||||
try {
|
||||
localStorage.setItem("img2img_task_id", id);
|
||||
} catch (e) {
|
||||
console.warn(`Failed to save img2img task id to localStorage: ${e}`);
|
||||
}
|
||||
|
||||
requestProgress(id, gradioApp().getElementById('img2img_gallery_container'), gradioApp().getElementById('img2img_gallery'), function() {
|
||||
showSubmitButtons('img2img', true);
|
||||
@ -191,8 +199,6 @@ function restoreProgressTxt2img() {
|
||||
showRestoreProgressButton("txt2img", false);
|
||||
var id = localStorage.getItem("txt2img_task_id");
|
||||
|
||||
id = localStorage.getItem("txt2img_task_id");
|
||||
|
||||
if (id) {
|
||||
requestProgress(id, gradioApp().getElementById('txt2img_gallery_container'), gradioApp().getElementById('txt2img_gallery'), function() {
|
||||
showSubmitButtons('txt2img', true);
|
||||
|
@ -1,6 +1,5 @@
|
||||
from modules import launch_utils
|
||||
|
||||
|
||||
args = launch_utils.args
|
||||
python = launch_utils.python
|
||||
git = launch_utils.git
|
||||
@ -18,6 +17,7 @@ run_pip = launch_utils.run_pip
|
||||
check_run_python = launch_utils.check_run_python
|
||||
git_clone = launch_utils.git_clone
|
||||
git_pull_recursive = launch_utils.git_pull_recursive
|
||||
list_extensions = launch_utils.list_extensions
|
||||
run_extension_installer = launch_utils.run_extension_installer
|
||||
prepare_environment = launch_utils.prepare_environment
|
||||
configure_for_tests = launch_utils.configure_for_tests
|
||||
@ -25,6 +25,9 @@ start = launch_utils.start
|
||||
|
||||
|
||||
def main():
|
||||
launch_utils.startup_timer.record("initial startup")
|
||||
|
||||
with launch_utils.startup_timer.subcategory("prepare environment"):
|
||||
if not args.skip_prepare_environment:
|
||||
prepare_environment()
|
||||
|
||||
|
@ -15,7 +15,7 @@ from fastapi.encoders import jsonable_encoder
|
||||
from secrets import compare_digest
|
||||
|
||||
import modules.shared as shared
|
||||
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart
|
||||
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart, shared_items
|
||||
from modules.api import models
|
||||
from modules.shared import opts
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
|
||||
@ -197,6 +197,7 @@ class Api:
|
||||
self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem])
|
||||
self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse)
|
||||
self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
|
||||
self.add_api_route("/sdapi/v1/refresh-vae", self.refresh_vae, methods=["POST"])
|
||||
self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse)
|
||||
self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse)
|
||||
self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse)
|
||||
@ -333,6 +334,7 @@ class Api:
|
||||
p.outpath_grids = opts.outdir_txt2img_grids
|
||||
p.outpath_samples = opts.outdir_txt2img_samples
|
||||
|
||||
try:
|
||||
shared.state.begin(job="scripts_txt2img")
|
||||
if selectable_scripts is not None:
|
||||
p.script_args = script_args
|
||||
@ -340,7 +342,9 @@ class Api:
|
||||
else:
|
||||
p.script_args = tuple(script_args) # Need to pass args as tuple here
|
||||
processed = process_images(p)
|
||||
finally:
|
||||
shared.state.end()
|
||||
shared.total_tqdm.clear()
|
||||
|
||||
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
|
||||
|
||||
@ -390,6 +394,7 @@ class Api:
|
||||
p.outpath_grids = opts.outdir_img2img_grids
|
||||
p.outpath_samples = opts.outdir_img2img_samples
|
||||
|
||||
try:
|
||||
shared.state.begin(job="scripts_img2img")
|
||||
if selectable_scripts is not None:
|
||||
p.script_args = script_args
|
||||
@ -397,7 +402,9 @@ class Api:
|
||||
else:
|
||||
p.script_args = tuple(script_args) # Need to pass args as tuple here
|
||||
processed = process_images(p)
|
||||
finally:
|
||||
shared.state.end()
|
||||
shared.total_tqdm.clear()
|
||||
|
||||
b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []
|
||||
|
||||
@ -604,6 +611,10 @@ class Api:
|
||||
with self.queue_lock:
|
||||
shared.refresh_checkpoints()
|
||||
|
||||
def refresh_vae(self):
|
||||
with self.queue_lock:
|
||||
shared_items.refresh_vae_list()
|
||||
|
||||
def create_embedding(self, args: dict):
|
||||
try:
|
||||
shared.state.begin(job="create_embedding")
|
||||
@ -720,9 +731,9 @@ class Api:
|
||||
cuda = {'error': f'{err}'}
|
||||
return models.MemoryResponse(ram=ram, cuda=cuda)
|
||||
|
||||
def launch(self, server_name, port):
|
||||
def launch(self, server_name, port, root_path):
|
||||
self.app.include_router(self.router)
|
||||
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive)
|
||||
uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive, root_path=root_path)
|
||||
|
||||
def kill_webui(self):
|
||||
restart.stop_program()
|
||||
|
@ -1,4 +1,5 @@
|
||||
import inspect
|
||||
|
||||
from pydantic import BaseModel, Field, create_model
|
||||
from typing import Any, Optional
|
||||
from typing_extensions import Literal
|
||||
@ -207,11 +208,10 @@ class PreprocessResponse(BaseModel):
|
||||
fields = {}
|
||||
for key, metadata in opts.data_labels.items():
|
||||
value = opts.data.get(key)
|
||||
optType = opts.typemap.get(type(metadata.default), type(value))
|
||||
optType = opts.typemap.get(type(metadata.default), type(metadata.default)) if metadata.default else Any
|
||||
|
||||
if (metadata is not None):
|
||||
fields.update({key: (Optional[optType], Field(
|
||||
default=metadata.default ,description=metadata.label))})
|
||||
if metadata is not None:
|
||||
fields.update({key: (Optional[optType], Field(default=metadata.default, description=metadata.label))})
|
||||
else:
|
||||
fields.update({key: (Optional[optType], Field())})
|
||||
|
||||
|
@ -3,7 +3,7 @@ import html
|
||||
import threading
|
||||
import time
|
||||
|
||||
from modules import shared, progress, errors
|
||||
from modules import shared, progress, errors, devices
|
||||
|
||||
queue_lock = threading.Lock()
|
||||
|
||||
@ -75,6 +75,8 @@ def wrap_gradio_call(func, extra_outputs=None, add_stats=False):
|
||||
error_message = f'{type(e).__name__}: {e}'
|
||||
res = extra_outputs_array + [f"<div class='error'>{html.escape(error_message)}</div>"]
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
shared.state.skipped = False
|
||||
shared.state.interrupted = False
|
||||
shared.state.job_count = 0
|
||||
|
@ -13,8 +13,10 @@ parser.add_argument("--reinstall-xformers", action='store_true', help="launch.py
|
||||
parser.add_argument("--reinstall-torch", action='store_true', help="launch.py argument: install the appropriate version of torch even if you have some version already installed")
|
||||
parser.add_argument("--update-check", action='store_true', help="launch.py argument: check for updates at startup")
|
||||
parser.add_argument("--test-server", action='store_true', help="launch.py argument: configure server for testing")
|
||||
parser.add_argument("--log-startup", action='store_true', help="launch.py argument: print a detailed log of what's happening at startup")
|
||||
parser.add_argument("--skip-prepare-environment", action='store_true', help="launch.py argument: skip all environment preparation")
|
||||
parser.add_argument("--skip-install", action='store_true', help="launch.py argument: skip installation of packages")
|
||||
parser.add_argument("--do-not-download-clip", action='store_true', help="do not download CLIP model even if it's not included in the checkpoint")
|
||||
parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored")
|
||||
parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",)
|
||||
parser.add_argument("--ckpt", type=str, default=sd_model_file, help="path to checkpoint of stable diffusion model; if specified, this checkpoint will be added to the list of checkpoints and loaded",)
|
||||
@ -65,6 +67,7 @@ parser.add_argument("--opt-sdp-no-mem-attention", action='store_true', help="pre
|
||||
parser.add_argument("--disable-opt-split-attention", action='store_true', help="prefer no cross-attention layer optimization for automatic choice of optimization")
|
||||
parser.add_argument("--disable-nan-check", action='store_true', help="do not check if produced images/latent spaces have nans; useful for running without a checkpoint in CI")
|
||||
parser.add_argument("--use-cpu", nargs='+', help="use CPU as torch device for specified modules", default=[], type=str.lower)
|
||||
parser.add_argument("--disable-model-loading-ram-optimization", action='store_true', help="disable an optimization that reduces RAM use when loading a model")
|
||||
parser.add_argument("--listen", action='store_true', help="launch gradio with 0.0.0.0 as server name, allowing to respond to network requests")
|
||||
parser.add_argument("--port", type=int, help="launch gradio with given server port, you need root/admin rights for ports < 1024, defaults to 7860 if available", default=None)
|
||||
parser.add_argument("--show-negative-prompt", action='store_true', help="does not do anything", default=False)
|
||||
@ -109,3 +112,5 @@ parser.add_argument('--subpath', type=str, help='customize the subpath for gradi
|
||||
parser.add_argument('--add-stop-route', action='store_true', help='add /_stop route to stop server')
|
||||
parser.add_argument('--api-server-stop', action='store_true', help='enable server stop/restart/kill via api')
|
||||
parser.add_argument('--timeout-keep-alive', type=int, default=30, help='set timeout_keep_alive for uvicorn')
|
||||
parser.add_argument("--disable-all-extensions", action='store_true', help="prevent all extensions from running regardless of any other settings", default=False)
|
||||
parser.add_argument("--disable-extra-extensions", action='store_true', help=" prevent all extensions except built-in from running regardless of any other settings", default=False)
|
||||
|
@ -3,7 +3,7 @@ import contextlib
|
||||
from functools import lru_cache
|
||||
|
||||
import torch
|
||||
from modules import errors
|
||||
from modules import errors, rng_philox
|
||||
|
||||
if sys.platform == "darwin":
|
||||
from modules import mac_specific
|
||||
@ -71,14 +71,17 @@ def enable_tf32():
|
||||
torch.backends.cudnn.allow_tf32 = True
|
||||
|
||||
|
||||
|
||||
errors.run(enable_tf32, "Enabling TF32")
|
||||
|
||||
cpu = torch.device("cpu")
|
||||
device = device_interrogate = device_gfpgan = device_esrgan = device_codeformer = None
|
||||
dtype = torch.float16
|
||||
dtype_vae = torch.float16
|
||||
dtype_unet = torch.float16
|
||||
cpu: torch.device = torch.device("cpu")
|
||||
device: torch.device = None
|
||||
device_interrogate: torch.device = None
|
||||
device_gfpgan: torch.device = None
|
||||
device_esrgan: torch.device = None
|
||||
device_codeformer: torch.device = None
|
||||
dtype: torch.dtype = torch.float16
|
||||
dtype_vae: torch.dtype = torch.float16
|
||||
dtype_unet: torch.dtype = torch.float16
|
||||
unet_needs_upcast = False
|
||||
|
||||
|
||||
@ -90,23 +93,87 @@ def cond_cast_float(input):
|
||||
return input.float() if unet_needs_upcast else input
|
||||
|
||||
|
||||
nv_rng = None
|
||||
|
||||
|
||||
def randn(seed, shape):
|
||||
"""Generate a tensor with random numbers from a normal distribution using seed.
|
||||
|
||||
Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed."""
|
||||
|
||||
from modules.shared import opts
|
||||
|
||||
torch.manual_seed(seed)
|
||||
manual_seed(seed)
|
||||
|
||||
if opts.randn_source == "NV":
|
||||
return torch.asarray(nv_rng.randn(shape), device=device)
|
||||
|
||||
if opts.randn_source == "CPU" or device.type == 'mps':
|
||||
return torch.randn(shape, device=cpu).to(device)
|
||||
|
||||
return torch.randn(shape, device=device)
|
||||
|
||||
|
||||
def randn_local(seed, shape):
|
||||
"""Generate a tensor with random numbers from a normal distribution using seed.
|
||||
|
||||
Does not change the global random number generator. You can only generate the seed's first tensor using this function."""
|
||||
|
||||
from modules.shared import opts
|
||||
|
||||
if opts.randn_source == "NV":
|
||||
rng = rng_philox.Generator(seed)
|
||||
return torch.asarray(rng.randn(shape), device=device)
|
||||
|
||||
local_device = cpu if opts.randn_source == "CPU" or device.type == 'mps' else device
|
||||
local_generator = torch.Generator(local_device).manual_seed(int(seed))
|
||||
return torch.randn(shape, device=local_device, generator=local_generator).to(device)
|
||||
|
||||
|
||||
def randn_like(x):
|
||||
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
|
||||
|
||||
Use either randn() or manual_seed() to initialize the generator."""
|
||||
|
||||
from modules.shared import opts
|
||||
|
||||
if opts.randn_source == "NV":
|
||||
return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype)
|
||||
|
||||
if opts.randn_source == "CPU" or x.device.type == 'mps':
|
||||
return torch.randn_like(x, device=cpu).to(x.device)
|
||||
|
||||
return torch.randn_like(x)
|
||||
|
||||
|
||||
def randn_without_seed(shape):
|
||||
"""Generate a tensor with random numbers from a normal distribution using the previously initialized genrator.
|
||||
|
||||
Use either randn() or manual_seed() to initialize the generator."""
|
||||
|
||||
from modules.shared import opts
|
||||
|
||||
if opts.randn_source == "NV":
|
||||
return torch.asarray(nv_rng.randn(shape), device=device)
|
||||
|
||||
if opts.randn_source == "CPU" or device.type == 'mps':
|
||||
return torch.randn(shape, device=cpu).to(device)
|
||||
|
||||
return torch.randn(shape, device=device)
|
||||
|
||||
|
||||
def manual_seed(seed):
|
||||
"""Set up a global random number generator using the specified seed."""
|
||||
from modules.shared import opts
|
||||
|
||||
if opts.randn_source == "NV":
|
||||
global nv_rng
|
||||
nv_rng = rng_philox.Generator(seed)
|
||||
return
|
||||
|
||||
torch.manual_seed(seed)
|
||||
|
||||
|
||||
def autocast(disable=False):
|
||||
from modules import shared
|
||||
|
||||
|
@ -14,7 +14,8 @@ def record_exception():
|
||||
if exception_records and exception_records[-1] == e:
|
||||
return
|
||||
|
||||
exception_records.append((e, tb))
|
||||
from modules import sysinfo
|
||||
exception_records.append(sysinfo.format_exception(e, tb))
|
||||
|
||||
if len(exception_records) > 5:
|
||||
exception_records.pop(0)
|
||||
@ -83,3 +84,53 @@ def run(code, task):
|
||||
code()
|
||||
except Exception as e:
|
||||
display(task, e)
|
||||
|
||||
|
||||
def check_versions():
|
||||
from packaging import version
|
||||
from modules import shared
|
||||
|
||||
import torch
|
||||
import gradio
|
||||
|
||||
expected_torch_version = "2.0.0"
|
||||
expected_xformers_version = "0.0.20"
|
||||
expected_gradio_version = "3.39.0"
|
||||
|
||||
if version.parse(torch.__version__) < version.parse(expected_torch_version):
|
||||
print_error_explanation(f"""
|
||||
You are running torch {torch.__version__}.
|
||||
The program is tested to work with torch {expected_torch_version}.
|
||||
To reinstall the desired version, run with commandline flag --reinstall-torch.
|
||||
Beware that this will cause a lot of large files to be downloaded, as well as
|
||||
there are reports of issues with training tab on the latest version.
|
||||
|
||||
Use --skip-version-check commandline argument to disable this check.
|
||||
""".strip())
|
||||
|
||||
if shared.xformers_available:
|
||||
import xformers
|
||||
|
||||
if version.parse(xformers.__version__) < version.parse(expected_xformers_version):
|
||||
print_error_explanation(f"""
|
||||
You are running xformers {xformers.__version__}.
|
||||
The program is tested to work with xformers {expected_xformers_version}.
|
||||
To reinstall the desired version, run with commandline flag --reinstall-xformers.
|
||||
|
||||
Use --skip-version-check commandline argument to disable this check.
|
||||
""".strip())
|
||||
|
||||
if gradio.__version__ != expected_gradio_version:
|
||||
print_error_explanation(f"""
|
||||
You are running gradio {gradio.__version__}.
|
||||
The program is designed to work with gradio {expected_gradio_version}.
|
||||
Using a different version of gradio is extremely likely to break the program.
|
||||
|
||||
Reasons why you have the mismatched gradio version can be:
|
||||
- you use --skip-install flag.
|
||||
- you use webui.py to start the program instead of launch.py.
|
||||
- an extension installs the incompatible gradio version.
|
||||
|
||||
Use --skip-version-check commandline argument to disable this check.
|
||||
""".strip())
|
||||
|
||||
|
@ -11,9 +11,9 @@ os.makedirs(extensions_dir, exist_ok=True)
|
||||
|
||||
|
||||
def active():
|
||||
if shared.opts.disable_all_extensions == "all":
|
||||
if shared.cmd_opts.disable_all_extensions or shared.opts.disable_all_extensions == "all":
|
||||
return []
|
||||
elif shared.opts.disable_all_extensions == "extra":
|
||||
elif shared.cmd_opts.disable_extra_extensions or shared.opts.disable_all_extensions == "extra":
|
||||
return [x for x in extensions if x.enabled and x.is_builtin]
|
||||
else:
|
||||
return [x for x in extensions if x.enabled]
|
||||
@ -56,10 +56,12 @@ class Extension:
|
||||
self.do_read_info_from_repo()
|
||||
|
||||
return self.to_dict()
|
||||
|
||||
try:
|
||||
d = cache.cached_data_for_file('extensions-git', self.name, os.path.join(self.path, ".git"), read_from_repo)
|
||||
self.from_dict(d)
|
||||
self.status = 'unknown'
|
||||
except FileNotFoundError:
|
||||
pass
|
||||
self.status = 'unknown' if self.status == '' else self.status
|
||||
|
||||
def do_read_info_from_repo(self):
|
||||
repo = None
|
||||
@ -139,8 +141,12 @@ def list_extensions():
|
||||
if not os.path.isdir(extensions_dir):
|
||||
return
|
||||
|
||||
if shared.opts.disable_all_extensions == "all":
|
||||
if shared.cmd_opts.disable_all_extensions:
|
||||
print("*** \"--disable-all-extensions\" arg was used, will not load any extensions ***")
|
||||
elif shared.opts.disable_all_extensions == "all":
|
||||
print("*** \"Disable all extensions\" option was set, will not load any extensions ***")
|
||||
elif shared.cmd_opts.disable_extra_extensions:
|
||||
print("*** \"--disable-extra-extensions\" arg was used, will only load built-in extensions ***")
|
||||
elif shared.opts.disable_all_extensions == "extra":
|
||||
print("*** \"Disable all extensions\" option was set, will only load built-in extensions ***")
|
||||
|
||||
|
@ -4,16 +4,22 @@ from collections import defaultdict
|
||||
from modules import errors
|
||||
|
||||
extra_network_registry = {}
|
||||
extra_network_aliases = {}
|
||||
|
||||
|
||||
def initialize():
|
||||
extra_network_registry.clear()
|
||||
extra_network_aliases.clear()
|
||||
|
||||
|
||||
def register_extra_network(extra_network):
|
||||
extra_network_registry[extra_network.name] = extra_network
|
||||
|
||||
|
||||
def register_extra_network_alias(extra_network, alias):
|
||||
extra_network_aliases[alias] = extra_network
|
||||
|
||||
|
||||
def register_default_extra_networks():
|
||||
from modules.extra_networks_hypernet import ExtraNetworkHypernet
|
||||
register_extra_network(ExtraNetworkHypernet())
|
||||
@ -82,20 +88,26 @@ def activate(p, extra_network_data):
|
||||
"""call activate for extra networks in extra_network_data in specified order, then call
|
||||
activate for all remaining registered networks with an empty argument list"""
|
||||
|
||||
activated = []
|
||||
|
||||
for extra_network_name, extra_network_args in extra_network_data.items():
|
||||
extra_network = extra_network_registry.get(extra_network_name, None)
|
||||
|
||||
if extra_network is None:
|
||||
extra_network = extra_network_aliases.get(extra_network_name, None)
|
||||
|
||||
if extra_network is None:
|
||||
print(f"Skipping unknown extra network: {extra_network_name}")
|
||||
continue
|
||||
|
||||
try:
|
||||
extra_network.activate(p, extra_network_args)
|
||||
activated.append(extra_network)
|
||||
except Exception as e:
|
||||
errors.display(e, f"activating extra network {extra_network_name} with arguments {extra_network_args}")
|
||||
|
||||
for extra_network_name, extra_network in extra_network_registry.items():
|
||||
args = extra_network_data.get(extra_network_name, None)
|
||||
if args is not None:
|
||||
if extra_network in activated:
|
||||
continue
|
||||
|
||||
try:
|
||||
|
@ -7,7 +7,7 @@ import json
|
||||
import torch
|
||||
import tqdm
|
||||
|
||||
from modules import shared, images, sd_models, sd_vae, sd_models_config
|
||||
from modules import shared, images, sd_models, sd_vae, sd_models_config, errors
|
||||
from modules.ui_common import plaintext_to_html
|
||||
import gradio as gr
|
||||
import safetensors.torch
|
||||
@ -72,7 +72,20 @@ def to_half(tensor, enable):
|
||||
return tensor
|
||||
|
||||
|
||||
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata):
|
||||
def read_metadata(primary_model_name, secondary_model_name, tertiary_model_name):
|
||||
metadata = {}
|
||||
|
||||
for checkpoint_name in [primary_model_name, secondary_model_name, tertiary_model_name]:
|
||||
checkpoint_info = sd_models.checkpoints_list.get(checkpoint_name, None)
|
||||
if checkpoint_info is None:
|
||||
continue
|
||||
|
||||
metadata.update(checkpoint_info.metadata)
|
||||
|
||||
return json.dumps(metadata, indent=4, ensure_ascii=False)
|
||||
|
||||
|
||||
def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights, save_metadata, add_merge_recipe, copy_metadata_fields, metadata_json):
|
||||
shared.state.begin(job="model-merge")
|
||||
|
||||
def fail(message):
|
||||
@ -241,11 +254,25 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
|
||||
shared.state.textinfo = "Saving"
|
||||
print(f"Saving to {output_modelname}...")
|
||||
|
||||
metadata = None
|
||||
metadata = {}
|
||||
|
||||
if save_metadata and copy_metadata_fields:
|
||||
if primary_model_info:
|
||||
metadata.update(primary_model_info.metadata)
|
||||
if secondary_model_info:
|
||||
metadata.update(secondary_model_info.metadata)
|
||||
if tertiary_model_info:
|
||||
metadata.update(tertiary_model_info.metadata)
|
||||
|
||||
if save_metadata:
|
||||
metadata = {"format": "pt"}
|
||||
try:
|
||||
metadata.update(json.loads(metadata_json))
|
||||
except Exception as e:
|
||||
errors.display(e, "readin metadata from json")
|
||||
|
||||
metadata["format"] = "pt"
|
||||
|
||||
if save_metadata and add_merge_recipe:
|
||||
merge_recipe = {
|
||||
"type": "webui", # indicate this model was merged with webui's built-in merger
|
||||
"primary_model_hash": primary_model_info.sha256,
|
||||
@ -261,7 +288,6 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
|
||||
"is_inpainting": result_is_inpainting_model,
|
||||
"is_instruct_pix2pix": result_is_instruct_pix2pix_model
|
||||
}
|
||||
metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
|
||||
|
||||
sd_merge_models = {}
|
||||
|
||||
@ -281,11 +307,12 @@ def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_
|
||||
if tertiary_model_info:
|
||||
add_model_metadata(tertiary_model_info)
|
||||
|
||||
metadata["sd_merge_recipe"] = json.dumps(merge_recipe)
|
||||
metadata["sd_merge_models"] = json.dumps(sd_merge_models)
|
||||
|
||||
_, extension = os.path.splitext(output_modelname)
|
||||
if extension.lower() == ".safetensors":
|
||||
safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata)
|
||||
safetensors.torch.save_file(theta_0, output_modelname, metadata=metadata if len(metadata)>0 else None)
|
||||
else:
|
||||
torch.save(theta_0, output_modelname)
|
||||
|
||||
|
60
modules/gradio_extensons.py
Normal file
60
modules/gradio_extensons.py
Normal file
@ -0,0 +1,60 @@
|
||||
import gradio as gr
|
||||
|
||||
from modules import scripts
|
||||
|
||||
def add_classes_to_gradio_component(comp):
|
||||
"""
|
||||
this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others
|
||||
"""
|
||||
|
||||
comp.elem_classes = [f"gradio-{comp.get_block_name()}", *(comp.elem_classes or [])]
|
||||
|
||||
if getattr(comp, 'multiselect', False):
|
||||
comp.elem_classes.append('multiselect')
|
||||
|
||||
|
||||
def IOComponent_init(self, *args, **kwargs):
|
||||
self.webui_tooltip = kwargs.pop('tooltip', None)
|
||||
|
||||
if scripts.scripts_current is not None:
|
||||
scripts.scripts_current.before_component(self, **kwargs)
|
||||
|
||||
scripts.script_callbacks.before_component_callback(self, **kwargs)
|
||||
|
||||
res = original_IOComponent_init(self, *args, **kwargs)
|
||||
|
||||
add_classes_to_gradio_component(self)
|
||||
|
||||
scripts.script_callbacks.after_component_callback(self, **kwargs)
|
||||
|
||||
if scripts.scripts_current is not None:
|
||||
scripts.scripts_current.after_component(self, **kwargs)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
def Block_get_config(self):
|
||||
config = original_Block_get_config(self)
|
||||
|
||||
webui_tooltip = getattr(self, 'webui_tooltip', None)
|
||||
if webui_tooltip:
|
||||
config["webui_tooltip"] = webui_tooltip
|
||||
|
||||
return config
|
||||
|
||||
|
||||
def BlockContext_init(self, *args, **kwargs):
|
||||
res = original_BlockContext_init(self, *args, **kwargs)
|
||||
|
||||
add_classes_to_gradio_component(self)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
original_IOComponent_init = gr.components.IOComponent.__init__
|
||||
original_Block_get_config = gr.blocks.Block.get_config
|
||||
original_BlockContext_init = gr.blocks.BlockContext.__init__
|
||||
|
||||
gr.components.IOComponent.__init__ = IOComponent_init
|
||||
gr.blocks.Block.get_config = Block_get_config
|
||||
gr.blocks.BlockContext.__init__ = BlockContext_init
|
@ -363,7 +363,7 @@ class FilenameGenerator:
|
||||
'styles': lambda self: self.p and sanitize_filename_part(", ".join([style for style in self.p.styles if not style == "None"]) or "None", replace_spaces=False),
|
||||
'sampler': lambda self: self.p and sanitize_filename_part(self.p.sampler_name, replace_spaces=False),
|
||||
'model_hash': lambda self: getattr(self.p, "sd_model_hash", shared.sd_model.sd_model_hash),
|
||||
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.model_name, replace_spaces=False),
|
||||
'model_name': lambda self: sanitize_filename_part(shared.sd_model.sd_checkpoint_info.name_for_extra, replace_spaces=False),
|
||||
'date': lambda self: datetime.datetime.now().strftime('%Y-%m-%d'),
|
||||
'datetime': lambda self, *args: self.datetime(*args), # accepts formats: [datetime], [datetime<Format>], [datetime<Format><Time Zone>]
|
||||
'job_timestamp': lambda self: getattr(self.p, "job_timestamp", shared.state.job_timestamp),
|
||||
|
@ -10,7 +10,6 @@ from modules import sd_samplers, images as imgutil
|
||||
from modules.generation_parameters_copypaste import create_override_settings_dict, parse_generation_parameters
|
||||
from modules.processing import Processed, StableDiffusionProcessingImg2Img, process_images
|
||||
from modules.shared import opts, state
|
||||
from modules.images import save_image
|
||||
import modules.shared as shared
|
||||
import modules.processing as processing
|
||||
from modules.ui import plaintext_to_html
|
||||
@ -18,9 +17,10 @@ import modules.scripts
|
||||
|
||||
|
||||
def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=False, scale_by=1.0, use_png_info=False, png_info_props=None, png_info_dir=None):
|
||||
output_dir = output_dir.strip()
|
||||
processing.fix_seed(p)
|
||||
|
||||
images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp")))
|
||||
images = list(shared.walk_files(input_dir, allowed_extensions=(".png", ".jpg", ".jpeg", ".webp", ".tif", ".tiff")))
|
||||
|
||||
is_inpaint_batch = False
|
||||
if inpaint_mask_dir:
|
||||
@ -32,11 +32,6 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
|
||||
|
||||
print(f"Will process {len(images)} images, creating {p.n_iter * p.batch_size} new images for each.")
|
||||
|
||||
save_normally = output_dir == ''
|
||||
|
||||
p.do_not_save_grid = True
|
||||
p.do_not_save_samples = not save_normally
|
||||
|
||||
state.job_count = len(images) * p.n_iter
|
||||
|
||||
# extract "default" params to use in case getting png info fails
|
||||
@ -111,21 +106,14 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal
|
||||
|
||||
proc = modules.scripts.scripts_img2img.run(p, *args)
|
||||
if proc is None:
|
||||
proc = process_images(p)
|
||||
|
||||
for n, processed_image in enumerate(proc.images):
|
||||
filename = image_path.stem
|
||||
infotext = proc.infotext(p, n)
|
||||
relpath = os.path.dirname(os.path.relpath(image, input_dir))
|
||||
|
||||
if n > 0:
|
||||
filename += f"-{n}"
|
||||
|
||||
if not save_normally:
|
||||
os.makedirs(os.path.join(output_dir, relpath), exist_ok=True)
|
||||
if processed_image.mode == 'RGBA':
|
||||
processed_image = processed_image.convert("RGB")
|
||||
save_image(processed_image, os.path.join(output_dir, relpath), None, extension=opts.samples_format, info=infotext, forced_filename=filename, save_to_dirs=False)
|
||||
if output_dir:
|
||||
p.outpath_samples = output_dir
|
||||
p.override_settings['save_to_dirs'] = False
|
||||
if p.n_iter > 1 or p.batch_size > 1:
|
||||
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}-[generation_number]'
|
||||
else:
|
||||
p.override_settings['samples_filename_pattern'] = f'{image_path.stem}'
|
||||
process_images(p)
|
||||
|
||||
|
||||
def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_index: int, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args):
|
||||
|
@ -1,4 +1,5 @@
|
||||
# this scripts installs necessary requirements and launches main program in webui.py
|
||||
import re
|
||||
import subprocess
|
||||
import os
|
||||
import sys
|
||||
@ -9,6 +10,7 @@ from functools import lru_cache
|
||||
|
||||
from modules import cmd_args, errors
|
||||
from modules.paths_internal import script_path, extensions_dir
|
||||
from modules.timer import startup_timer
|
||||
|
||||
args, _ = cmd_args.parser.parse_known_args()
|
||||
|
||||
@ -192,7 +194,7 @@ def run_extension_installer(extension_dir):
|
||||
|
||||
try:
|
||||
env = os.environ.copy()
|
||||
env['PYTHONPATH'] = os.path.abspath(".")
|
||||
env['PYTHONPATH'] = f"{os.path.abspath('.')}{os.pathsep}{env.get('PYTHONPATH', '')}"
|
||||
|
||||
print(run(f'"{python}" "{path_installer}"', errdesc=f"Error running install.py for extension {extension_dir}", custom_env=env))
|
||||
except Exception as e:
|
||||
@ -222,8 +224,51 @@ def run_extensions_installers(settings_file):
|
||||
if not os.path.isdir(extensions_dir):
|
||||
return
|
||||
|
||||
with startup_timer.subcategory("run extensions installers"):
|
||||
for dirname_extension in list_extensions(settings_file):
|
||||
run_extension_installer(os.path.join(extensions_dir, dirname_extension))
|
||||
path = os.path.join(extensions_dir, dirname_extension)
|
||||
|
||||
if os.path.isdir(path):
|
||||
run_extension_installer(path)
|
||||
startup_timer.record(dirname_extension)
|
||||
|
||||
|
||||
re_requirement = re.compile(r"\s*([-_a-zA-Z0-9]+)\s*(?:==\s*([-+_.a-zA-Z0-9]+))?\s*")
|
||||
|
||||
|
||||
def requirements_met(requirements_file):
|
||||
"""
|
||||
Does a simple parse of a requirements.txt file to determine if all rerqirements in it
|
||||
are already installed. Returns True if so, False if not installed or parsing fails.
|
||||
"""
|
||||
|
||||
import importlib.metadata
|
||||
import packaging.version
|
||||
|
||||
with open(requirements_file, "r", encoding="utf8") as file:
|
||||
for line in file:
|
||||
if line.strip() == "":
|
||||
continue
|
||||
|
||||
m = re.match(re_requirement, line)
|
||||
if m is None:
|
||||
return False
|
||||
|
||||
package = m.group(1).strip()
|
||||
version_required = (m.group(2) or "").strip()
|
||||
|
||||
if version_required == "":
|
||||
continue
|
||||
|
||||
try:
|
||||
version_installed = importlib.metadata.version(package)
|
||||
except Exception:
|
||||
return False
|
||||
|
||||
if packaging.version.parse(version_required) != packaging.version.parse(version_installed):
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def prepare_environment():
|
||||
@ -258,8 +303,11 @@ def prepare_environment():
|
||||
if not args.skip_python_version_check:
|
||||
check_python_version()
|
||||
|
||||
startup_timer.record("checks")
|
||||
|
||||
commit = commit_hash()
|
||||
tag = git_tag()
|
||||
startup_timer.record("git version info")
|
||||
|
||||
print(f"Python {sys.version}")
|
||||
print(f"Version: {tag}")
|
||||
@ -267,21 +315,27 @@ def prepare_environment():
|
||||
|
||||
if args.reinstall_torch or not is_installed("torch") or not is_installed("torchvision"):
|
||||
run(f'"{python}" -m {torch_command}', "Installing torch and torchvision", "Couldn't install torch", live=True)
|
||||
startup_timer.record("install torch")
|
||||
|
||||
if not args.skip_torch_cuda_test and not check_run_python("import torch; assert torch.cuda.is_available()"):
|
||||
raise RuntimeError(
|
||||
'Torch is not able to use GPU; '
|
||||
'add --skip-torch-cuda-test to COMMANDLINE_ARGS variable to disable this check'
|
||||
)
|
||||
startup_timer.record("torch GPU test")
|
||||
|
||||
|
||||
if not is_installed("gfpgan"):
|
||||
run_pip(f"install {gfpgan_package}", "gfpgan")
|
||||
startup_timer.record("install gfpgan")
|
||||
|
||||
if not is_installed("clip"):
|
||||
run_pip(f"install {clip_package}", "clip")
|
||||
startup_timer.record("install clip")
|
||||
|
||||
if not is_installed("open_clip"):
|
||||
run_pip(f"install {openclip_package}", "open_clip")
|
||||
startup_timer.record("install open_clip")
|
||||
|
||||
if (not is_installed("xformers") or args.reinstall_xformers) and args.xformers:
|
||||
if platform.system() == "Windows":
|
||||
@ -295,8 +349,11 @@ def prepare_environment():
|
||||
elif platform.system() == "Linux":
|
||||
run_pip(f"install -U -I --no-deps {xformers_package}", "xformers")
|
||||
|
||||
startup_timer.record("install xformers")
|
||||
|
||||
if not is_installed("ngrok") and args.ngrok:
|
||||
run_pip("install ngrok", "ngrok")
|
||||
startup_timer.record("install ngrok")
|
||||
|
||||
os.makedirs(os.path.join(script_path, dir_repos), exist_ok=True)
|
||||
|
||||
@ -306,20 +363,28 @@ def prepare_environment():
|
||||
git_clone(codeformer_repo, repo_dir('CodeFormer'), "CodeFormer", codeformer_commit_hash)
|
||||
git_clone(blip_repo, repo_dir('BLIP'), "BLIP", blip_commit_hash)
|
||||
|
||||
startup_timer.record("clone repositores")
|
||||
|
||||
if not is_installed("lpips"):
|
||||
run_pip(f"install -r \"{os.path.join(repo_dir('CodeFormer'), 'requirements.txt')}\"", "requirements for CodeFormer")
|
||||
startup_timer.record("install CodeFormer requirements")
|
||||
|
||||
if not os.path.isfile(requirements_file):
|
||||
requirements_file = os.path.join(script_path, requirements_file)
|
||||
|
||||
if not requirements_met(requirements_file):
|
||||
run_pip(f"install -r \"{requirements_file}\"", "requirements")
|
||||
startup_timer.record("install requirements")
|
||||
|
||||
run_extensions_installers(settings_file=args.ui_settings_file)
|
||||
|
||||
if args.update_check:
|
||||
version_check(commit)
|
||||
startup_timer.record("check version")
|
||||
|
||||
if args.update_all_extensions:
|
||||
git_pull_recursive(extensions_dir)
|
||||
startup_timer.record("update extensions")
|
||||
|
||||
if "--exit" in sys.argv:
|
||||
print("Exiting because of --exit argument")
|
||||
|
@ -90,8 +90,12 @@ def setup_for_low_vram(sd_model, use_medvram):
|
||||
sd_model.conditioner.register_forward_pre_hook(send_me_to_gpu)
|
||||
elif is_sd2:
|
||||
sd_model.cond_stage_model.model.register_forward_pre_hook(send_me_to_gpu)
|
||||
sd_model.cond_stage_model.model.token_embedding.register_forward_pre_hook(send_me_to_gpu)
|
||||
parents[sd_model.cond_stage_model.model] = sd_model.cond_stage_model
|
||||
parents[sd_model.cond_stage_model.model.token_embedding] = sd_model.cond_stage_model
|
||||
else:
|
||||
sd_model.cond_stage_model.transformer.register_forward_pre_hook(send_me_to_gpu)
|
||||
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
|
||||
|
||||
sd_model.first_stage_model.register_forward_pre_hook(send_me_to_gpu)
|
||||
sd_model.first_stage_model.encode = first_stage_model_encode_wrap
|
||||
@ -101,9 +105,6 @@ def setup_for_low_vram(sd_model, use_medvram):
|
||||
if sd_model.embedder:
|
||||
sd_model.embedder.register_forward_pre_hook(send_me_to_gpu)
|
||||
|
||||
if hasattr(sd_model, 'cond_stage_model'):
|
||||
parents[sd_model.cond_stage_model.transformer] = sd_model.cond_stage_model
|
||||
|
||||
if use_medvram:
|
||||
sd_model.model.register_forward_pre_hook(send_me_to_gpu)
|
||||
else:
|
||||
|
@ -14,7 +14,7 @@ from skimage import exposure
|
||||
from typing import Any, Dict, List
|
||||
|
||||
import modules.sd_hijack
|
||||
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet
|
||||
from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors
|
||||
from modules.sd_hijack import model_hijack
|
||||
from modules.shared import opts, cmd_opts, state
|
||||
import modules.shared as shared
|
||||
@ -492,7 +492,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
||||
noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8)
|
||||
|
||||
subnoise = None
|
||||
if subseeds is not None:
|
||||
if subseeds is not None and subseed_strength != 0:
|
||||
subseed = 0 if i >= len(subseeds) else subseeds[i]
|
||||
|
||||
subnoise = devices.randn(subseed, noise_shape)
|
||||
@ -524,7 +524,7 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
||||
cnt = p.sampler.number_of_needed_noises(p)
|
||||
|
||||
if eta_noise_seed_delta > 0:
|
||||
torch.manual_seed(seed + eta_noise_seed_delta)
|
||||
devices.manual_seed(seed + eta_noise_seed_delta)
|
||||
|
||||
for j in range(cnt):
|
||||
sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape)))
|
||||
@ -538,6 +538,40 @@ def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, see
|
||||
return x
|
||||
|
||||
|
||||
def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
|
||||
samples = []
|
||||
|
||||
for i in range(batch.shape[0]):
|
||||
sample = decode_first_stage(model, batch[i:i + 1])[0]
|
||||
|
||||
if check_for_nans:
|
||||
try:
|
||||
devices.test_for_nans(sample, "vae")
|
||||
except devices.NansException as e:
|
||||
if devices.dtype_vae == torch.float32 or not shared.opts.auto_vae_precision:
|
||||
raise e
|
||||
|
||||
errors.print_error_explanation(
|
||||
"A tensor with all NaNs was produced in VAE.\n"
|
||||
"Web UI will now convert VAE into 32-bit float and retry.\n"
|
||||
"To disable this behavior, disable the 'Automaticlly revert VAE to 32-bit floats' setting.\n"
|
||||
"To always start with 32-bit VAE, use --no-half-vae commandline flag."
|
||||
)
|
||||
|
||||
devices.dtype_vae = torch.float32
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
batch = batch.to(devices.dtype_vae)
|
||||
|
||||
sample = decode_first_stage(model, batch[i:i + 1])[0]
|
||||
|
||||
if target_device is not None:
|
||||
sample = sample.to(target_device)
|
||||
|
||||
samples.append(sample)
|
||||
|
||||
return samples
|
||||
|
||||
|
||||
def decode_first_stage(model, x):
|
||||
x = model.decode_first_stage(x.to(devices.dtype_vae))
|
||||
|
||||
@ -566,9 +600,13 @@ def program_version():
|
||||
return res
|
||||
|
||||
|
||||
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False):
|
||||
def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iteration=0, position_in_batch=0, use_main_prompt=False, index=None, all_negative_prompts=None):
|
||||
if index is None:
|
||||
index = position_in_batch + iteration * p.batch_size
|
||||
|
||||
if all_negative_prompts is None:
|
||||
all_negative_prompts = p.all_negative_prompts
|
||||
|
||||
clip_skip = getattr(p, 'clip_skip', opts.CLIP_stop_at_last_layers)
|
||||
enable_hr = getattr(p, 'enable_hr', False)
|
||||
token_merging_ratio = p.get_token_merging_ratio()
|
||||
@ -583,12 +621,12 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
||||
"Sampler": p.sampler_name,
|
||||
"CFG scale": p.cfg_scale,
|
||||
"Image CFG scale": getattr(p, 'image_cfg_scale', None),
|
||||
"Seed": all_seeds[index],
|
||||
"Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index],
|
||||
"Face restoration": (opts.face_restoration_model if p.restore_faces else None),
|
||||
"Size": f"{p.width}x{p.height}",
|
||||
"Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash),
|
||||
"Model": (None if not opts.add_model_name_to_info or not shared.sd_model.sd_checkpoint_info.model_name else shared.sd_model.sd_checkpoint_info.model_name.replace(',', '').replace(':', '')),
|
||||
"Variation seed": (None if p.subseed_strength == 0 else all_subseeds[index]),
|
||||
"Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra),
|
||||
"Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])),
|
||||
"Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength),
|
||||
"Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"),
|
||||
"Denoising strength": getattr(p, 'denoising_strength', None),
|
||||
@ -598,7 +636,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
||||
"Token merging ratio": None if token_merging_ratio == 0 else token_merging_ratio,
|
||||
"Token merging ratio hr": None if not enable_hr or token_merging_ratio_hr == 0 else token_merging_ratio_hr,
|
||||
"Init image hash": getattr(p, 'init_img_hash', None),
|
||||
"RNG": opts.randn_source if opts.randn_source != "GPU" else None,
|
||||
"RNG": opts.randn_source if opts.randn_source != "GPU" and opts.randn_source != "NV" else None,
|
||||
"NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond,
|
||||
**p.extra_generation_params,
|
||||
"Version": program_version() if opts.add_version_to_infotext else None,
|
||||
@ -608,7 +646,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter
|
||||
generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None])
|
||||
|
||||
prompt_text = p.prompt if use_main_prompt else all_prompts[index]
|
||||
negative_prompt_text = f"\nNegative prompt: {p.all_negative_prompts[index]}" if p.all_negative_prompts[index] else ""
|
||||
negative_prompt_text = f"\nNegative prompt: {all_negative_prompts[index]}" if all_negative_prompts[index] else ""
|
||||
|
||||
return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip()
|
||||
|
||||
@ -682,9 +720,6 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
else:
|
||||
p.all_subseeds = [int(subseed) + x for x in range(len(p.all_prompts))]
|
||||
|
||||
def infotext(iteration=0, position_in_batch=0, use_main_prompt=False):
|
||||
return create_infotext(p, p.all_prompts, p.all_seeds, p.all_subseeds, comments, iteration, position_in_batch, use_main_prompt)
|
||||
|
||||
if os.path.exists(cmd_opts.embeddings_dir) and not p.do_not_reload_embeddings:
|
||||
model_hijack.embedding_db.load_textual_inversion_embeddings()
|
||||
|
||||
@ -758,10 +793,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
with devices.without_autocast() if devices.unet_needs_upcast else devices.autocast():
|
||||
samples_ddim = p.sample(conditioning=p.c, unconditional_conditioning=p.uc, seeds=p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, prompts=p.prompts)
|
||||
|
||||
x_samples_ddim = [decode_first_stage(p.sd_model, samples_ddim[i:i+1].to(dtype=devices.dtype_vae))[0].cpu() for i in range(samples_ddim.size(0))]
|
||||
for x in x_samples_ddim:
|
||||
devices.test_for_nans(x, "vae")
|
||||
|
||||
x_samples_ddim = decode_latent_batch(p.sd_model, samples_ddim, target_device=devices.cpu, check_for_nans=True)
|
||||
x_samples_ddim = torch.stack(x_samples_ddim).float()
|
||||
x_samples_ddim = torch.clamp((x_samples_ddim + 1.0) / 2.0, min=0.0, max=1.0)
|
||||
|
||||
@ -775,6 +807,16 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if p.scripts is not None:
|
||||
p.scripts.postprocess_batch(p, x_samples_ddim, batch_number=n)
|
||||
|
||||
p.prompts = p.all_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||
p.negative_prompts = p.all_negative_prompts[n * p.batch_size:(n + 1) * p.batch_size]
|
||||
|
||||
batch_params = scripts.PostprocessBatchListArgs(list(x_samples_ddim))
|
||||
p.scripts.postprocess_batch_list(p, batch_params, batch_number=n)
|
||||
x_samples_ddim = batch_params.images
|
||||
|
||||
def infotext(index=0, use_main_prompt=False):
|
||||
return create_infotext(p, p.prompts, p.seeds, p.subseeds, use_main_prompt=use_main_prompt, index=index, all_negative_prompts=p.negative_prompts)
|
||||
|
||||
for i, x_sample in enumerate(x_samples_ddim):
|
||||
p.batch_index = i
|
||||
|
||||
@ -783,7 +825,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
|
||||
if p.restore_faces:
|
||||
if opts.save and not p.do_not_save_samples and opts.save_images_before_face_restoration:
|
||||
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-face-restoration")
|
||||
images.save_image(Image.fromarray(x_sample), p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-face-restoration")
|
||||
|
||||
devices.torch_gc()
|
||||
|
||||
@ -800,15 +842,15 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
if p.color_corrections is not None and i < len(p.color_corrections):
|
||||
if opts.save and not p.do_not_save_samples and opts.save_images_before_color_correction:
|
||||
image_without_cc = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-before-color-correction")
|
||||
images.save_image(image_without_cc, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-before-color-correction")
|
||||
image = apply_color_correction(p.color_corrections[i], image)
|
||||
|
||||
image = apply_overlay(image, p.paste_to, i, p.overlay_images)
|
||||
|
||||
if opts.samples_save and not p.do_not_save_samples:
|
||||
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p)
|
||||
images.save_image(image, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p)
|
||||
|
||||
text = infotext(n, i)
|
||||
text = infotext(i)
|
||||
infotexts.append(text)
|
||||
if opts.enable_pnginfo:
|
||||
image.info["parameters"] = text
|
||||
@ -819,10 +861,10 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
image_mask_composite = Image.composite(image.convert('RGBA').convert('RGBa'), Image.new('RGBa', image.size), images.resize_image(2, p.mask_for_overlay, image.width, image.height).convert('L')).convert('RGBA')
|
||||
|
||||
if opts.save_mask:
|
||||
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask")
|
||||
images.save_image(image_mask, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask")
|
||||
|
||||
if opts.save_mask_composite:
|
||||
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(n, i), p=p, suffix="-mask-composite")
|
||||
images.save_image(image_mask_composite, p.outpath_samples, "", p.seeds[i], p.prompts[i], opts.samples_format, info=infotext(i), p=p, suffix="-mask-composite")
|
||||
|
||||
if opts.return_mask:
|
||||
output_images.append(image_mask)
|
||||
@ -863,7 +905,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed:
|
||||
p,
|
||||
images_list=output_images,
|
||||
seed=p.all_seeds[0],
|
||||
info=infotext(),
|
||||
info=infotexts[0],
|
||||
comments="".join(f"{comment}\n" for comment in comments),
|
||||
subseed=p.all_subseeds[0],
|
||||
index_of_first_image=index_of_first_image,
|
||||
@ -1029,7 +1071,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
image = sd_samplers.sample_to_image(image, index, approximation=0)
|
||||
|
||||
info = create_infotext(self, self.all_prompts, self.all_seeds, self.all_subseeds, [], iteration=self.iteration, position_in_batch=index)
|
||||
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, suffix="-before-highres-fix")
|
||||
images.save_image(image, self.outpath_samples, "", seeds[index], prompts[index], opts.samples_format, info=info, p=self, suffix="-before-highres-fix")
|
||||
|
||||
if latent_scale_mode is not None:
|
||||
for i in range(samples.shape[0]):
|
||||
@ -1306,6 +1348,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
image = image.to(shared.device, dtype=devices.dtype_vae)
|
||||
|
||||
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
||||
devices.torch_gc()
|
||||
|
||||
if self.resize_mode == 3:
|
||||
self.init_latent = torch.nn.functional.interpolate(self.init_latent, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
|
||||
|
@ -19,7 +19,7 @@ prompt: (emphasized | scheduled | alternate | plain | WHITESPACE)*
|
||||
!emphasized: "(" prompt ")"
|
||||
| "(" prompt ":" prompt ")"
|
||||
| "[" prompt "]"
|
||||
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER "]"
|
||||
scheduled: "[" [prompt ":"] prompt ":" [WHITESPACE] NUMBER [WHITESPACE] "]"
|
||||
alternate: "[" prompt ("|" prompt)+ "]"
|
||||
WHITESPACE: /\s+/
|
||||
plain: /([^\\\[\]():|]|\\.)+/
|
||||
@ -60,11 +60,11 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||||
|
||||
class CollectSteps(lark.Visitor):
|
||||
def scheduled(self, tree):
|
||||
tree.children[-1] = float(tree.children[-1])
|
||||
if tree.children[-1] < 1:
|
||||
tree.children[-1] *= steps
|
||||
tree.children[-1] = min(steps, int(tree.children[-1]))
|
||||
res.append(tree.children[-1])
|
||||
tree.children[-2] = float(tree.children[-2])
|
||||
if tree.children[-2] < 1:
|
||||
tree.children[-2] *= steps
|
||||
tree.children[-2] = min(steps, int(tree.children[-2]))
|
||||
res.append(tree.children[-2])
|
||||
|
||||
def alternate(self, tree):
|
||||
res.extend(range(1, steps+1))
|
||||
@ -75,7 +75,7 @@ def get_learned_conditioning_prompt_schedules(prompts, steps):
|
||||
def at_step(step, tree):
|
||||
class AtStep(lark.Transformer):
|
||||
def scheduled(self, args):
|
||||
before, after, _, when = args
|
||||
before, after, _, when, _ = args
|
||||
yield before or () if step <= when else after
|
||||
def alternate(self, args):
|
||||
yield next(args[(step - 1)%len(args)])
|
||||
@ -178,7 +178,7 @@ def get_learned_conditioning(model, prompts: SdConditioning | list[str], steps):
|
||||
|
||||
|
||||
re_AND = re.compile(r"\bAND\b")
|
||||
re_weight = re.compile(r"^(.*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
|
||||
re_weight = re.compile(r"^((?:\s|.)*?)(?:\s*:\s*([-+]?(?:\d+\.?|\d*\.\d+)))?\s*$")
|
||||
|
||||
|
||||
def get_multicond_prompt_list(prompts: SdConditioning | list[str]):
|
||||
@ -333,7 +333,7 @@ re_attention = re.compile(r"""
|
||||
\\|
|
||||
\(|
|
||||
\[|
|
||||
:([+-]?[.\d]+)\)|
|
||||
:\s*([+-]?[.\d]+)\s*\)|
|
||||
\)|
|
||||
]|
|
||||
[^\\()\[\]:]+|
|
||||
|
102
modules/rng_philox.py
Normal file
102
modules/rng_philox.py
Normal file
@ -0,0 +1,102 @@
|
||||
"""RNG imitiating torch cuda randn on CPU. You are welcome.
|
||||
|
||||
Usage:
|
||||
|
||||
```
|
||||
g = Generator(seed=0)
|
||||
print(g.randn(shape=(3, 4)))
|
||||
```
|
||||
|
||||
Expected output:
|
||||
```
|
||||
[[-0.92466259 -0.42534415 -2.6438457 0.14518388]
|
||||
[-0.12086647 -0.57972564 -0.62285122 -0.32838709]
|
||||
[-1.07454231 -0.36314407 -1.67105067 2.26550497]]
|
||||
```
|
||||
"""
|
||||
|
||||
import numpy as np
|
||||
|
||||
philox_m = [0xD2511F53, 0xCD9E8D57]
|
||||
philox_w = [0x9E3779B9, 0xBB67AE85]
|
||||
|
||||
two_pow32_inv = np.array([2.3283064e-10], dtype=np.float32)
|
||||
two_pow32_inv_2pi = np.array([2.3283064e-10 * 6.2831855], dtype=np.float32)
|
||||
|
||||
|
||||
def uint32(x):
|
||||
"""Converts (N,) np.uint64 array into (2, N) np.unit32 array."""
|
||||
return x.view(np.uint32).reshape(-1, 2).transpose(1, 0)
|
||||
|
||||
|
||||
def philox4_round(counter, key):
|
||||
"""A single round of the Philox 4x32 random number generator."""
|
||||
|
||||
v1 = uint32(counter[0].astype(np.uint64) * philox_m[0])
|
||||
v2 = uint32(counter[2].astype(np.uint64) * philox_m[1])
|
||||
|
||||
counter[0] = v2[1] ^ counter[1] ^ key[0]
|
||||
counter[1] = v2[0]
|
||||
counter[2] = v1[1] ^ counter[3] ^ key[1]
|
||||
counter[3] = v1[0]
|
||||
|
||||
|
||||
def philox4_32(counter, key, rounds=10):
|
||||
"""Generates 32-bit random numbers using the Philox 4x32 random number generator.
|
||||
|
||||
Parameters:
|
||||
counter (numpy.ndarray): A 4xN array of 32-bit integers representing the counter values (offset into generation).
|
||||
key (numpy.ndarray): A 2xN array of 32-bit integers representing the key values (seed).
|
||||
rounds (int): The number of rounds to perform.
|
||||
|
||||
Returns:
|
||||
numpy.ndarray: A 4xN array of 32-bit integers containing the generated random numbers.
|
||||
"""
|
||||
|
||||
for _ in range(rounds - 1):
|
||||
philox4_round(counter, key)
|
||||
|
||||
key[0] = key[0] + philox_w[0]
|
||||
key[1] = key[1] + philox_w[1]
|
||||
|
||||
philox4_round(counter, key)
|
||||
return counter
|
||||
|
||||
|
||||
def box_muller(x, y):
|
||||
"""Returns just the first out of two numbers generated by Box–Muller transform algorithm."""
|
||||
u = x * two_pow32_inv + two_pow32_inv / 2
|
||||
v = y * two_pow32_inv_2pi + two_pow32_inv_2pi / 2
|
||||
|
||||
s = np.sqrt(-2.0 * np.log(u))
|
||||
|
||||
r1 = s * np.sin(v)
|
||||
return r1.astype(np.float32)
|
||||
|
||||
|
||||
class Generator:
|
||||
"""RNG that produces same outputs as torch.randn(..., device='cuda') on CPU"""
|
||||
|
||||
def __init__(self, seed):
|
||||
self.seed = seed
|
||||
self.offset = 0
|
||||
|
||||
def randn(self, shape):
|
||||
"""Generate a sequence of n standard normal random variables using the Philox 4x32 random number generator and the Box-Muller transform."""
|
||||
|
||||
n = 1
|
||||
for x in shape:
|
||||
n *= x
|
||||
|
||||
counter = np.zeros((4, n), dtype=np.uint32)
|
||||
counter[0] = self.offset
|
||||
counter[2] = np.arange(n, dtype=np.uint32) # up to 2^32 numbers can be generated - if you want more you'd need to spill into counter[3]
|
||||
self.offset += 1
|
||||
|
||||
key = np.empty(n, dtype=np.uint64)
|
||||
key.fill(self.seed)
|
||||
key = uint32(key)
|
||||
|
||||
g = philox4_32(counter, key)
|
||||
|
||||
return box_muller(g[0], g[1]).reshape(shape) # discard g[2] and g[3]
|
@ -12,11 +12,12 @@ def load_module(path):
|
||||
return module
|
||||
|
||||
|
||||
def preload_extensions(extensions_dir, parser):
|
||||
def preload_extensions(extensions_dir, parser, extension_list=None):
|
||||
if not os.path.isdir(extensions_dir):
|
||||
return
|
||||
|
||||
for dirname in sorted(os.listdir(extensions_dir)):
|
||||
extensions = extension_list if extension_list is not None else os.listdir(extensions_dir)
|
||||
for dirname in sorted(extensions):
|
||||
preload_script = os.path.join(extensions_dir, dirname, "preload.py")
|
||||
if not os.path.isfile(preload_script):
|
||||
continue
|
||||
|
@ -16,6 +16,11 @@ class PostprocessImageArgs:
|
||||
self.image = image
|
||||
|
||||
|
||||
class PostprocessBatchListArgs:
|
||||
def __init__(self, images):
|
||||
self.images = images
|
||||
|
||||
|
||||
class Script:
|
||||
name = None
|
||||
"""script's internal name derived from title"""
|
||||
@ -156,6 +161,25 @@ class Script:
|
||||
|
||||
pass
|
||||
|
||||
def postprocess_batch_list(self, p, pp: PostprocessBatchListArgs, *args, **kwargs):
|
||||
"""
|
||||
Same as postprocess_batch(), but receives batch images as a list of 3D tensors instead of a 4D tensor.
|
||||
This is useful when you want to update the entire batch instead of individual images.
|
||||
|
||||
You can modify the postprocessing object (pp) to update the images in the batch, remove images, add images, etc.
|
||||
If the number of images is different from the batch size when returning,
|
||||
then the script has the responsibility to also update the following attributes in the processing object (p):
|
||||
- p.prompts
|
||||
- p.negative_prompts
|
||||
- p.seeds
|
||||
- p.subseeds
|
||||
|
||||
**kwargs will have same items as process_batch, and also:
|
||||
- batch_number - index of current batch, from 0 to number of batches-1
|
||||
"""
|
||||
|
||||
pass
|
||||
|
||||
def postprocess_image(self, p, pp: PostprocessImageArgs, *args):
|
||||
"""
|
||||
Called for every image after it has been generated.
|
||||
@ -536,6 +560,14 @@ class ScriptRunner:
|
||||
except Exception:
|
||||
errors.report(f"Error running postprocess_batch: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_batch_list(self, p, pp: PostprocessBatchListArgs, **kwargs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
script_args = p.script_args[script.args_from:script.args_to]
|
||||
script.postprocess_batch_list(p, pp, *script_args, **kwargs)
|
||||
except Exception:
|
||||
errors.report(f"Error running postprocess_batch_list: {script.filename}", exc_info=True)
|
||||
|
||||
def postprocess_image(self, p, pp: PostprocessImageArgs):
|
||||
for script in self.alwayson_scripts:
|
||||
try:
|
||||
@ -599,49 +631,3 @@ def reload_script_body_only():
|
||||
|
||||
|
||||
reload_scripts = load_scripts # compatibility alias
|
||||
|
||||
|
||||
def add_classes_to_gradio_component(comp):
|
||||
"""
|
||||
this adds gradio-* to the component for css styling (ie gradio-button to gr.Button), as well as some others
|
||||
"""
|
||||
|
||||
comp.elem_classes = [f"gradio-{comp.get_block_name()}", *(comp.elem_classes or [])]
|
||||
|
||||
if getattr(comp, 'multiselect', False):
|
||||
comp.elem_classes.append('multiselect')
|
||||
|
||||
|
||||
|
||||
def IOComponent_init(self, *args, **kwargs):
|
||||
if scripts_current is not None:
|
||||
scripts_current.before_component(self, **kwargs)
|
||||
|
||||
script_callbacks.before_component_callback(self, **kwargs)
|
||||
|
||||
res = original_IOComponent_init(self, *args, **kwargs)
|
||||
|
||||
add_classes_to_gradio_component(self)
|
||||
|
||||
script_callbacks.after_component_callback(self, **kwargs)
|
||||
|
||||
if scripts_current is not None:
|
||||
scripts_current.after_component(self, **kwargs)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
original_IOComponent_init = gr.components.IOComponent.__init__
|
||||
gr.components.IOComponent.__init__ = IOComponent_init
|
||||
|
||||
|
||||
def BlockContext_init(self, *args, **kwargs):
|
||||
res = original_BlockContext_init(self, *args, **kwargs)
|
||||
|
||||
add_classes_to_gradio_component(self)
|
||||
|
||||
return res
|
||||
|
||||
|
||||
original_BlockContext_init = gr.blocks.BlockContext.__init__
|
||||
gr.blocks.BlockContext.__init__ = BlockContext_init
|
||||
|
@ -3,8 +3,31 @@ import open_clip
|
||||
import torch
|
||||
import transformers.utils.hub
|
||||
|
||||
from modules import shared
|
||||
|
||||
class DisableInitialization:
|
||||
|
||||
class ReplaceHelper:
|
||||
def __init__(self):
|
||||
self.replaced = []
|
||||
|
||||
def replace(self, obj, field, func):
|
||||
original = getattr(obj, field, None)
|
||||
if original is None:
|
||||
return None
|
||||
|
||||
self.replaced.append((obj, field, original))
|
||||
setattr(obj, field, func)
|
||||
|
||||
return original
|
||||
|
||||
def restore(self):
|
||||
for obj, field, original in self.replaced:
|
||||
setattr(obj, field, original)
|
||||
|
||||
self.replaced.clear()
|
||||
|
||||
|
||||
class DisableInitialization(ReplaceHelper):
|
||||
"""
|
||||
When an object of this class enters a `with` block, it starts:
|
||||
- preventing torch's layer initialization functions from working
|
||||
@ -21,7 +44,7 @@ class DisableInitialization:
|
||||
"""
|
||||
|
||||
def __init__(self, disable_clip=True):
|
||||
self.replaced = []
|
||||
super().__init__()
|
||||
self.disable_clip = disable_clip
|
||||
|
||||
def replace(self, obj, field, func):
|
||||
@ -86,8 +109,81 @@ class DisableInitialization:
|
||||
self.transformers_utils_hub_get_from_cache = self.replace(transformers.utils.hub, 'get_from_cache', transformers_utils_hub_get_from_cache)
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
for obj, field, original in self.replaced:
|
||||
setattr(obj, field, original)
|
||||
self.restore()
|
||||
|
||||
self.replaced.clear()
|
||||
|
||||
class InitializeOnMeta(ReplaceHelper):
|
||||
"""
|
||||
Context manager that causes all parameters for linear/conv2d/mha layers to be allocated on meta device,
|
||||
which results in those parameters having no values and taking no memory. model.to() will be broken and
|
||||
will need to be repaired by using LoadStateDictOnMeta below when loading params from state dict.
|
||||
|
||||
Usage:
|
||||
```
|
||||
with sd_disable_initialization.InitializeOnMeta():
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
```
|
||||
"""
|
||||
|
||||
def __enter__(self):
|
||||
if shared.cmd_opts.disable_model_loading_ram_optimization:
|
||||
return
|
||||
|
||||
def set_device(x):
|
||||
x["device"] = "meta"
|
||||
return x
|
||||
|
||||
linear_init = self.replace(torch.nn.Linear, '__init__', lambda *args, **kwargs: linear_init(*args, **set_device(kwargs)))
|
||||
conv2d_init = self.replace(torch.nn.Conv2d, '__init__', lambda *args, **kwargs: conv2d_init(*args, **set_device(kwargs)))
|
||||
mha_init = self.replace(torch.nn.MultiheadAttention, '__init__', lambda *args, **kwargs: mha_init(*args, **set_device(kwargs)))
|
||||
self.replace(torch.nn.Module, 'to', lambda *args, **kwargs: None)
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.restore()
|
||||
|
||||
|
||||
class LoadStateDictOnMeta(ReplaceHelper):
|
||||
"""
|
||||
Context manager that allows to read parameters from state_dict into a model that has some of its parameters in the meta device.
|
||||
As those parameters are read from state_dict, they will be deleted from it, so by the end state_dict will be mostly empty, to save memory.
|
||||
Meant to be used together with InitializeOnMeta above.
|
||||
|
||||
Usage:
|
||||
```
|
||||
with sd_disable_initialization.LoadStateDictOnMeta(state_dict):
|
||||
model.load_state_dict(state_dict, strict=False)
|
||||
```
|
||||
"""
|
||||
|
||||
def __init__(self, state_dict, device):
|
||||
super().__init__()
|
||||
self.state_dict = state_dict
|
||||
self.device = device
|
||||
|
||||
def __enter__(self):
|
||||
if shared.cmd_opts.disable_model_loading_ram_optimization:
|
||||
return
|
||||
|
||||
sd = self.state_dict
|
||||
device = self.device
|
||||
|
||||
def load_from_state_dict(original, self, state_dict, prefix, *args, **kwargs):
|
||||
params = [(name, param) for name, param in self._parameters.items() if param is not None and param.is_meta]
|
||||
|
||||
for name, param in params:
|
||||
if param.is_meta:
|
||||
self._parameters[name] = torch.nn.parameter.Parameter(torch.zeros_like(param, device=device), requires_grad=param.requires_grad)
|
||||
|
||||
original(self, state_dict, prefix, *args, **kwargs)
|
||||
|
||||
for name, _ in params:
|
||||
key = prefix + name
|
||||
if key in sd:
|
||||
del sd[key]
|
||||
|
||||
linear_load_from_state_dict = self.replace(torch.nn.Linear, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(linear_load_from_state_dict, *args, **kwargs))
|
||||
conv2d_load_from_state_dict = self.replace(torch.nn.Conv2d, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(conv2d_load_from_state_dict, *args, **kwargs))
|
||||
mha_load_from_state_dict = self.replace(torch.nn.MultiheadAttention, '_load_from_state_dict', lambda *args, **kwargs: load_from_state_dict(mha_load_from_state_dict, *args, **kwargs))
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
self.restore()
|
||||
|
@ -197,7 +197,7 @@ class StableDiffusionModelHijack:
|
||||
conditioner.embedders[i] = sd_hijack_clip.FrozenCLIPEmbedderForSDXLWithCustomWords(embedder, self)
|
||||
text_cond_models.append(conditioner.embedders[i])
|
||||
if typename == 'FrozenOpenCLIPEmbedder2':
|
||||
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self)
|
||||
embedder.model.token_embedding = EmbeddingsWithFixes(embedder.model.token_embedding, self, textual_inversion_key='clip_g')
|
||||
conditioner.embedders[i] = sd_hijack_open_clip.FrozenOpenCLIPEmbedder2WithCustomWords(embedder, self)
|
||||
text_cond_models.append(conditioner.embedders[i])
|
||||
|
||||
@ -243,7 +243,7 @@ class StableDiffusionModelHijack:
|
||||
ldm.modules.diffusionmodules.openaimodel.UNetModel.forward = sd_unet.UNetModel_forward
|
||||
|
||||
def undo_hijack(self, m):
|
||||
if type(m.cond_stage_model) == xlmr.BertSeriesModelWithTransformation:
|
||||
if type(m.cond_stage_model) == sd_hijack_xlmr.FrozenXLMREmbedderWithCustomWords:
|
||||
m.cond_stage_model = m.cond_stage_model.wrapped
|
||||
|
||||
elif type(m.cond_stage_model) == sd_hijack_clip.FrozenCLIPEmbedderWithCustomWords:
|
||||
@ -292,10 +292,11 @@ class StableDiffusionModelHijack:
|
||||
|
||||
|
||||
class EmbeddingsWithFixes(torch.nn.Module):
|
||||
def __init__(self, wrapped, embeddings):
|
||||
def __init__(self, wrapped, embeddings, textual_inversion_key='clip_l'):
|
||||
super().__init__()
|
||||
self.wrapped = wrapped
|
||||
self.embeddings = embeddings
|
||||
self.textual_inversion_key = textual_inversion_key
|
||||
|
||||
def forward(self, input_ids):
|
||||
batch_fixes = self.embeddings.fixes
|
||||
@ -309,7 +310,8 @@ class EmbeddingsWithFixes(torch.nn.Module):
|
||||
vecs = []
|
||||
for fixes, tensor in zip(batch_fixes, inputs_embeds):
|
||||
for offset, embedding in fixes:
|
||||
emb = devices.cond_cast_unet(embedding.vec)
|
||||
vec = embedding.vec[self.textual_inversion_key] if isinstance(embedding.vec, dict) else embedding.vec
|
||||
emb = devices.cond_cast_unet(vec)
|
||||
emb_len = min(tensor.shape[0] - offset - 1, emb.shape[0])
|
||||
tensor = torch.cat([tensor[0:offset + 1], emb[0:emb_len], tensor[offset + 1 + emb_len:]])
|
||||
|
||||
|
@ -161,7 +161,7 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||
position += 1
|
||||
continue
|
||||
|
||||
emb_len = int(embedding.vec.shape[0])
|
||||
emb_len = int(embedding.vectors)
|
||||
if len(chunk.tokens) + emb_len > self.chunk_length:
|
||||
next_chunk()
|
||||
|
||||
@ -245,6 +245,8 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||
hashes.append(f"{name}: {shorthash}")
|
||||
|
||||
if hashes:
|
||||
if self.hijack.extra_generation_params.get("TI hashes"):
|
||||
hashes.append(self.hijack.extra_generation_params.get("TI hashes"))
|
||||
self.hijack.extra_generation_params["TI hashes"] = ", ".join(hashes)
|
||||
|
||||
if getattr(self.wrapped, 'return_pooled', False):
|
||||
@ -270,12 +272,17 @@ class FrozenCLIPEmbedderWithCustomWordsBase(torch.nn.Module):
|
||||
|
||||
z = self.encode_with_transformers(tokens)
|
||||
|
||||
pooled = getattr(z, 'pooled', None)
|
||||
|
||||
# restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise
|
||||
batch_multipliers = torch.asarray(batch_multipliers).to(devices.device)
|
||||
original_mean = z.mean()
|
||||
z *= batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||
z = z * batch_multipliers.reshape(batch_multipliers.shape + (1,)).expand(z.shape)
|
||||
new_mean = z.mean()
|
||||
z *= (original_mean / new_mean)
|
||||
z = z * (original_mean / new_mean)
|
||||
|
||||
if pooled is not None:
|
||||
z.pooled = pooled
|
||||
|
||||
return z
|
||||
|
||||
|
@ -32,7 +32,7 @@ class FrozenOpenCLIPEmbedderWithCustomWords(sd_hijack_clip.FrozenCLIPEmbedderWit
|
||||
def encode_embedding_init_text(self, init_text, nvpt):
|
||||
ids = tokenizer.encode(init_text)
|
||||
ids = torch.asarray([ids], device=devices.device, dtype=torch.int)
|
||||
embedded = self.wrapped.model.token_embedding.wrapped(ids.to(self.wrapped.model.token_embedding.wrapped.weight.device)).squeeze(0)
|
||||
embedded = self.wrapped.model.token_embedding.wrapped(ids).squeeze(0)
|
||||
|
||||
return embedded
|
||||
|
||||
|
@ -256,9 +256,9 @@ def split_cross_attention_forward(self, x, context=None, mask=None, **kwargs):
|
||||
raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). '
|
||||
f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free')
|
||||
|
||||
slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1]
|
||||
slice_size = q.shape[1] // steps
|
||||
for i in range(0, q.shape[1], slice_size):
|
||||
end = i + slice_size
|
||||
end = min(i + slice_size, q.shape[1])
|
||||
s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k)
|
||||
|
||||
s2 = s1.softmax(dim=-1, dtype=q.dtype)
|
||||
|
@ -39,7 +39,10 @@ def apply_model(orig_func, self, x_noisy, t, cond, **kwargs):
|
||||
|
||||
if isinstance(cond, dict):
|
||||
for y in cond.keys():
|
||||
if isinstance(cond[y], list):
|
||||
cond[y] = [x.to(devices.dtype_unet) if isinstance(x, torch.Tensor) else x for x in cond[y]]
|
||||
else:
|
||||
cond[y] = cond[y].to(devices.dtype_unet) if isinstance(cond[y], torch.Tensor) else cond[y]
|
||||
|
||||
with devices.autocast():
|
||||
return orig_func(self, x_noisy.to(devices.dtype_unet), t.to(devices.dtype_unet), cond, **kwargs).float()
|
||||
@ -77,3 +80,6 @@ first_stage_sub = lambda orig_func, self, x, **kwargs: orig_func(self, x.to(devi
|
||||
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.decode_first_stage', first_stage_sub, first_stage_cond)
|
||||
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.encode_first_stage', first_stage_sub, first_stage_cond)
|
||||
CondFunc('ldm.models.diffusion.ddpm.LatentDiffusion.get_first_stage_encoding', lambda orig_func, *args, **kwargs: orig_func(*args, **kwargs).float(), first_stage_cond)
|
||||
|
||||
CondFunc('sgm.modules.diffusionmodules.wrappers.OpenAIWrapper.forward', apply_model, unet_needs_upcast)
|
||||
CondFunc('sgm.modules.diffusionmodules.openaimodel.timestep_embedding', lambda orig_func, timesteps, *args, **kwargs: orig_func(timesteps, *args, **kwargs).to(torch.float32 if timesteps.dtype == torch.int64 else devices.dtype_unet), unet_needs_upcast)
|
||||
|
@ -14,7 +14,7 @@ import ldm.modules.midas as midas
|
||||
|
||||
from ldm.util import instantiate_from_config
|
||||
|
||||
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl
|
||||
from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache
|
||||
from modules.sd_hijack_inpainting import do_inpainting_hijack
|
||||
from modules.timer import Timer
|
||||
import tomesd
|
||||
@ -33,6 +33,8 @@ class CheckpointInfo:
|
||||
self.filename = filename
|
||||
abspath = os.path.abspath(filename)
|
||||
|
||||
self.is_safetensors = os.path.splitext(filename)[1].lower() == ".safetensors"
|
||||
|
||||
if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir):
|
||||
name = abspath.replace(shared.cmd_opts.ckpt_dir, '')
|
||||
elif abspath.startswith(model_path):
|
||||
@ -43,6 +45,19 @@ class CheckpointInfo:
|
||||
if name.startswith("\\") or name.startswith("/"):
|
||||
name = name[1:]
|
||||
|
||||
def read_metadata():
|
||||
metadata = read_metadata_from_safetensors(filename)
|
||||
self.modelspec_thumbnail = metadata.pop('modelspec.thumbnail', None)
|
||||
|
||||
return metadata
|
||||
|
||||
self.metadata = {}
|
||||
if self.is_safetensors:
|
||||
try:
|
||||
self.metadata = cache.cached_data_for_file('safetensors-metadata', "checkpoint/" + name, filename, read_metadata)
|
||||
except Exception as e:
|
||||
errors.display(e, f"reading metadata for {filename}")
|
||||
|
||||
self.name = name
|
||||
self.name_for_extra = os.path.splitext(os.path.basename(filename))[0]
|
||||
self.model_name = os.path.splitext(name.replace("/", "_").replace("\\", "_"))[0]
|
||||
@ -53,16 +68,7 @@ class CheckpointInfo:
|
||||
|
||||
self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]'
|
||||
|
||||
self.ids = [self.hash, self.model_name, self.title, name, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
|
||||
|
||||
self.metadata = {}
|
||||
|
||||
_, ext = os.path.splitext(self.filename)
|
||||
if ext.lower() == ".safetensors":
|
||||
try:
|
||||
self.metadata = read_metadata_from_safetensors(filename)
|
||||
except Exception as e:
|
||||
errors.display(e, f"reading checkpoint metadata: {filename}")
|
||||
self.ids = [self.hash, self.model_name, self.title, name, self.name_for_extra, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else [])
|
||||
|
||||
def register(self):
|
||||
checkpoints_list[self.title] = self
|
||||
@ -79,7 +85,7 @@ class CheckpointInfo:
|
||||
if self.shorthash not in self.ids:
|
||||
self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]']
|
||||
|
||||
checkpoints_list.pop(self.title)
|
||||
checkpoints_list.pop(self.title, None)
|
||||
self.title = f'{self.name} [{self.shorthash}]'
|
||||
self.register()
|
||||
|
||||
@ -290,6 +296,9 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
|
||||
state_dict = get_checkpoint_state_dict(checkpoint_info, timer)
|
||||
|
||||
model.is_sdxl = hasattr(model, 'conditioner')
|
||||
model.is_sd2 = not model.is_sdxl and hasattr(model.cond_stage_model, 'model')
|
||||
model.is_sd1 = not model.is_sdxl and not model.is_sd2
|
||||
|
||||
if model.is_sdxl:
|
||||
sd_models_xl.extend_sdxl(model)
|
||||
|
||||
@ -323,7 +332,7 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer
|
||||
|
||||
timer.record("apply half()")
|
||||
|
||||
devices.dtype_unet = model.model.diffusion_model.dtype
|
||||
devices.dtype_unet = torch.float16 if model.is_sdxl and not shared.cmd_opts.no_half else model.model.diffusion_model.dtype
|
||||
devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16
|
||||
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
@ -457,7 +466,6 @@ def get_empty_cond(sd_model):
|
||||
return sd_model.cond_stage_model([""])
|
||||
|
||||
|
||||
|
||||
def load_model(checkpoint_info=None, already_loaded_state_dict=None):
|
||||
from modules import lowvram, sd_hijack
|
||||
checkpoint_info = checkpoint_info or select_checkpoint()
|
||||
@ -491,19 +499,24 @@ def load_model(checkpoint_info=None, already_loaded_state_dict=None):
|
||||
|
||||
sd_model = None
|
||||
try:
|
||||
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd):
|
||||
with sd_disable_initialization.DisableInitialization(disable_clip=clip_is_included_into_sd or shared.cmd_opts.do_not_download_clip):
|
||||
with sd_disable_initialization.InitializeOnMeta():
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
except Exception as e:
|
||||
errors.display(e, "creating model quickly", full_traceback=True)
|
||||
|
||||
if sd_model is None:
|
||||
print('Failed to create model quickly; will retry using slow method.', file=sys.stderr)
|
||||
|
||||
with sd_disable_initialization.InitializeOnMeta():
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
|
||||
sd_model.used_config = checkpoint_config
|
||||
|
||||
timer.record("create model")
|
||||
|
||||
with sd_disable_initialization.LoadStateDictOnMeta(state_dict, devices.cpu):
|
||||
load_model_weights(sd_model, checkpoint_info, state_dict, timer)
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
|
@ -12,8 +12,8 @@ def get_learned_conditioning(self: sgm.models.diffusion.DiffusionEngine, batch:
|
||||
for embedder in self.conditioner.embedders:
|
||||
embedder.ucg_rate = 0.0
|
||||
|
||||
width = getattr(self, 'target_width', 1024)
|
||||
height = getattr(self, 'target_height', 1024)
|
||||
width = getattr(batch, 'width', 1024)
|
||||
height = getattr(batch, 'height', 1024)
|
||||
is_negative_prompt = getattr(batch, 'is_negative_prompt', False)
|
||||
aesthetic_score = shared.opts.sdxl_refiner_low_aesthetic_score if is_negative_prompt else shared.opts.sdxl_refiner_high_aesthetic_score
|
||||
|
||||
@ -56,6 +56,14 @@ def encode_embedding_init_text(self: sgm.modules.GeneralConditioner, init_text,
|
||||
return torch.cat(res, dim=1)
|
||||
|
||||
|
||||
def tokenize(self: sgm.modules.GeneralConditioner, texts):
|
||||
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'tokenize')]:
|
||||
return embedder.tokenize(texts)
|
||||
|
||||
raise AssertionError('no tokenizer available')
|
||||
|
||||
|
||||
|
||||
def process_texts(self, texts):
|
||||
for embedder in [embedder for embedder in self.embedders if hasattr(embedder, 'process_texts')]:
|
||||
return embedder.process_texts(texts)
|
||||
@ -68,6 +76,7 @@ def get_target_prompt_token_count(self, token_count):
|
||||
|
||||
# those additions to GeneralConditioner make it possible to use it as model.cond_stage_model from SD1.5 in exist
|
||||
sgm.modules.GeneralConditioner.encode_embedding_init_text = encode_embedding_init_text
|
||||
sgm.modules.GeneralConditioner.tokenize = tokenize
|
||||
sgm.modules.GeneralConditioner.process_texts = process_texts
|
||||
sgm.modules.GeneralConditioner.get_target_prompt_token_count = get_target_prompt_token_count
|
||||
|
||||
|
@ -2,10 +2,8 @@ from collections import namedtuple
|
||||
import numpy as np
|
||||
import torch
|
||||
from PIL import Image
|
||||
from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd
|
||||
|
||||
from modules import devices, processing, images, sd_vae_approx, sd_samplers, sd_vae_taesd, shared
|
||||
from modules.shared import opts, state
|
||||
import modules.shared as shared
|
||||
|
||||
SamplerData = namedtuple('SamplerData', ['name', 'constructor', 'aliases', 'options'])
|
||||
|
||||
@ -85,11 +83,13 @@ class InterruptedException(BaseException):
|
||||
pass
|
||||
|
||||
|
||||
if opts.randn_source == "CPU":
|
||||
def replace_torchsde_browinan():
|
||||
import torchsde._brownian.brownian_interval
|
||||
|
||||
def torchsde_randn(size, dtype, device, seed):
|
||||
generator = torch.Generator(devices.cpu).manual_seed(int(seed))
|
||||
return torch.randn(size, dtype=dtype, device=devices.cpu, generator=generator).to(device)
|
||||
return devices.randn_local(seed, size).to(device=device, dtype=dtype)
|
||||
|
||||
torchsde._brownian.brownian_interval._randn = torchsde_randn
|
||||
|
||||
|
||||
replace_torchsde_browinan()
|
||||
|
74
modules/sd_samplers_extra.py
Normal file
74
modules/sd_samplers_extra.py
Normal file
@ -0,0 +1,74 @@
|
||||
import torch
|
||||
import tqdm
|
||||
import k_diffusion.sampling
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None):
|
||||
"""Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)
|
||||
Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}
|
||||
If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list
|
||||
"""
|
||||
extra_args = {} if extra_args is None else extra_args
|
||||
s_in = x.new_ones([x.shape[0]])
|
||||
step_id = 0
|
||||
from k_diffusion.sampling import to_d, get_sigmas_karras
|
||||
|
||||
def heun_step(x, old_sigma, new_sigma, second_order=True):
|
||||
nonlocal step_id
|
||||
denoised = model(x, old_sigma * s_in, **extra_args)
|
||||
d = to_d(x, old_sigma, denoised)
|
||||
if callback is not None:
|
||||
callback({'x': x, 'i': step_id, 'sigma': new_sigma, 'sigma_hat': old_sigma, 'denoised': denoised})
|
||||
dt = new_sigma - old_sigma
|
||||
if new_sigma == 0 or not second_order:
|
||||
# Euler method
|
||||
x = x + d * dt
|
||||
else:
|
||||
# Heun's method
|
||||
x_2 = x + d * dt
|
||||
denoised_2 = model(x_2, new_sigma * s_in, **extra_args)
|
||||
d_2 = to_d(x_2, new_sigma, denoised_2)
|
||||
d_prime = (d + d_2) / 2
|
||||
x = x + d_prime * dt
|
||||
step_id += 1
|
||||
return x
|
||||
|
||||
steps = sigmas.shape[0] - 1
|
||||
if restart_list is None:
|
||||
if steps >= 20:
|
||||
restart_steps = 9
|
||||
restart_times = 1
|
||||
if steps >= 36:
|
||||
restart_steps = steps // 4
|
||||
restart_times = 2
|
||||
sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device)
|
||||
restart_list = {0.1: [restart_steps + 1, restart_times, 2]}
|
||||
else:
|
||||
restart_list = {}
|
||||
|
||||
restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()}
|
||||
|
||||
step_list = []
|
||||
for i in range(len(sigmas) - 1):
|
||||
step_list.append((sigmas[i], sigmas[i + 1]))
|
||||
if i + 1 in restart_list:
|
||||
restart_steps, restart_times, restart_max = restart_list[i + 1]
|
||||
min_idx = i + 1
|
||||
max_idx = int(torch.argmin(abs(sigmas - restart_max), dim=0))
|
||||
if max_idx < min_idx:
|
||||
sigma_restart = get_sigmas_karras(restart_steps, sigmas[min_idx].item(), sigmas[max_idx].item(), device=sigmas.device)[:-1]
|
||||
while restart_times > 0:
|
||||
restart_times -= 1
|
||||
step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])])
|
||||
|
||||
last_sigma = None
|
||||
for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable):
|
||||
if last_sigma is None:
|
||||
last_sigma = old_sigma
|
||||
elif last_sigma < old_sigma:
|
||||
x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5
|
||||
x = heun_step(x, old_sigma, new_sigma)
|
||||
last_sigma = new_sigma
|
||||
|
||||
return x
|
@ -2,7 +2,7 @@ from collections import deque
|
||||
import torch
|
||||
import inspect
|
||||
import k_diffusion.sampling
|
||||
from modules import prompt_parser, devices, sd_samplers_common
|
||||
from modules import prompt_parser, devices, sd_samplers_common, sd_samplers_extra
|
||||
|
||||
from modules.shared import opts, state
|
||||
import modules.shared as shared
|
||||
@ -30,12 +30,14 @@ samplers_k_diffusion = [
|
||||
('DPM++ 2M Karras', 'sample_dpmpp_2m', ['k_dpmpp_2m_ka'], {'scheduler': 'karras'}),
|
||||
('DPM++ SDE Karras', 'sample_dpmpp_sde', ['k_dpmpp_sde_ka'], {'scheduler': 'karras', "second_order": True, "brownian_noise": True}),
|
||||
('DPM++ 2M SDE Karras', 'sample_dpmpp_2m_sde', ['k_dpmpp_2m_sde_ka'], {'scheduler': 'karras', "brownian_noise": True}),
|
||||
('Restart', sd_samplers_extra.restart_sampler, ['restart'], {'scheduler': 'karras'}),
|
||||
]
|
||||
|
||||
|
||||
samplers_data_k_diffusion = [
|
||||
sd_samplers_common.SamplerData(label, lambda model, funcname=funcname: KDiffusionSampler(funcname, model), aliases, options)
|
||||
for label, funcname, aliases, options in samplers_k_diffusion
|
||||
if hasattr(k_diffusion.sampling, funcname)
|
||||
if callable(funcname) or hasattr(k_diffusion.sampling, funcname)
|
||||
]
|
||||
|
||||
sampler_extra_params = {
|
||||
@ -258,10 +260,7 @@ class TorchHijack:
|
||||
if noise.shape == x.shape:
|
||||
return noise
|
||||
|
||||
if opts.randn_source == "CPU" or x.device.type == 'mps':
|
||||
return torch.randn_like(x, device=devices.cpu).to(x.device)
|
||||
else:
|
||||
return torch.randn_like(x)
|
||||
return devices.randn_like(x)
|
||||
|
||||
|
||||
class KDiffusionSampler:
|
||||
@ -270,7 +269,7 @@ class KDiffusionSampler:
|
||||
|
||||
self.model_wrap = denoiser(sd_model, quantize=shared.opts.enable_quantization)
|
||||
self.funcname = funcname
|
||||
self.func = getattr(k_diffusion.sampling, self.funcname)
|
||||
self.func = funcname if callable(funcname) else getattr(k_diffusion.sampling, self.funcname)
|
||||
self.extra_params = sampler_extra_params.get(funcname, [])
|
||||
self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
|
||||
self.sampler_noises = None
|
||||
|
@ -11,6 +11,7 @@ import gradio as gr
|
||||
import torch
|
||||
import tqdm
|
||||
|
||||
import launch
|
||||
import modules.interrogate
|
||||
import modules.memmon
|
||||
import modules.styles
|
||||
@ -26,7 +27,7 @@ demo = None
|
||||
|
||||
parser = cmd_args.parser
|
||||
|
||||
script_loading.preload_extensions(extensions_dir, parser)
|
||||
script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file))
|
||||
script_loading.preload_extensions(extensions_builtin_dir, parser)
|
||||
|
||||
if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None:
|
||||
@ -384,7 +385,8 @@ options_templates.update(options_section(('face-restoration', "Face restoration"
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('system', "System"), {
|
||||
"show_warnings": OptionInfo(False, "Show warnings in console."),
|
||||
"show_warnings": OptionInfo(False, "Show warnings in console.").needs_restart(),
|
||||
"show_gradio_deprecation_warnings": OptionInfo(True, "Show gradio deprecation warnings in console.").needs_restart(),
|
||||
"memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"),
|
||||
"samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"),
|
||||
"multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."),
|
||||
@ -426,7 +428,8 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
"comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"),
|
||||
"CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"),
|
||||
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
|
||||
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors"),
|
||||
"auto_vae_precision": OptionInfo(True, "Automaticlly revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
|
||||
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
|
||||
|
@ -106,10 +106,7 @@ class StyleDatabase:
|
||||
if os.path.exists(path):
|
||||
shutil.copy(path, f"{path}.bak")
|
||||
|
||||
fd = os.open(path, os.O_RDWR | os.O_CREAT)
|
||||
with os.fdopen(fd, "w", encoding="utf-8-sig", newline='') as file:
|
||||
# _fields is actually part of the public API: typing.NamedTuple is a replacement for collections.NamedTuple,
|
||||
# and collections.NamedTuple has explicit documentation for accessing _fields. Same goes for _asdict()
|
||||
with open(path, "w", encoding="utf-8-sig", newline='') as file:
|
||||
writer = csv.DictWriter(file, fieldnames=PromptStyle._fields)
|
||||
writer.writeheader()
|
||||
writer.writerows(style._asdict() for k, style in self.styles.items())
|
||||
|
@ -109,11 +109,15 @@ def format_traceback(tb):
|
||||
return [[f"{x.filename}, line {x.lineno}, {x.name}", x.line] for x in traceback.extract_tb(tb)]
|
||||
|
||||
|
||||
def format_exception(e, tb):
|
||||
return {"exception": str(e), "traceback": format_traceback(tb)}
|
||||
|
||||
|
||||
def get_exceptions():
|
||||
try:
|
||||
from modules import errors
|
||||
|
||||
return [{"exception": str(e), "traceback": format_traceback(tb)} for e, tb in reversed(errors.exception_records)]
|
||||
return list(reversed(errors.exception_records))
|
||||
except Exception as e:
|
||||
return str(e)
|
||||
|
||||
|
@ -181,29 +181,38 @@ class EmbeddingDatabase:
|
||||
else:
|
||||
return
|
||||
|
||||
|
||||
# textual inversion embeddings
|
||||
if 'string_to_param' in data:
|
||||
param_dict = data['string_to_param']
|
||||
param_dict = getattr(param_dict, '_parameters', param_dict) # fix for torch 1.12.1 loading saved file from torch 1.11
|
||||
assert len(param_dict) == 1, 'embedding file has multiple terms in it'
|
||||
emb = next(iter(param_dict.items()))[1]
|
||||
# diffuser concepts
|
||||
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor:
|
||||
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
||||
shape = vec.shape[-1]
|
||||
vectors = vec.shape[0]
|
||||
elif type(data) == dict and 'clip_g' in data and 'clip_l' in data: # SDXL embedding
|
||||
vec = {k: v.detach().to(devices.device, dtype=torch.float32) for k, v in data.items()}
|
||||
shape = data['clip_g'].shape[-1] + data['clip_l'].shape[-1]
|
||||
vectors = data['clip_g'].shape[0]
|
||||
elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: # diffuser concepts
|
||||
assert len(data.keys()) == 1, 'embedding file has multiple terms in it'
|
||||
|
||||
emb = next(iter(data.values()))
|
||||
if len(emb.shape) == 1:
|
||||
emb = emb.unsqueeze(0)
|
||||
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
||||
shape = vec.shape[-1]
|
||||
vectors = vec.shape[0]
|
||||
else:
|
||||
raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.")
|
||||
|
||||
vec = emb.detach().to(devices.device, dtype=torch.float32)
|
||||
embedding = Embedding(vec, name)
|
||||
embedding.step = data.get('step', None)
|
||||
embedding.sd_checkpoint = data.get('sd_checkpoint', None)
|
||||
embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None)
|
||||
embedding.vectors = vec.shape[0]
|
||||
embedding.shape = vec.shape[-1]
|
||||
embedding.vectors = vectors
|
||||
embedding.shape = shape
|
||||
embedding.filename = path
|
||||
embedding.set_hash(hashes.sha256(embedding.filename, "textual_inversion/" + name) or '')
|
||||
|
||||
|
@ -1,4 +1,5 @@
|
||||
import time
|
||||
import argparse
|
||||
|
||||
|
||||
class TimerSubcategory:
|
||||
@ -11,20 +12,27 @@ class TimerSubcategory:
|
||||
def __enter__(self):
|
||||
self.start = time.time()
|
||||
self.timer.base_category = self.original_base_category + self.category + "/"
|
||||
self.timer.subcategory_level += 1
|
||||
|
||||
if self.timer.print_log:
|
||||
print(f"{' ' * self.timer.subcategory_level}{self.category}:")
|
||||
|
||||
def __exit__(self, exc_type, exc_val, exc_tb):
|
||||
elapsed_for_subcategroy = time.time() - self.start
|
||||
self.timer.base_category = self.original_base_category
|
||||
self.timer.add_time_to_record(self.original_base_category + self.category, elapsed_for_subcategroy)
|
||||
self.timer.record(self.category)
|
||||
self.timer.subcategory_level -= 1
|
||||
self.timer.record(self.category, disable_log=True)
|
||||
|
||||
|
||||
class Timer:
|
||||
def __init__(self):
|
||||
def __init__(self, print_log=False):
|
||||
self.start = time.time()
|
||||
self.records = {}
|
||||
self.total = 0
|
||||
self.base_category = ''
|
||||
self.print_log = print_log
|
||||
self.subcategory_level = 0
|
||||
|
||||
def elapsed(self):
|
||||
end = time.time()
|
||||
@ -38,13 +46,16 @@ class Timer:
|
||||
|
||||
self.records[category] += amount
|
||||
|
||||
def record(self, category, extra_time=0):
|
||||
def record(self, category, extra_time=0, disable_log=False):
|
||||
e = self.elapsed()
|
||||
|
||||
self.add_time_to_record(self.base_category + category, e + extra_time)
|
||||
|
||||
self.total += e + extra_time
|
||||
|
||||
if self.print_log and not disable_log:
|
||||
print(f"{' ' * self.subcategory_level}{category}: done in {e + extra_time:.3f}s")
|
||||
|
||||
def subcategory(self, name):
|
||||
self.elapsed()
|
||||
|
||||
@ -71,6 +82,10 @@ class Timer:
|
||||
self.__init__()
|
||||
|
||||
|
||||
startup_timer = Timer()
|
||||
parser = argparse.ArgumentParser(add_help=False)
|
||||
parser.add_argument("--log-startup", action='store_true', help="print a detailed log of what's happening at startup")
|
||||
args = parser.parse_known_args()[0]
|
||||
|
||||
startup_timer = Timer(print_log=args.log_startup)
|
||||
|
||||
startup_record = None
|
||||
|
373
modules/ui.py
373
modules/ui.py
@ -12,34 +12,30 @@ import numpy as np
|
||||
from PIL import Image, PngImagePlugin # noqa: F401
|
||||
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call
|
||||
|
||||
from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo
|
||||
from modules import gradio_extensons # noqa: F401
|
||||
from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo, ui_checkpoint_merger, ui_prompt_styles, scripts
|
||||
from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML
|
||||
from modules.paths import script_path
|
||||
from modules.ui_common import create_refresh_button
|
||||
from modules.ui_gradio_extensions import reload_javascript
|
||||
|
||||
|
||||
from modules.shared import opts, cmd_opts
|
||||
|
||||
import modules.codeformer_model
|
||||
import modules.generation_parameters_copypaste as parameters_copypaste
|
||||
import modules.gfpgan_model
|
||||
import modules.hypernetworks.ui
|
||||
import modules.scripts
|
||||
import modules.hypernetworks.ui as hypernetworks_ui
|
||||
import modules.textual_inversion.ui as textual_inversion_ui
|
||||
import modules.textual_inversion.textual_inversion as textual_inversion
|
||||
import modules.shared as shared
|
||||
import modules.styles
|
||||
import modules.textual_inversion.ui
|
||||
import modules.images
|
||||
from modules import prompt_parser
|
||||
from modules.sd_hijack import model_hijack
|
||||
from modules.sd_samplers import samplers, samplers_for_img2img
|
||||
from modules.textual_inversion import textual_inversion
|
||||
import modules.hypernetworks.ui
|
||||
from modules.generation_parameters_copypaste import image_from_url_text
|
||||
import modules.extras
|
||||
|
||||
create_setting_component = ui_settings.create_setting_component
|
||||
|
||||
warnings.filterwarnings("default" if opts.show_warnings else "ignore", category=UserWarning)
|
||||
warnings.filterwarnings("default" if opts.show_gradio_deprecation_warnings else "ignore", category=gr.deprecation.GradioDeprecationWarning)
|
||||
|
||||
# this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the browser will not show any UI
|
||||
mimetypes.init()
|
||||
@ -92,19 +88,6 @@ def send_gradio_gallery_to_image(x):
|
||||
return image_from_url_text(x[0])
|
||||
|
||||
|
||||
def add_style(name: str, prompt: str, negative_prompt: str):
|
||||
if name is None:
|
||||
return [gr_show() for x in range(4)]
|
||||
|
||||
style = modules.styles.PromptStyle(name, prompt, negative_prompt)
|
||||
shared.prompt_styles.styles[style.name] = style
|
||||
# Save all loaded prompt styles: this allows us to update the storage format in the future more easily, because we
|
||||
# reserialize all styles every time we save them
|
||||
shared.prompt_styles.save_styles(shared.styles_filename)
|
||||
|
||||
return [gr.Dropdown.update(visible=True, choices=list(shared.prompt_styles.styles)) for _ in range(2)]
|
||||
|
||||
|
||||
def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y):
|
||||
from modules import processing, devices
|
||||
|
||||
@ -129,13 +112,6 @@ def resize_from_to_html(width, height, scale_by):
|
||||
return f"resize: from <span class='resolution'>{width}x{height}</span> to <span class='resolution'>{target_width}x{target_height}</span>"
|
||||
|
||||
|
||||
def apply_styles(prompt, prompt_neg, styles):
|
||||
prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles)
|
||||
prompt_neg = shared.prompt_styles.apply_negative_styles_to_prompt(prompt_neg, styles)
|
||||
|
||||
return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=prompt_neg), gr.Dropdown.update(value=[])]
|
||||
|
||||
|
||||
def process_interrogate(interrogation_function, mode, ii_input_dir, ii_output_dir, *ii_singles):
|
||||
if mode in {0, 1, 3, 4}:
|
||||
return [interrogation_function(ii_singles[mode]), None]
|
||||
@ -172,7 +148,6 @@ def interrogate_deepbooru(image):
|
||||
def create_seed_inputs(target_interface):
|
||||
with FormRow(elem_id=f"{target_interface}_seed_row", variant="compact"):
|
||||
seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=f"{target_interface}_seed")
|
||||
seed.style(container=False)
|
||||
random_seed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_seed", label='Random seed')
|
||||
reuse_seed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_seed", label='Reuse seed')
|
||||
|
||||
@ -184,7 +159,6 @@ def create_seed_inputs(target_interface):
|
||||
with FormRow(visible=False, elem_id=f"{target_interface}_subseed_row") as seed_extra_row_1:
|
||||
seed_extras.append(seed_extra_row_1)
|
||||
subseed = gr.Number(label='Variation seed', value=-1, elem_id=f"{target_interface}_subseed")
|
||||
subseed.style(container=False)
|
||||
random_subseed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_subseed")
|
||||
reuse_subseed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_subseed")
|
||||
subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=f"{target_interface}_subseed_strength")
|
||||
@ -267,71 +241,78 @@ def update_token_counter(text, steps):
|
||||
return f"<span class='gr-box gr-text-input'>{token_count}/{max_length}</span>"
|
||||
|
||||
|
||||
def create_toprow(is_img2img):
|
||||
class Toprow:
|
||||
"""Creates a top row UI with prompts, generate button, styles, extra little buttons for things, and enables some functionality related to their operation"""
|
||||
|
||||
def __init__(self, is_img2img):
|
||||
id_part = "img2img" if is_img2img else "txt2img"
|
||||
self.id_part = id_part
|
||||
|
||||
with gr.Row(elem_id=f"{id_part}_toprow", variant="compact"):
|
||||
with gr.Column(elem_id=f"{id_part}_prompt_container", scale=6):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=80):
|
||||
with gr.Row():
|
||||
prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=3, placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"])
|
||||
self.prompt = gr.Textbox(label="Prompt", elem_id=f"{id_part}_prompt", show_label=False, lines=3, placeholder="Prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"])
|
||||
self.prompt_img = gr.File(label="", elem_id=f"{id_part}_prompt_image", file_count="single", type="binary", visible=False)
|
||||
|
||||
with gr.Row():
|
||||
with gr.Column(scale=80):
|
||||
with gr.Row():
|
||||
negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"])
|
||||
self.negative_prompt = gr.Textbox(label="Negative prompt", elem_id=f"{id_part}_neg_prompt", show_label=False, lines=3, placeholder="Negative prompt (press Ctrl+Enter or Alt+Enter to generate)", elem_classes=["prompt"])
|
||||
|
||||
button_interrogate = None
|
||||
button_deepbooru = None
|
||||
|
||||
self.button_interrogate = None
|
||||
self.button_deepbooru = None
|
||||
if is_img2img:
|
||||
with gr.Column(scale=1, elem_classes="interrogate-col"):
|
||||
button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate")
|
||||
button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
|
||||
self.button_interrogate = gr.Button('Interrogate\nCLIP', elem_id="interrogate")
|
||||
self.button_deepbooru = gr.Button('Interrogate\nDeepBooru', elem_id="deepbooru")
|
||||
|
||||
with gr.Column(scale=1, elem_id=f"{id_part}_actions_column"):
|
||||
with gr.Row(elem_id=f"{id_part}_generate_box", elem_classes="generate-box"):
|
||||
interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt", elem_classes="generate-box-interrupt")
|
||||
skip = gr.Button('Skip', elem_id=f"{id_part}_skip", elem_classes="generate-box-skip")
|
||||
submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary')
|
||||
self.interrupt = gr.Button('Interrupt', elem_id=f"{id_part}_interrupt", elem_classes="generate-box-interrupt")
|
||||
self.skip = gr.Button('Skip', elem_id=f"{id_part}_skip", elem_classes="generate-box-skip")
|
||||
self.submit = gr.Button('Generate', elem_id=f"{id_part}_generate", variant='primary')
|
||||
|
||||
skip.click(
|
||||
self.skip.click(
|
||||
fn=lambda: shared.state.skip(),
|
||||
inputs=[],
|
||||
outputs=[],
|
||||
)
|
||||
|
||||
interrupt.click(
|
||||
self.interrupt.click(
|
||||
fn=lambda: shared.state.interrupt(),
|
||||
inputs=[],
|
||||
outputs=[],
|
||||
)
|
||||
|
||||
with gr.Row(elem_id=f"{id_part}_tools"):
|
||||
paste = ToolButton(value=paste_symbol, elem_id="paste")
|
||||
clear_prompt_button = ToolButton(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt")
|
||||
extra_networks_button = ToolButton(value=extra_networks_symbol, elem_id=f"{id_part}_extra_networks")
|
||||
prompt_style_apply = ToolButton(value=apply_style_symbol, elem_id=f"{id_part}_style_apply")
|
||||
save_style = ToolButton(value=save_style_symbol, elem_id=f"{id_part}_style_create")
|
||||
restore_progress_button = ToolButton(value=restore_progress_symbol, elem_id=f"{id_part}_restore_progress", visible=False)
|
||||
self.paste = ToolButton(value=paste_symbol, elem_id="paste")
|
||||
self.clear_prompt_button = ToolButton(value=clear_prompt_symbol, elem_id=f"{id_part}_clear_prompt")
|
||||
self.extra_networks_button = ToolButton(value=extra_networks_symbol, elem_id=f"{id_part}_extra_networks")
|
||||
self.restore_progress_button = ToolButton(value=restore_progress_symbol, elem_id=f"{id_part}_restore_progress", visible=False)
|
||||
|
||||
token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_token_counter", elem_classes=["token-counter"])
|
||||
token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button")
|
||||
negative_token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_negative_token_counter", elem_classes=["token-counter"])
|
||||
negative_token_button = gr.Button(visible=False, elem_id=f"{id_part}_negative_token_button")
|
||||
self.token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_token_counter", elem_classes=["token-counter"])
|
||||
self.token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button")
|
||||
self.negative_token_counter = gr.HTML(value="<span>0/75</span>", elem_id=f"{id_part}_negative_token_counter", elem_classes=["token-counter"])
|
||||
self.negative_token_button = gr.Button(visible=False, elem_id=f"{id_part}_negative_token_button")
|
||||
|
||||
clear_prompt_button.click(
|
||||
self.clear_prompt_button.click(
|
||||
fn=lambda *x: x,
|
||||
_js="confirm_clear_prompt",
|
||||
inputs=[prompt, negative_prompt],
|
||||
outputs=[prompt, negative_prompt],
|
||||
inputs=[self.prompt, self.negative_prompt],
|
||||
outputs=[self.prompt, self.negative_prompt],
|
||||
)
|
||||
|
||||
with gr.Row(elem_id=f"{id_part}_styles_row"):
|
||||
prompt_styles = gr.Dropdown(label="Styles", elem_id=f"{id_part}_styles", choices=[k for k, v in shared.prompt_styles.styles.items()], value=[], multiselect=True)
|
||||
create_refresh_button(prompt_styles, shared.prompt_styles.reload, lambda: {"choices": [k for k, v in shared.prompt_styles.styles.items()]}, f"refresh_{id_part}_styles")
|
||||
self.ui_styles = ui_prompt_styles.UiPromptStyles(id_part, self.prompt, self.negative_prompt)
|
||||
|
||||
return prompt, prompt_styles, negative_prompt, submit, button_interrogate, button_deepbooru, prompt_style_apply, save_style, paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button
|
||||
self.prompt_img.change(
|
||||
fn=modules.images.image_data,
|
||||
inputs=[self.prompt_img],
|
||||
outputs=[self.prompt, self.prompt_img],
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
|
||||
def setup_progressbar(*args, **kwargs):
|
||||
@ -415,22 +396,21 @@ def create_ui():
|
||||
|
||||
parameters_copypaste.reset()
|
||||
|
||||
modules.scripts.scripts_current = modules.scripts.scripts_txt2img
|
||||
modules.scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
|
||||
scripts.scripts_current = scripts.scripts_txt2img
|
||||
scripts.scripts_txt2img.initialize_scripts(is_img2img=False)
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as txt2img_interface:
|
||||
txt2img_prompt, txt2img_prompt_styles, txt2img_negative_prompt, submit, _, _, txt2img_prompt_style_apply, txt2img_save_style, txt2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button = create_toprow(is_img2img=False)
|
||||
toprow = Toprow(is_img2img=False)
|
||||
|
||||
dummy_component = gr.Label(visible=False)
|
||||
txt_prompt_img = gr.File(label="", elem_id="txt2img_prompt_image", file_count="single", type="binary", visible=False)
|
||||
|
||||
with FormRow(variant='compact', elem_id="txt2img_extra_networks", visible=False) as extra_networks:
|
||||
from modules import ui_extra_networks
|
||||
extra_networks_ui = ui_extra_networks.create_ui(extra_networks, extra_networks_button, 'txt2img')
|
||||
extra_networks_ui = ui_extra_networks.create_ui(extra_networks, toprow.extra_networks_button, 'txt2img')
|
||||
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Row(equal_height=False):
|
||||
with gr.Column(variant='compact', elem_id="txt2img_settings"):
|
||||
modules.scripts.scripts_txt2img.prepare_ui()
|
||||
scripts.scripts_txt2img.prepare_ui()
|
||||
|
||||
for category in ordered_ui_categories():
|
||||
if category == "sampler":
|
||||
@ -498,10 +478,10 @@ def create_ui():
|
||||
|
||||
elif category == "scripts":
|
||||
with FormGroup(elem_id="txt2img_script_container"):
|
||||
custom_inputs = modules.scripts.scripts_txt2img.setup_ui()
|
||||
custom_inputs = scripts.scripts_txt2img.setup_ui()
|
||||
|
||||
else:
|
||||
modules.scripts.scripts_txt2img.setup_ui_for_section(category)
|
||||
scripts.scripts_txt2img.setup_ui_for_section(category)
|
||||
|
||||
hr_resolution_preview_inputs = [enable_hr, width, height, hr_scale, hr_resize_x, hr_resize_y]
|
||||
|
||||
@ -532,9 +512,9 @@ def create_ui():
|
||||
_js="submit",
|
||||
inputs=[
|
||||
dummy_component,
|
||||
txt2img_prompt,
|
||||
txt2img_negative_prompt,
|
||||
txt2img_prompt_styles,
|
||||
toprow.prompt,
|
||||
toprow.negative_prompt,
|
||||
toprow.ui_styles.dropdown,
|
||||
steps,
|
||||
sampler_index,
|
||||
restore_faces,
|
||||
@ -569,12 +549,12 @@ def create_ui():
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
txt2img_prompt.submit(**txt2img_args)
|
||||
submit.click(**txt2img_args)
|
||||
toprow.prompt.submit(**txt2img_args)
|
||||
toprow.submit.click(**txt2img_args)
|
||||
|
||||
res_switch_btn.click(fn=None, _js="function(){switchWidthHeight('txt2img')}", inputs=None, outputs=None, show_progress=False)
|
||||
|
||||
restore_progress_button.click(
|
||||
toprow.restore_progress_button.click(
|
||||
fn=progress.restore_progress,
|
||||
_js="restoreProgressTxt2img",
|
||||
inputs=[dummy_component],
|
||||
@ -587,18 +567,6 @@ def create_ui():
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
txt_prompt_img.change(
|
||||
fn=modules.images.image_data,
|
||||
inputs=[
|
||||
txt_prompt_img
|
||||
],
|
||||
outputs=[
|
||||
txt2img_prompt,
|
||||
txt_prompt_img
|
||||
],
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
enable_hr.change(
|
||||
fn=lambda x: gr_show(x),
|
||||
inputs=[enable_hr],
|
||||
@ -607,8 +575,8 @@ def create_ui():
|
||||
)
|
||||
|
||||
txt2img_paste_fields = [
|
||||
(txt2img_prompt, "Prompt"),
|
||||
(txt2img_negative_prompt, "Negative prompt"),
|
||||
(toprow.prompt, "Prompt"),
|
||||
(toprow.negative_prompt, "Negative prompt"),
|
||||
(steps, "Steps"),
|
||||
(sampler_index, "Sampler"),
|
||||
(restore_faces, "Face restoration"),
|
||||
@ -621,7 +589,7 @@ def create_ui():
|
||||
(subseed_strength, "Variation seed strength"),
|
||||
(seed_resize_from_w, "Seed resize from-1"),
|
||||
(seed_resize_from_h, "Seed resize from-2"),
|
||||
(txt2img_prompt_styles, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
|
||||
(toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
|
||||
(denoising_strength, "Denoising strength"),
|
||||
(enable_hr, lambda d: "Denoising strength" in d),
|
||||
(hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)),
|
||||
@ -635,16 +603,16 @@ def create_ui():
|
||||
(hr_prompt, "Hires prompt"),
|
||||
(hr_negative_prompt, "Hires negative prompt"),
|
||||
(hr_prompts_container, lambda d: gr.update(visible=True) if d.get("Hires prompt", "") != "" or d.get("Hires negative prompt", "") != "" else gr.update()),
|
||||
*modules.scripts.scripts_txt2img.infotext_fields
|
||||
*scripts.scripts_txt2img.infotext_fields
|
||||
]
|
||||
parameters_copypaste.add_paste_fields("txt2img", None, txt2img_paste_fields, override_settings)
|
||||
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
|
||||
paste_button=txt2img_paste, tabname="txt2img", source_text_component=txt2img_prompt, source_image_component=None,
|
||||
paste_button=toprow.paste, tabname="txt2img", source_text_component=toprow.prompt, source_image_component=None,
|
||||
))
|
||||
|
||||
txt2img_preview_params = [
|
||||
txt2img_prompt,
|
||||
txt2img_negative_prompt,
|
||||
toprow.prompt,
|
||||
toprow.negative_prompt,
|
||||
steps,
|
||||
sampler_index,
|
||||
cfg_scale,
|
||||
@ -653,24 +621,22 @@ def create_ui():
|
||||
height,
|
||||
]
|
||||
|
||||
token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_prompt, steps], outputs=[token_counter])
|
||||
negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[txt2img_negative_prompt, steps], outputs=[negative_token_counter])
|
||||
toprow.token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.prompt, steps], outputs=[toprow.token_counter])
|
||||
toprow.negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.negative_prompt, steps], outputs=[toprow.negative_token_counter])
|
||||
|
||||
ui_extra_networks.setup_ui(extra_networks_ui, txt2img_gallery)
|
||||
|
||||
modules.scripts.scripts_current = modules.scripts.scripts_img2img
|
||||
modules.scripts.scripts_img2img.initialize_scripts(is_img2img=True)
|
||||
scripts.scripts_current = scripts.scripts_img2img
|
||||
scripts.scripts_img2img.initialize_scripts(is_img2img=True)
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as img2img_interface:
|
||||
img2img_prompt, img2img_prompt_styles, img2img_negative_prompt, submit, img2img_interrogate, img2img_deepbooru, img2img_prompt_style_apply, img2img_save_style, img2img_paste, extra_networks_button, token_counter, token_button, negative_token_counter, negative_token_button, restore_progress_button = create_toprow(is_img2img=True)
|
||||
|
||||
img2img_prompt_img = gr.File(label="", elem_id="img2img_prompt_image", file_count="single", type="binary", visible=False)
|
||||
toprow = Toprow(is_img2img=True)
|
||||
|
||||
with FormRow(variant='compact', elem_id="img2img_extra_networks", visible=False) as extra_networks:
|
||||
from modules import ui_extra_networks
|
||||
extra_networks_ui_img2img = ui_extra_networks.create_ui(extra_networks, extra_networks_button, 'img2img')
|
||||
extra_networks_ui_img2img = ui_extra_networks.create_ui(extra_networks, toprow.extra_networks_button, 'img2img')
|
||||
|
||||
with FormRow().style(equal_height=False):
|
||||
with FormRow(equal_height=False):
|
||||
with gr.Column(variant='compact', elem_id="img2img_settings"):
|
||||
copy_image_buttons = []
|
||||
copy_image_destinations = {}
|
||||
@ -692,19 +658,19 @@ def create_ui():
|
||||
img2img_selected_tab = gr.State(0)
|
||||
|
||||
with gr.TabItem('img2img', id='img2img', elem_id="img2img_img2img_tab") as tab_img2img:
|
||||
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool="editor", image_mode="RGBA").style(height=opts.img2img_editor_height)
|
||||
init_img = gr.Image(label="Image for img2img", elem_id="img2img_image", show_label=False, source="upload", interactive=True, type="pil", tool="editor", image_mode="RGBA", height=opts.img2img_editor_height)
|
||||
add_copy_image_controls('img2img', init_img)
|
||||
|
||||
with gr.TabItem('Sketch', id='img2img_sketch', elem_id="img2img_img2img_sketch_tab") as tab_sketch:
|
||||
sketch = gr.Image(label="Image for img2img", elem_id="img2img_sketch", show_label=False, source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA").style(height=opts.img2img_editor_height)
|
||||
sketch = gr.Image(label="Image for img2img", elem_id="img2img_sketch", show_label=False, source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA", height=opts.img2img_editor_height)
|
||||
add_copy_image_controls('sketch', sketch)
|
||||
|
||||
with gr.TabItem('Inpaint', id='inpaint', elem_id="img2img_inpaint_tab") as tab_inpaint:
|
||||
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA").style(height=opts.img2img_editor_height)
|
||||
init_img_with_mask = gr.Image(label="Image for inpainting with mask", show_label=False, elem_id="img2maskimg", source="upload", interactive=True, type="pil", tool="sketch", image_mode="RGBA", height=opts.img2img_editor_height)
|
||||
add_copy_image_controls('inpaint', init_img_with_mask)
|
||||
|
||||
with gr.TabItem('Inpaint sketch', id='inpaint_sketch', elem_id="img2img_inpaint_sketch_tab") as tab_inpaint_color:
|
||||
inpaint_color_sketch = gr.Image(label="Color sketch inpainting", show_label=False, elem_id="inpaint_sketch", source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA").style(height=opts.img2img_editor_height)
|
||||
inpaint_color_sketch = gr.Image(label="Color sketch inpainting", show_label=False, elem_id="inpaint_sketch", source="upload", interactive=True, type="pil", tool="color-sketch", image_mode="RGBA", height=opts.img2img_editor_height)
|
||||
inpaint_color_sketch_orig = gr.State(None)
|
||||
add_copy_image_controls('inpaint_sketch', inpaint_color_sketch)
|
||||
|
||||
@ -764,7 +730,7 @@ def create_ui():
|
||||
with FormRow():
|
||||
resize_mode = gr.Radio(label="Resize mode", elem_id="resize_mode", choices=["Just resize", "Crop and resize", "Resize and fill", "Just resize (latent upscale)"], type="index", value="Just resize")
|
||||
|
||||
modules.scripts.scripts_img2img.prepare_ui()
|
||||
scripts.scripts_img2img.prepare_ui()
|
||||
|
||||
for category in ordered_ui_categories():
|
||||
if category == "sampler":
|
||||
@ -845,7 +811,7 @@ def create_ui():
|
||||
|
||||
elif category == "scripts":
|
||||
with FormGroup(elem_id="img2img_script_container"):
|
||||
custom_inputs = modules.scripts.scripts_img2img.setup_ui()
|
||||
custom_inputs = scripts.scripts_img2img.setup_ui()
|
||||
|
||||
elif category == "inpaint":
|
||||
with FormGroup(elem_id="inpaint_controls", visible=False) as inpaint_controls:
|
||||
@ -876,34 +842,22 @@ def create_ui():
|
||||
outputs=[inpaint_controls, mask_alpha],
|
||||
)
|
||||
else:
|
||||
modules.scripts.scripts_img2img.setup_ui_for_section(category)
|
||||
scripts.scripts_img2img.setup_ui_for_section(category)
|
||||
|
||||
img2img_gallery, generation_info, html_info, html_log = create_output_panel("img2img", opts.outdir_img2img_samples)
|
||||
|
||||
connect_reuse_seed(seed, reuse_seed, generation_info, dummy_component, is_subseed=False)
|
||||
connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True)
|
||||
|
||||
img2img_prompt_img.change(
|
||||
fn=modules.images.image_data,
|
||||
inputs=[
|
||||
img2img_prompt_img
|
||||
],
|
||||
outputs=[
|
||||
img2img_prompt,
|
||||
img2img_prompt_img
|
||||
],
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
img2img_args = dict(
|
||||
fn=wrap_gradio_gpu_call(modules.img2img.img2img, extra_outputs=[None, '', '']),
|
||||
_js="submit_img2img",
|
||||
inputs=[
|
||||
dummy_component,
|
||||
dummy_component,
|
||||
img2img_prompt,
|
||||
img2img_negative_prompt,
|
||||
img2img_prompt_styles,
|
||||
toprow.prompt,
|
||||
toprow.negative_prompt,
|
||||
toprow.ui_styles.dropdown,
|
||||
init_img,
|
||||
sketch,
|
||||
init_img_with_mask,
|
||||
@ -962,11 +916,11 @@ def create_ui():
|
||||
inpaint_color_sketch,
|
||||
init_img_inpaint,
|
||||
],
|
||||
outputs=[img2img_prompt, dummy_component],
|
||||
outputs=[toprow.prompt, dummy_component],
|
||||
)
|
||||
|
||||
img2img_prompt.submit(**img2img_args)
|
||||
submit.click(**img2img_args)
|
||||
toprow.prompt.submit(**img2img_args)
|
||||
toprow.submit.click(**img2img_args)
|
||||
|
||||
res_switch_btn.click(fn=None, _js="function(){switchWidthHeight('img2img')}", inputs=None, outputs=None, show_progress=False)
|
||||
|
||||
@ -978,7 +932,7 @@ def create_ui():
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
restore_progress_button.click(
|
||||
toprow.restore_progress_button.click(
|
||||
fn=progress.restore_progress,
|
||||
_js="restoreProgressImg2img",
|
||||
inputs=[dummy_component],
|
||||
@ -991,46 +945,24 @@ def create_ui():
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
img2img_interrogate.click(
|
||||
toprow.button_interrogate.click(
|
||||
fn=lambda *args: process_interrogate(interrogate, *args),
|
||||
**interrogate_args,
|
||||
)
|
||||
|
||||
img2img_deepbooru.click(
|
||||
toprow.button_deepbooru.click(
|
||||
fn=lambda *args: process_interrogate(interrogate_deepbooru, *args),
|
||||
**interrogate_args,
|
||||
)
|
||||
|
||||
prompts = [(txt2img_prompt, txt2img_negative_prompt), (img2img_prompt, img2img_negative_prompt)]
|
||||
style_dropdowns = [txt2img_prompt_styles, img2img_prompt_styles]
|
||||
style_js_funcs = ["update_txt2img_tokens", "update_img2img_tokens"]
|
||||
|
||||
for button, (prompt, negative_prompt) in zip([txt2img_save_style, img2img_save_style], prompts):
|
||||
button.click(
|
||||
fn=add_style,
|
||||
_js="ask_for_style_name",
|
||||
# Have to pass empty dummy component here, because the JavaScript and Python function have to accept
|
||||
# the same number of parameters, but we only know the style-name after the JavaScript prompt
|
||||
inputs=[dummy_component, prompt, negative_prompt],
|
||||
outputs=[txt2img_prompt_styles, img2img_prompt_styles],
|
||||
)
|
||||
|
||||
for button, (prompt, negative_prompt), styles, js_func in zip([txt2img_prompt_style_apply, img2img_prompt_style_apply], prompts, style_dropdowns, style_js_funcs):
|
||||
button.click(
|
||||
fn=apply_styles,
|
||||
_js=js_func,
|
||||
inputs=[prompt, negative_prompt, styles],
|
||||
outputs=[prompt, negative_prompt, styles],
|
||||
)
|
||||
|
||||
token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter])
|
||||
negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[img2img_negative_prompt, steps], outputs=[negative_token_counter])
|
||||
toprow.token_button.click(fn=update_token_counter, inputs=[toprow.prompt, steps], outputs=[toprow.token_counter])
|
||||
toprow.negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.negative_prompt, steps], outputs=[toprow.negative_token_counter])
|
||||
|
||||
ui_extra_networks.setup_ui(extra_networks_ui_img2img, img2img_gallery)
|
||||
|
||||
img2img_paste_fields = [
|
||||
(img2img_prompt, "Prompt"),
|
||||
(img2img_negative_prompt, "Negative prompt"),
|
||||
(toprow.prompt, "Prompt"),
|
||||
(toprow.negative_prompt, "Negative prompt"),
|
||||
(steps, "Steps"),
|
||||
(sampler_index, "Sampler"),
|
||||
(restore_faces, "Face restoration"),
|
||||
@ -1044,24 +976,24 @@ def create_ui():
|
||||
(subseed_strength, "Variation seed strength"),
|
||||
(seed_resize_from_w, "Seed resize from-1"),
|
||||
(seed_resize_from_h, "Seed resize from-2"),
|
||||
(img2img_prompt_styles, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
|
||||
(toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()),
|
||||
(denoising_strength, "Denoising strength"),
|
||||
(mask_blur, "Mask blur"),
|
||||
*modules.scripts.scripts_img2img.infotext_fields
|
||||
*scripts.scripts_img2img.infotext_fields
|
||||
]
|
||||
parameters_copypaste.add_paste_fields("img2img", init_img, img2img_paste_fields, override_settings)
|
||||
parameters_copypaste.add_paste_fields("inpaint", init_img_with_mask, img2img_paste_fields, override_settings)
|
||||
parameters_copypaste.register_paste_params_button(parameters_copypaste.ParamBinding(
|
||||
paste_button=img2img_paste, tabname="img2img", source_text_component=img2img_prompt, source_image_component=None,
|
||||
paste_button=toprow.paste, tabname="img2img", source_text_component=toprow.prompt, source_image_component=None,
|
||||
))
|
||||
|
||||
modules.scripts.scripts_current = None
|
||||
scripts.scripts_current = None
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as extras_interface:
|
||||
ui_postprocessing.create_ui()
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as pnginfo_interface:
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Row(equal_height=False):
|
||||
with gr.Column(variant='panel'):
|
||||
image = gr.Image(elem_id="pnginfo_image", label="Source", source="upload", interactive=True, type="pil")
|
||||
|
||||
@ -1083,64 +1015,13 @@ def create_ui():
|
||||
outputs=[html, generation_info, html2],
|
||||
)
|
||||
|
||||
def update_interp_description(value):
|
||||
interp_description_css = "<p style='margin-bottom: 2.5em'>{}</p>"
|
||||
interp_descriptions = {
|
||||
"No interpolation": interp_description_css.format("No interpolation will be used. Requires one model; A. Allows for format conversion and VAE baking."),
|
||||
"Weighted sum": interp_description_css.format("A weighted sum will be used for interpolation. Requires two models; A and B. The result is calculated as A * (1 - M) + B * M"),
|
||||
"Add difference": interp_description_css.format("The difference between the last two models will be added to the first. Requires three models; A, B and C. The result is calculated as A + (B - C) * M")
|
||||
}
|
||||
return interp_descriptions[value]
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as modelmerger_interface:
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Column(variant='compact'):
|
||||
interp_description = gr.HTML(value=update_interp_description("Weighted sum"), elem_id="modelmerger_interp_description")
|
||||
|
||||
with FormRow(elem_id="modelmerger_models"):
|
||||
primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)")
|
||||
create_refresh_button(primary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_A")
|
||||
|
||||
secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)")
|
||||
create_refresh_button(secondary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_B")
|
||||
|
||||
tertiary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)")
|
||||
create_refresh_button(tertiary_model_name, modules.sd_models.list_models, lambda: {"choices": modules.sd_models.checkpoint_tiles()}, "refresh_checkpoint_C")
|
||||
|
||||
custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name")
|
||||
interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount")
|
||||
interp_method = gr.Radio(choices=["No interpolation", "Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method")
|
||||
interp_method.change(fn=update_interp_description, inputs=[interp_method], outputs=[interp_description])
|
||||
|
||||
with FormRow():
|
||||
checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="safetensors", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
|
||||
save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half")
|
||||
save_metadata = gr.Checkbox(value=True, label="Save metadata (.safetensors only)", elem_id="modelmerger_save_metadata")
|
||||
|
||||
with FormRow():
|
||||
with gr.Column():
|
||||
config_source = gr.Radio(choices=["A, B or C", "B", "C", "Don't"], value="A, B or C", label="Copy config from", type="index", elem_id="modelmerger_config_method")
|
||||
|
||||
with gr.Column():
|
||||
with FormRow():
|
||||
bake_in_vae = gr.Dropdown(choices=["None"] + list(sd_vae.vae_dict), value="None", label="Bake in VAE", elem_id="modelmerger_bake_in_vae")
|
||||
create_refresh_button(bake_in_vae, sd_vae.refresh_vae_list, lambda: {"choices": ["None"] + list(sd_vae.vae_dict)}, "modelmerger_refresh_bake_in_vae")
|
||||
|
||||
with FormRow():
|
||||
discard_weights = gr.Textbox(value="", label="Discard weights with matching name", elem_id="modelmerger_discard_weights")
|
||||
|
||||
with gr.Row():
|
||||
modelmerger_merge = gr.Button(elem_id="modelmerger_merge", value="Merge", variant='primary')
|
||||
|
||||
with gr.Column(variant='compact', elem_id="modelmerger_results_container"):
|
||||
with gr.Group(elem_id="modelmerger_results_panel"):
|
||||
modelmerger_result = gr.HTML(elem_id="modelmerger_result", show_label=False)
|
||||
modelmerger_ui = ui_checkpoint_merger.UiCheckpointMerger()
|
||||
|
||||
with gr.Blocks(analytics_enabled=False) as train_interface:
|
||||
with gr.Row().style(equal_height=False):
|
||||
with gr.Row(equal_height=False):
|
||||
gr.HTML(value="<p style='margin-bottom: 0.7em'>See <b><a href=\"https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Textual-Inversion\">wiki</a></b> for detailed explanation.</p>")
|
||||
|
||||
with gr.Row(variant="compact").style(equal_height=False):
|
||||
with gr.Row(variant="compact", equal_height=False):
|
||||
with gr.Tabs(elem_id="train_tabs"):
|
||||
|
||||
with gr.Tab(label="Create embedding", id="create_embedding"):
|
||||
@ -1160,7 +1041,7 @@ def create_ui():
|
||||
new_hypernetwork_name = gr.Textbox(label="Name", elem_id="train_new_hypernetwork_name")
|
||||
new_hypernetwork_sizes = gr.CheckboxGroup(label="Modules", value=["768", "320", "640", "1280"], choices=["768", "1024", "320", "640", "1280"], elem_id="train_new_hypernetwork_sizes")
|
||||
new_hypernetwork_layer_structure = gr.Textbox("1, 2, 1", label="Enter hypernetwork layer structure", placeholder="1st and last digit must be 1. ex:'1, 2, 1'", elem_id="train_new_hypernetwork_layer_structure")
|
||||
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=modules.hypernetworks.ui.keys, elem_id="train_new_hypernetwork_activation_func")
|
||||
new_hypernetwork_activation_func = gr.Dropdown(value="linear", label="Select activation function of hypernetwork. Recommended : Swish / Linear(none)", choices=hypernetworks_ui.keys, elem_id="train_new_hypernetwork_activation_func")
|
||||
new_hypernetwork_initialization_option = gr.Dropdown(value = "Normal", label="Select Layer weights initialization. Recommended: Kaiming for relu-like, Xavier for sigmoid-like, Normal otherwise", choices=["Normal", "KaimingUniform", "KaimingNormal", "XavierUniform", "XavierNormal"], elem_id="train_new_hypernetwork_initialization_option")
|
||||
new_hypernetwork_add_layer_norm = gr.Checkbox(label="Add layer normalization", elem_id="train_new_hypernetwork_add_layer_norm")
|
||||
new_hypernetwork_use_dropout = gr.Checkbox(label="Use dropout", elem_id="train_new_hypernetwork_use_dropout")
|
||||
@ -1300,12 +1181,12 @@ def create_ui():
|
||||
|
||||
with gr.Column(elem_id='ti_gallery_container'):
|
||||
ti_output = gr.Text(elem_id="ti_output", value="", show_label=False)
|
||||
gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(columns=4)
|
||||
gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery', columns=4)
|
||||
gr.HTML(elem_id="ti_progress", value="")
|
||||
ti_outcome = gr.HTML(elem_id="ti_error", value="")
|
||||
|
||||
create_embedding.click(
|
||||
fn=modules.textual_inversion.ui.create_embedding,
|
||||
fn=textual_inversion_ui.create_embedding,
|
||||
inputs=[
|
||||
new_embedding_name,
|
||||
initialization_text,
|
||||
@ -1320,7 +1201,7 @@ def create_ui():
|
||||
)
|
||||
|
||||
create_hypernetwork.click(
|
||||
fn=modules.hypernetworks.ui.create_hypernetwork,
|
||||
fn=hypernetworks_ui.create_hypernetwork,
|
||||
inputs=[
|
||||
new_hypernetwork_name,
|
||||
new_hypernetwork_sizes,
|
||||
@ -1340,7 +1221,7 @@ def create_ui():
|
||||
)
|
||||
|
||||
run_preprocess.click(
|
||||
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.preprocess, extra_outputs=[gr.update()]),
|
||||
fn=wrap_gradio_gpu_call(textual_inversion_ui.preprocess, extra_outputs=[gr.update()]),
|
||||
_js="start_training_textual_inversion",
|
||||
inputs=[
|
||||
dummy_component,
|
||||
@ -1376,7 +1257,7 @@ def create_ui():
|
||||
)
|
||||
|
||||
train_embedding.click(
|
||||
fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]),
|
||||
fn=wrap_gradio_gpu_call(textual_inversion_ui.train_embedding, extra_outputs=[gr.update()]),
|
||||
_js="start_training_textual_inversion",
|
||||
inputs=[
|
||||
dummy_component,
|
||||
@ -1410,7 +1291,7 @@ def create_ui():
|
||||
)
|
||||
|
||||
train_hypernetwork.click(
|
||||
fn=wrap_gradio_gpu_call(modules.hypernetworks.ui.train_hypernetwork, extra_outputs=[gr.update()]),
|
||||
fn=wrap_gradio_gpu_call(hypernetworks_ui.train_hypernetwork, extra_outputs=[gr.update()]),
|
||||
_js="start_training_textual_inversion",
|
||||
inputs=[
|
||||
dummy_component,
|
||||
@ -1464,7 +1345,7 @@ def create_ui():
|
||||
(img2img_interface, "img2img", "img2img"),
|
||||
(extras_interface, "Extras", "extras"),
|
||||
(pnginfo_interface, "PNG Info", "pnginfo"),
|
||||
(modelmerger_interface, "Checkpoint Merger", "modelmerger"),
|
||||
(modelmerger_ui.blocks, "Checkpoint Merger", "modelmerger"),
|
||||
(train_interface, "Train", "train"),
|
||||
]
|
||||
|
||||
@ -1516,49 +1397,11 @@ def create_ui():
|
||||
settings.text_settings.change(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
|
||||
demo.load(fn=update_image_cfg_scale_visibility, inputs=[], outputs=[image_cfg_scale])
|
||||
|
||||
def modelmerger(*args):
|
||||
try:
|
||||
results = modules.extras.run_modelmerger(*args)
|
||||
except Exception as e:
|
||||
errors.report("Error loading/saving model file", exc_info=True)
|
||||
modules.sd_models.list_models() # to remove the potentially missing models from the list
|
||||
return [*[gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(4)], f"Error merging checkpoints: {e}"]
|
||||
return results
|
||||
|
||||
modelmerger_merge.click(fn=lambda: '', inputs=[], outputs=[modelmerger_result])
|
||||
modelmerger_merge.click(
|
||||
fn=wrap_gradio_gpu_call(modelmerger, extra_outputs=lambda: [gr.update() for _ in range(4)]),
|
||||
_js='modelmerger',
|
||||
inputs=[
|
||||
dummy_component,
|
||||
primary_model_name,
|
||||
secondary_model_name,
|
||||
tertiary_model_name,
|
||||
interp_method,
|
||||
interp_amount,
|
||||
save_as_half,
|
||||
custom_name,
|
||||
checkpoint_format,
|
||||
config_source,
|
||||
bake_in_vae,
|
||||
discard_weights,
|
||||
save_metadata,
|
||||
],
|
||||
outputs=[
|
||||
primary_model_name,
|
||||
secondary_model_name,
|
||||
tertiary_model_name,
|
||||
settings.component_dict['sd_model_checkpoint'],
|
||||
modelmerger_result,
|
||||
]
|
||||
)
|
||||
modelmerger_ui.setup_ui(dummy_component=dummy_component, sd_model_checkpoint_component=settings.component_dict['sd_model_checkpoint'])
|
||||
|
||||
loadsave.dump_defaults()
|
||||
demo.ui_loadsave = loadsave
|
||||
|
||||
# Required as a workaround for change() event not triggering when loading values from ui-config.json
|
||||
interp_description.value = update_interp_description(interp_method.value)
|
||||
|
||||
return demo
|
||||
|
||||
|
||||
|
124
modules/ui_checkpoint_merger.py
Normal file
124
modules/ui_checkpoint_merger.py
Normal file
@ -0,0 +1,124 @@
|
||||
|
||||
import gradio as gr
|
||||
|
||||
from modules import sd_models, sd_vae, errors, extras, call_queue
|
||||
from modules.ui_components import FormRow
|
||||
from modules.ui_common import create_refresh_button
|
||||
|
||||
|
||||
def update_interp_description(value):
|
||||
interp_description_css = "<p style='margin-bottom: 2.5em'>{}</p>"
|
||||
interp_descriptions = {
|
||||
"No interpolation": interp_description_css.format("No interpolation will be used. Requires one model; A. Allows for format conversion and VAE baking."),
|
||||
"Weighted sum": interp_description_css.format("A weighted sum will be used for interpolation. Requires two models; A and B. The result is calculated as A * (1 - M) + B * M"),
|
||||
"Add difference": interp_description_css.format("The difference between the last two models will be added to the first. Requires three models; A, B and C. The result is calculated as A + (B - C) * M")
|
||||
}
|
||||
return interp_descriptions[value]
|
||||
|
||||
|
||||
def modelmerger(*args):
|
||||
try:
|
||||
results = extras.run_modelmerger(*args)
|
||||
except Exception as e:
|
||||
errors.report("Error loading/saving model file", exc_info=True)
|
||||
sd_models.list_models() # to remove the potentially missing models from the list
|
||||
return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], f"Error merging checkpoints: {e}"]
|
||||
return results
|
||||
|
||||
|
||||
class UiCheckpointMerger:
|
||||
def __init__(self):
|
||||
with gr.Blocks(analytics_enabled=False) as modelmerger_interface:
|
||||
with gr.Row(equal_height=False):
|
||||
with gr.Column(variant='compact'):
|
||||
self.interp_description = gr.HTML(value=update_interp_description("Weighted sum"), elem_id="modelmerger_interp_description")
|
||||
|
||||
with FormRow(elem_id="modelmerger_models"):
|
||||
self.primary_model_name = gr.Dropdown(sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary model (A)")
|
||||
create_refresh_button(self.primary_model_name, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_tiles()}, "refresh_checkpoint_A")
|
||||
|
||||
self.secondary_model_name = gr.Dropdown(sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary model (B)")
|
||||
create_refresh_button(self.secondary_model_name, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_tiles()}, "refresh_checkpoint_B")
|
||||
|
||||
self.tertiary_model_name = gr.Dropdown(sd_models.checkpoint_tiles(), elem_id="modelmerger_tertiary_model_name", label="Tertiary model (C)")
|
||||
create_refresh_button(self.tertiary_model_name, sd_models.list_models, lambda: {"choices": sd_models.checkpoint_tiles()}, "refresh_checkpoint_C")
|
||||
|
||||
self.custom_name = gr.Textbox(label="Custom Name (Optional)", elem_id="modelmerger_custom_name")
|
||||
self.interp_amount = gr.Slider(minimum=0.0, maximum=1.0, step=0.05, label='Multiplier (M) - set to 0 to get model A', value=0.3, elem_id="modelmerger_interp_amount")
|
||||
self.interp_method = gr.Radio(choices=["No interpolation", "Weighted sum", "Add difference"], value="Weighted sum", label="Interpolation Method", elem_id="modelmerger_interp_method")
|
||||
self.interp_method.change(fn=update_interp_description, inputs=[self.interp_method], outputs=[self.interp_description])
|
||||
|
||||
with FormRow():
|
||||
self.checkpoint_format = gr.Radio(choices=["ckpt", "safetensors"], value="safetensors", label="Checkpoint format", elem_id="modelmerger_checkpoint_format")
|
||||
self.save_as_half = gr.Checkbox(value=False, label="Save as float16", elem_id="modelmerger_save_as_half")
|
||||
|
||||
with FormRow():
|
||||
with gr.Column():
|
||||
self.config_source = gr.Radio(choices=["A, B or C", "B", "C", "Don't"], value="A, B or C", label="Copy config from", type="index", elem_id="modelmerger_config_method")
|
||||
|
||||
with gr.Column():
|
||||
with FormRow():
|
||||
self.bake_in_vae = gr.Dropdown(choices=["None"] + list(sd_vae.vae_dict), value="None", label="Bake in VAE", elem_id="modelmerger_bake_in_vae")
|
||||
create_refresh_button(self.bake_in_vae, sd_vae.refresh_vae_list, lambda: {"choices": ["None"] + list(sd_vae.vae_dict)}, "modelmerger_refresh_bake_in_vae")
|
||||
|
||||
with FormRow():
|
||||
self.discard_weights = gr.Textbox(value="", label="Discard weights with matching name", elem_id="modelmerger_discard_weights")
|
||||
|
||||
with gr.Accordion("Metadata", open=False) as metadata_editor:
|
||||
with FormRow():
|
||||
self.save_metadata = gr.Checkbox(value=True, label="Save metadata", elem_id="modelmerger_save_metadata")
|
||||
self.add_merge_recipe = gr.Checkbox(value=True, label="Add merge recipe metadata", elem_id="modelmerger_add_recipe")
|
||||
self.copy_metadata_fields = gr.Checkbox(value=True, label="Copy metadata from merged models", elem_id="modelmerger_copy_metadata")
|
||||
|
||||
self.metadata_json = gr.TextArea('{}', label="Metadata in JSON format")
|
||||
self.read_metadata = gr.Button("Read metadata from selected checkpoints")
|
||||
|
||||
with FormRow():
|
||||
self.modelmerger_merge = gr.Button(elem_id="modelmerger_merge", value="Merge", variant='primary')
|
||||
|
||||
with gr.Column(variant='compact', elem_id="modelmerger_results_container"):
|
||||
with gr.Group(elem_id="modelmerger_results_panel"):
|
||||
self.modelmerger_result = gr.HTML(elem_id="modelmerger_result", show_label=False)
|
||||
|
||||
self.metadata_editor = metadata_editor
|
||||
self.blocks = modelmerger_interface
|
||||
|
||||
def setup_ui(self, dummy_component, sd_model_checkpoint_component):
|
||||
self.checkpoint_format.change(lambda fmt: gr.update(visible=fmt == 'safetensors'), inputs=[self.checkpoint_format], outputs=[self.metadata_editor], show_progress=False)
|
||||
|
||||
self.read_metadata.click(extras.read_metadata, inputs=[self.primary_model_name, self.secondary_model_name, self.tertiary_model_name], outputs=[self.metadata_json])
|
||||
|
||||
self.modelmerger_merge.click(fn=lambda: '', inputs=[], outputs=[self.modelmerger_result])
|
||||
self.modelmerger_merge.click(
|
||||
fn=call_queue.wrap_gradio_gpu_call(modelmerger, extra_outputs=lambda: [gr.update() for _ in range(4)]),
|
||||
_js='modelmerger',
|
||||
inputs=[
|
||||
dummy_component,
|
||||
self.primary_model_name,
|
||||
self.secondary_model_name,
|
||||
self.tertiary_model_name,
|
||||
self.interp_method,
|
||||
self.interp_amount,
|
||||
self.save_as_half,
|
||||
self.custom_name,
|
||||
self.checkpoint_format,
|
||||
self.config_source,
|
||||
self.bake_in_vae,
|
||||
self.discard_weights,
|
||||
self.save_metadata,
|
||||
self.add_merge_recipe,
|
||||
self.copy_metadata_fields,
|
||||
self.metadata_json,
|
||||
],
|
||||
outputs=[
|
||||
self.primary_model_name,
|
||||
self.secondary_model_name,
|
||||
self.tertiary_model_name,
|
||||
sd_model_checkpoint_component,
|
||||
self.modelmerger_result,
|
||||
]
|
||||
)
|
||||
|
||||
# Required as a workaround for change() event not triggering when loading values from ui-config.json
|
||||
self.interp_description.value = update_interp_description(self.interp_method.value)
|
||||
|
@ -134,7 +134,7 @@ Requested path was: {f}
|
||||
|
||||
with gr.Column(variant='panel', elem_id=f"{tabname}_results"):
|
||||
with gr.Group(elem_id=f"{tabname}_gallery_container"):
|
||||
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery").style(columns=4)
|
||||
result_gallery = gr.Gallery(label='Output', show_label=False, elem_id=f"{tabname}_gallery", columns=4)
|
||||
|
||||
generation_info = None
|
||||
with gr.Column():
|
||||
@ -223,20 +223,44 @@ Requested path was: {f}
|
||||
|
||||
|
||||
def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id):
|
||||
refresh_components = refresh_component if isinstance(refresh_component, list) else [refresh_component]
|
||||
|
||||
label = None
|
||||
for comp in refresh_components:
|
||||
label = getattr(comp, 'label', None)
|
||||
if label is not None:
|
||||
break
|
||||
|
||||
def refresh():
|
||||
refresh_method()
|
||||
args = refreshed_args() if callable(refreshed_args) else refreshed_args
|
||||
|
||||
for k, v in args.items():
|
||||
setattr(refresh_component, k, v)
|
||||
for comp in refresh_components:
|
||||
setattr(comp, k, v)
|
||||
|
||||
return gr.update(**(args or {}))
|
||||
return [gr.update(**(args or {})) for _ in refresh_components]
|
||||
|
||||
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id)
|
||||
refresh_button = ToolButton(value=refresh_symbol, elem_id=elem_id, tooltip=f"{label}: refresh" if label else "Refresh")
|
||||
refresh_button.click(
|
||||
fn=refresh,
|
||||
inputs=[],
|
||||
outputs=[refresh_component]
|
||||
outputs=[*refresh_components]
|
||||
)
|
||||
return refresh_button
|
||||
|
||||
|
||||
def setup_dialog(button_show, dialog, *, button_close=None):
|
||||
"""Sets up the UI so that the dialog (gr.Box) is invisible, and is only shown when buttons_show is clicked, in a fullscreen modal window."""
|
||||
|
||||
dialog.visible = False
|
||||
|
||||
button_show.click(
|
||||
fn=lambda: gr.update(visible=True),
|
||||
inputs=[],
|
||||
outputs=[dialog],
|
||||
).then(fn=None, _js="function(){ popup(gradioApp().getElementById('" + dialog.elem_id + "')); }")
|
||||
|
||||
if button_close:
|
||||
button_close.click(fn=None, _js="closePopup")
|
||||
|
||||
|
@ -35,7 +35,7 @@ class FormColumn(FormComponent, gr.Column):
|
||||
|
||||
|
||||
class FormGroup(FormComponent, gr.Group):
|
||||
"""Same as gr.Row but fits inside gradio forms"""
|
||||
"""Same as gr.Group but fits inside gradio forms"""
|
||||
|
||||
def get_block_name(self):
|
||||
return "group"
|
||||
|
@ -164,7 +164,7 @@ def extension_table():
|
||||
ext_status = ext.status
|
||||
|
||||
style = ""
|
||||
if shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.opts.disable_all_extensions == "all":
|
||||
if shared.cmd_opts.disable_extra_extensions and not ext.is_builtin or shared.opts.disable_all_extensions == "extra" and not ext.is_builtin or shared.cmd_opts.disable_all_extensions or shared.opts.disable_all_extensions == "all":
|
||||
style = STYLE_PRIMARY
|
||||
|
||||
version_link = ext.version
|
||||
@ -533,16 +533,20 @@ def create_ui():
|
||||
apply = gr.Button(value=apply_label, variant="primary")
|
||||
check = gr.Button(value="Check for updates")
|
||||
extensions_disable_all = gr.Radio(label="Disable all extensions", choices=["none", "extra", "all"], value=shared.opts.disable_all_extensions, elem_id="extensions_disable_all")
|
||||
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False).style(container=False)
|
||||
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False).style(container=False)
|
||||
extensions_disabled_list = gr.Text(elem_id="extensions_disabled_list", visible=False, container=False)
|
||||
extensions_update_list = gr.Text(elem_id="extensions_update_list", visible=False, container=False)
|
||||
|
||||
html = ""
|
||||
if shared.opts.disable_all_extensions != "none":
|
||||
html = """
|
||||
<span style="color: var(--primary-400);">
|
||||
"Disable all extensions" was set, change it to "none" to load all extensions again
|
||||
</span>
|
||||
"""
|
||||
|
||||
if shared.cmd_opts.disable_all_extensions or shared.cmd_opts.disable_extra_extensions or shared.opts.disable_all_extensions != "none":
|
||||
if shared.cmd_opts.disable_all_extensions:
|
||||
msg = '"--disable-all-extensions" was used, remove it to load all extensions again'
|
||||
elif shared.opts.disable_all_extensions != "none":
|
||||
msg = '"Disable all extensions" was set, change it to "none" to load all extensions again'
|
||||
elif shared.cmd_opts.disable_extra_extensions:
|
||||
msg = '"--disable-extra-extensions" was used, remove it to load all extensions again'
|
||||
html = f'<span style="color: var(--primary-400);">{msg}</span>'
|
||||
|
||||
info = gr.HTML(html)
|
||||
extensions_table = gr.HTML('Loading...')
|
||||
ui.load(fn=extension_table, inputs=[], outputs=[extensions_table])
|
||||
@ -565,7 +569,7 @@ def create_ui():
|
||||
with gr.Row():
|
||||
refresh_available_extensions_button = gr.Button(value="Load from:", variant="primary")
|
||||
extensions_index_url = os.environ.get('WEBUI_EXTENSIONS_INDEX', "https://raw.githubusercontent.com/AUTOMATIC1111/stable-diffusion-webui-extensions/master/index.json")
|
||||
available_extensions_index = gr.Text(value=extensions_index_url, label="Extension index URL").style(container=False)
|
||||
available_extensions_index = gr.Text(value=extensions_index_url, label="Extension index URL", container=False)
|
||||
extension_to_install = gr.Text(elem_id="extension_to_install", visible=False)
|
||||
install_extension_button = gr.Button(elem_id="install_extension_button", visible=False)
|
||||
|
||||
@ -574,7 +578,7 @@ def create_ui():
|
||||
sort_column = gr.Radio(value="newest first", label="Order", choices=["newest first", "oldest first", "a-z", "z-a", "internal order",'update time', 'create time', "stars"], type="index")
|
||||
|
||||
with gr.Row():
|
||||
search_extensions_text = gr.Text(label="Search").style(container=False)
|
||||
search_extensions_text = gr.Text(label="Search", container=False)
|
||||
|
||||
install_result = gr.HTML()
|
||||
available_extensions_table = gr.HTML()
|
||||
|
@ -62,7 +62,8 @@ def get_single_card(page: str = "", tabname: str = "", name: str = ""):
|
||||
page = next(iter([x for x in extra_pages if x.name == page]), None)
|
||||
|
||||
try:
|
||||
item = page.create_item(name)
|
||||
item = page.create_item(name, enable_filter=False)
|
||||
page.items[name] = item
|
||||
except Exception as e:
|
||||
errors.display(e, "creating item for extra network")
|
||||
item = page.items.get(name)
|
||||
@ -252,7 +253,7 @@ class ExtraNetworksPage:
|
||||
"prompt": item.get("prompt", None),
|
||||
"tabname": quote_js(tabname),
|
||||
"local_preview": quote_js(item["local_preview"]),
|
||||
"name": item["name"],
|
||||
"name": html.escape(item["name"]),
|
||||
"description": (item.get("description") or "" if shared.opts.extra_networks_card_show_desc else ""),
|
||||
"card_clicked": onclick,
|
||||
"save_card_preview": '"' + html.escape(f"""return saveCardPreview(event, {quote_js(tabname)}, {quote_js(item["local_preview"])})""") + '"',
|
||||
|
@ -12,7 +12,7 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
|
||||
def refresh(self):
|
||||
shared.refresh_checkpoints()
|
||||
|
||||
def create_item(self, name, index=None):
|
||||
def create_item(self, name, index=None, enable_filter=True):
|
||||
checkpoint: sd_models.CheckpointInfo = sd_models.checkpoint_aliases.get(name)
|
||||
path, ext = os.path.splitext(checkpoint.filename)
|
||||
return {
|
||||
@ -23,6 +23,7 @@ class ExtraNetworksPageCheckpoints(ui_extra_networks.ExtraNetworksPage):
|
||||
"search_term": self.search_terms_from_path(checkpoint.filename) + " " + (checkpoint.sha256 or ""),
|
||||
"onclick": '"' + html.escape(f"""return selectCheckpoint({quote_js(name)})""") + '"',
|
||||
"local_preview": f"{path}.{shared.opts.samples_format}",
|
||||
"metadata": checkpoint.metadata,
|
||||
"sort_keys": {'default': index, **self.get_sort_keys(checkpoint.filename)},
|
||||
}
|
||||
|
||||
|
@ -11,7 +11,7 @@ class ExtraNetworksPageHypernetworks(ui_extra_networks.ExtraNetworksPage):
|
||||
def refresh(self):
|
||||
shared.reload_hypernetworks()
|
||||
|
||||
def create_item(self, name, index=None):
|
||||
def create_item(self, name, index=None, enable_filter=True):
|
||||
full_path = shared.hypernetworks[name]
|
||||
path, ext = os.path.splitext(full_path)
|
||||
|
||||
|
@ -12,7 +12,7 @@ class ExtraNetworksPageTextualInversion(ui_extra_networks.ExtraNetworksPage):
|
||||
def refresh(self):
|
||||
sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings(force_reload=True)
|
||||
|
||||
def create_item(self, name, index=None):
|
||||
def create_item(self, name, index=None, enable_filter=True):
|
||||
embedding = sd_hijack.model_hijack.embedding_db.word_embeddings.get(name)
|
||||
|
||||
path, ext = os.path.splitext(embedding.filename)
|
||||
|
@ -42,6 +42,9 @@ class UserMetadataEditor:
|
||||
|
||||
return user_metadata
|
||||
|
||||
def create_extra_default_items_in_left_column(self):
|
||||
pass
|
||||
|
||||
def create_default_editor_elems(self):
|
||||
with gr.Row():
|
||||
with gr.Column(scale=2):
|
||||
@ -49,6 +52,8 @@ class UserMetadataEditor:
|
||||
self.edit_description = gr.Textbox(label="Description", lines=4)
|
||||
self.html_filedata = gr.HTML()
|
||||
|
||||
self.create_extra_default_items_in_left_column()
|
||||
|
||||
with gr.Column(scale=1, min_width=0):
|
||||
self.html_preview = gr.HTML()
|
||||
|
||||
@ -91,6 +96,7 @@ class UserMetadataEditor:
|
||||
|
||||
stats = os.stat(filename)
|
||||
params = [
|
||||
('Filename: ', os.path.basename(filename)),
|
||||
('File size: ', sysinfo.pretty_bytes(stats.st_size)),
|
||||
('Modified: ', datetime.datetime.fromtimestamp(stats.st_mtime).strftime('%Y-%m-%d %H:%M')),
|
||||
]
|
||||
@ -111,7 +117,7 @@ class UserMetadataEditor:
|
||||
|
||||
table = '<table class="file-metadata">' + "".join(f"<tr><th>{name}</th><td>{value}</td></tr>" for name, value in params) + '</table>'
|
||||
|
||||
return html.escape(name), user_metadata.get('description', ''), table, self.get_card_html(name), user_metadata.get('notes', ''),
|
||||
return html.escape(name), user_metadata.get('description', ''), table, self.get_card_html(name), user_metadata.get('notes', '')
|
||||
|
||||
def write_user_metadata(self, name, metadata):
|
||||
item = self.page.items.get(name, {})
|
||||
|
@ -6,7 +6,7 @@ import modules.generation_parameters_copypaste as parameters_copypaste
|
||||
def create_ui():
|
||||
tab_index = gr.State(value=0)
|
||||
|
||||
with gr.Row().style(equal_height=False, variant='compact'):
|
||||
with gr.Row(equal_height=False, variant='compact'):
|
||||
with gr.Column(variant='compact'):
|
||||
with gr.Tabs(elem_id="mode_extras"):
|
||||
with gr.TabItem('Single Image', id="single_image", elem_id="extras_single_tab") as tab_single:
|
||||
|
110
modules/ui_prompt_styles.py
Normal file
110
modules/ui_prompt_styles.py
Normal file
@ -0,0 +1,110 @@
|
||||
import gradio as gr
|
||||
|
||||
from modules import shared, ui_common, ui_components, styles
|
||||
|
||||
styles_edit_symbol = '\U0001f58c\uFE0F' # 🖌️
|
||||
styles_materialize_symbol = '\U0001f4cb' # 📋
|
||||
|
||||
|
||||
def select_style(name):
|
||||
style = shared.prompt_styles.styles.get(name)
|
||||
existing = style is not None
|
||||
empty = not name
|
||||
|
||||
prompt = style.prompt if style else gr.update()
|
||||
negative_prompt = style.negative_prompt if style else gr.update()
|
||||
|
||||
return prompt, negative_prompt, gr.update(visible=existing), gr.update(visible=not empty)
|
||||
|
||||
|
||||
def save_style(name, prompt, negative_prompt):
|
||||
if not name:
|
||||
return gr.update(visible=False)
|
||||
|
||||
style = styles.PromptStyle(name, prompt, negative_prompt)
|
||||
shared.prompt_styles.styles[style.name] = style
|
||||
shared.prompt_styles.save_styles(shared.styles_filename)
|
||||
|
||||
return gr.update(visible=True)
|
||||
|
||||
|
||||
def delete_style(name):
|
||||
if name == "":
|
||||
return
|
||||
|
||||
shared.prompt_styles.styles.pop(name, None)
|
||||
shared.prompt_styles.save_styles(shared.styles_filename)
|
||||
|
||||
return '', '', ''
|
||||
|
||||
|
||||
def materialize_styles(prompt, negative_prompt, styles):
|
||||
prompt = shared.prompt_styles.apply_styles_to_prompt(prompt, styles)
|
||||
negative_prompt = shared.prompt_styles.apply_negative_styles_to_prompt(negative_prompt, styles)
|
||||
|
||||
return [gr.Textbox.update(value=prompt), gr.Textbox.update(value=negative_prompt), gr.Dropdown.update(value=[])]
|
||||
|
||||
|
||||
def refresh_styles():
|
||||
return gr.update(choices=list(shared.prompt_styles.styles)), gr.update(choices=list(shared.prompt_styles.styles))
|
||||
|
||||
|
||||
class UiPromptStyles:
|
||||
def __init__(self, tabname, main_ui_prompt, main_ui_negative_prompt):
|
||||
self.tabname = tabname
|
||||
|
||||
with gr.Row(elem_id=f"{tabname}_styles_row"):
|
||||
self.dropdown = gr.Dropdown(label="Styles", show_label=False, elem_id=f"{tabname}_styles", choices=list(shared.prompt_styles.styles), value=[], multiselect=True, tooltip="Styles")
|
||||
edit_button = ui_components.ToolButton(value=styles_edit_symbol, elem_id=f"{tabname}_styles_edit_button", tooltip="Edit styles")
|
||||
|
||||
with gr.Box(elem_id=f"{tabname}_styles_dialog", elem_classes="popup-dialog") as styles_dialog:
|
||||
with gr.Row():
|
||||
self.selection = gr.Dropdown(label="Styles", elem_id=f"{tabname}_styles_edit_select", choices=list(shared.prompt_styles.styles), value=[], allow_custom_value=True, info="Styles allow you to add custom text to prompt. Use the {prompt} token in style text, and it will be replaced with user's prompt when applying style. Otherwise, style's text will be added to the end of the prompt.")
|
||||
ui_common.create_refresh_button([self.dropdown, self.selection], shared.prompt_styles.reload, lambda: {"choices": list(shared.prompt_styles.styles)}, f"refresh_{tabname}_styles")
|
||||
self.materialize = ui_components.ToolButton(value=styles_materialize_symbol, elem_id=f"{tabname}_style_apply", tooltip="Apply all selected styles from the style selction dropdown in main UI to the prompt.")
|
||||
|
||||
with gr.Row():
|
||||
self.prompt = gr.Textbox(label="Prompt", show_label=True, elem_id=f"{tabname}_edit_style_prompt", lines=3)
|
||||
|
||||
with gr.Row():
|
||||
self.neg_prompt = gr.Textbox(label="Negative prompt", show_label=True, elem_id=f"{tabname}_edit_style_neg_prompt", lines=3)
|
||||
|
||||
with gr.Row():
|
||||
self.save = gr.Button('Save', variant='primary', elem_id=f'{tabname}_edit_style_save', visible=False)
|
||||
self.delete = gr.Button('Delete', variant='primary', elem_id=f'{tabname}_edit_style_delete', visible=False)
|
||||
self.close = gr.Button('Close', variant='secondary', elem_id=f'{tabname}_edit_style_close')
|
||||
|
||||
self.selection.change(
|
||||
fn=select_style,
|
||||
inputs=[self.selection],
|
||||
outputs=[self.prompt, self.neg_prompt, self.delete, self.save],
|
||||
show_progress=False,
|
||||
)
|
||||
|
||||
self.save.click(
|
||||
fn=save_style,
|
||||
inputs=[self.selection, self.prompt, self.neg_prompt],
|
||||
outputs=[self.delete],
|
||||
show_progress=False,
|
||||
).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)
|
||||
|
||||
self.delete.click(
|
||||
fn=delete_style,
|
||||
_js='function(name){ if(name == "") return ""; return confirm("Delete style " + name + "?") ? name : ""; }',
|
||||
inputs=[self.selection],
|
||||
outputs=[self.selection, self.prompt, self.neg_prompt],
|
||||
show_progress=False,
|
||||
).then(refresh_styles, outputs=[self.dropdown, self.selection], show_progress=False)
|
||||
|
||||
self.materialize.click(
|
||||
fn=materialize_styles,
|
||||
inputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],
|
||||
outputs=[main_ui_prompt, main_ui_negative_prompt, self.dropdown],
|
||||
show_progress=False,
|
||||
).then(fn=None, _js="function(){update_"+tabname+"_tokens(); closePopup();}", show_progress=False)
|
||||
|
||||
ui_common.setup_dialog(button_show=edit_button, dialog=styles_dialog, button_close=self.close)
|
||||
|
||||
|
||||
|
||||
|
@ -7,7 +7,7 @@ blendmodes
|
||||
clean-fid
|
||||
einops
|
||||
gfpgan
|
||||
gradio==3.36.1
|
||||
gradio==3.39.0
|
||||
inflection
|
||||
jsonmerge
|
||||
kornia
|
||||
|
@ -7,8 +7,8 @@ clean-fid==0.1.35
|
||||
einops==0.4.1
|
||||
fastapi==0.94.0
|
||||
gfpgan==1.3.8
|
||||
gradio==3.36.1
|
||||
httpcore<=0.15
|
||||
gradio==3.39.0
|
||||
httpcore==0.15
|
||||
inflection==0.5.1
|
||||
jsonmerge==1.8.0
|
||||
kornia==0.6.7
|
||||
@ -17,7 +17,7 @@ numpy==1.23.5
|
||||
omegaconf==2.2.3
|
||||
open-clip-torch==2.20.0
|
||||
piexif==1.1.3
|
||||
psutil~=5.9.5
|
||||
psutil==5.9.5
|
||||
pytorch_lightning==1.9.4
|
||||
realesrgan==0.3.0
|
||||
resize-right==0.0.2
|
||||
@ -29,4 +29,3 @@ torch
|
||||
torchdiffeq==0.2.3
|
||||
torchsde==0.2.5
|
||||
transformers==4.30.2
|
||||
diffusers==0.18.2
|
||||
|
@ -3,6 +3,7 @@ from copy import copy
|
||||
from itertools import permutations, chain
|
||||
import random
|
||||
import csv
|
||||
import os.path
|
||||
from io import StringIO
|
||||
from PIL import Image
|
||||
import numpy as np
|
||||
@ -10,7 +11,7 @@ import numpy as np
|
||||
import modules.scripts as scripts
|
||||
import gradio as gr
|
||||
|
||||
from modules import images, sd_samplers, processing, sd_models, sd_vae, sd_samplers_kdiffusion
|
||||
from modules import images, sd_samplers, processing, sd_models, sd_vae, sd_samplers_kdiffusion, errors
|
||||
from modules.processing import process_images, Processed, StableDiffusionProcessingTxt2Img
|
||||
from modules.shared import opts, state
|
||||
import modules.shared as shared
|
||||
@ -66,14 +67,6 @@ def apply_order(p, x, xs):
|
||||
p.prompt = prompt_tmp + p.prompt
|
||||
|
||||
|
||||
def apply_sampler(p, x, xs):
|
||||
sampler_name = sd_samplers.samplers_map.get(x.lower(), None)
|
||||
if sampler_name is None:
|
||||
raise RuntimeError(f"Unknown sampler: {x}")
|
||||
|
||||
p.sampler_name = sampler_name
|
||||
|
||||
|
||||
def confirm_samplers(p, xs):
|
||||
for x in xs:
|
||||
if x.lower() not in sd_samplers.samplers_map:
|
||||
@ -144,11 +137,20 @@ def apply_face_restore(p, opt, x):
|
||||
p.restore_faces = is_active
|
||||
|
||||
|
||||
def apply_override(field):
|
||||
def apply_override(field, boolean: bool = False):
|
||||
def fun(p, x, xs):
|
||||
if boolean:
|
||||
x = True if x.lower() == "true" else False
|
||||
p.override_settings[field] = x
|
||||
return fun
|
||||
|
||||
|
||||
def boolean_choice(reverse: bool = False):
|
||||
def choice():
|
||||
return ["False", "True"] if reverse else ["True", "False"]
|
||||
return choice
|
||||
|
||||
|
||||
def format_value_add_label(p, opt, x):
|
||||
if type(x) == float:
|
||||
x = round(x, 8)
|
||||
@ -173,6 +175,8 @@ def do_nothing(p, x, xs):
|
||||
def format_nothing(p, opt, x):
|
||||
return ""
|
||||
|
||||
def format_remove_path(p, opt, x):
|
||||
return os.path.basename(x)
|
||||
|
||||
def str_permutations(x):
|
||||
"""dummy function for specifying it in AxisOption's type when you want to get a list of permutations"""
|
||||
@ -212,9 +216,10 @@ axis_options = [
|
||||
AxisOptionImg2Img("Image CFG Scale", float, apply_field("image_cfg_scale")),
|
||||
AxisOption("Prompt S/R", str, apply_prompt, format_value=format_value),
|
||||
AxisOption("Prompt order", str_permutations, apply_order, format_value=format_value_join_list),
|
||||
AxisOptionTxt2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
|
||||
AxisOptionImg2Img("Sampler", str, apply_sampler, format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
|
||||
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_value, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
|
||||
AxisOptionTxt2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers]),
|
||||
AxisOptionTxt2Img("Hires sampler", str, apply_field("hr_sampler_name"), confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
|
||||
AxisOptionImg2Img("Sampler", str, apply_field("sampler_name"), format_value=format_value, confirm=confirm_samplers, choices=lambda: [x.name for x in sd_samplers.samplers_for_img2img]),
|
||||
AxisOption("Checkpoint name", str, apply_checkpoint, format_value=format_remove_path, confirm=confirm_checkpoints, cost=1.0, choices=lambda: sorted(sd_models.checkpoints_list, key=str.casefold)),
|
||||
AxisOption("Negative Guidance minimum sigma", float, apply_field("s_min_uncond")),
|
||||
AxisOption("Sigma Churn", float, apply_field("s_churn")),
|
||||
AxisOption("Sigma min", float, apply_field("s_tmin")),
|
||||
@ -235,6 +240,7 @@ axis_options = [
|
||||
AxisOption("Face restore", str, apply_face_restore, format_value=format_value),
|
||||
AxisOption("Token merging ratio", float, apply_override('token_merging_ratio')),
|
||||
AxisOption("Token merging ratio high-res", float, apply_override('token_merging_ratio_hr')),
|
||||
AxisOption("Always discard next-to-last sigma", str, apply_override('always_discard_next_to_last_sigma', boolean=True), choices=boolean_choice(reverse=True)),
|
||||
]
|
||||
|
||||
|
||||
@ -638,7 +644,12 @@ class Script(scripts.Script):
|
||||
y_opt.apply(pc, y, ys)
|
||||
z_opt.apply(pc, z, zs)
|
||||
|
||||
try:
|
||||
res = process_images(pc)
|
||||
except Exception as e:
|
||||
errors.display(e, "generating image for xyz plot")
|
||||
|
||||
res = Processed(p, [], p.seed, "")
|
||||
|
||||
# Sets subgrid infotexts
|
||||
subgrid_index = 1 + iz
|
||||
|
38
style.css
38
style.css
@ -8,6 +8,7 @@
|
||||
--checkbox-label-gap: 0.25em 0.1em;
|
||||
--section-header-text-size: 12pt;
|
||||
--block-background-fill: transparent;
|
||||
|
||||
}
|
||||
|
||||
.block.padded:not(.gradio-accordion) {
|
||||
@ -42,7 +43,8 @@ div.form{
|
||||
.block.gradio-radio,
|
||||
.block.gradio-checkboxgroup,
|
||||
.block.gradio-number,
|
||||
.block.gradio-colorpicker
|
||||
.block.gradio-colorpicker,
|
||||
div.gradio-group
|
||||
{
|
||||
border-width: 0 !important;
|
||||
box-shadow: none !important;
|
||||
@ -133,6 +135,11 @@ a{
|
||||
cursor: pointer;
|
||||
}
|
||||
|
||||
div.styler{
|
||||
border: none;
|
||||
background: var(--background-fill-primary);
|
||||
}
|
||||
|
||||
|
||||
/* general styled components */
|
||||
|
||||
@ -164,7 +171,7 @@ a{
|
||||
.checkboxes-row > div{
|
||||
flex: 0;
|
||||
white-space: nowrap;
|
||||
min-width: auto;
|
||||
min-width: auto !important;
|
||||
}
|
||||
|
||||
button.custom-button{
|
||||
@ -388,6 +395,7 @@ div#extras_scale_to_tab div.form{
|
||||
#quicksettings > div, #quicksettings > fieldset{
|
||||
max-width: 24em;
|
||||
min-width: 24em;
|
||||
width: 24em;
|
||||
padding: 0;
|
||||
border: none;
|
||||
box-shadow: none;
|
||||
@ -423,15 +431,16 @@ div#extras_scale_to_tab div.form{
|
||||
}
|
||||
|
||||
table.popup-table{
|
||||
background: white;
|
||||
background: var(--body-background-fill);
|
||||
color: var(--body-text-color);
|
||||
border-collapse: collapse;
|
||||
margin: 1em;
|
||||
border: 4px solid white;
|
||||
border: 4px solid var(--body-background-fill);
|
||||
}
|
||||
|
||||
table.popup-table td{
|
||||
padding: 0.4em;
|
||||
border: 1px solid #ccc;
|
||||
border: 1px solid rgba(128, 128, 128, 0.5);
|
||||
max-width: 36em;
|
||||
}
|
||||
|
||||
@ -841,7 +850,7 @@ footer {
|
||||
|
||||
.extra-network-cards .card .card-button {
|
||||
text-shadow: 2px 2px 3px black;
|
||||
padding: 0.25em;
|
||||
padding: 0.25em 0.1em;
|
||||
font-size: 200%;
|
||||
width: 1.5em;
|
||||
}
|
||||
@ -957,6 +966,10 @@ div.block.gradio-box.edit-user-metadata {
|
||||
text-align: left;
|
||||
}
|
||||
|
||||
.edit-user-metadata .file-metadata th, .edit-user-metadata .file-metadata td{
|
||||
padding: 0.3em 1em;
|
||||
}
|
||||
|
||||
.edit-user-metadata .wrap.translucent{
|
||||
background: var(--body-background-fill);
|
||||
}
|
||||
@ -967,3 +980,16 @@ div.block.gradio-box.edit-user-metadata {
|
||||
.edit-user-metadata-buttons{
|
||||
margin-top: 1.5em;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
div.block.gradio-box.popup-dialog, .popup-dialog {
|
||||
width: 56em;
|
||||
background: var(--body-background-fill);
|
||||
padding: 2em !important;
|
||||
}
|
||||
|
||||
div.block.gradio-box.popup-dialog > div:last-child, .popup-dialog > div:last-child{
|
||||
margin-top: 1em;
|
||||
}
|
||||
|
58
webui.py
58
webui.py
@ -14,7 +14,6 @@ from typing import Iterable
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.cors import CORSMiddleware
|
||||
from fastapi.middleware.gzip import GZipMiddleware
|
||||
from packaging import version
|
||||
|
||||
import logging
|
||||
|
||||
@ -31,24 +30,26 @@ if log_level:
|
||||
logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh...
|
||||
logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage())
|
||||
|
||||
from modules import paths, timer, import_hook, errors, devices # noqa: F401
|
||||
|
||||
from modules import timer
|
||||
startup_timer = timer.startup_timer
|
||||
startup_timer.record("launcher")
|
||||
|
||||
import torch
|
||||
import pytorch_lightning # noqa: F401 # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them
|
||||
warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning")
|
||||
warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision")
|
||||
|
||||
|
||||
startup_timer.record("import torch")
|
||||
|
||||
import gradio # noqa: F401
|
||||
startup_timer.record("import gradio")
|
||||
|
||||
from modules import paths, timer, import_hook, errors, devices # noqa: F401
|
||||
startup_timer.record("setup paths")
|
||||
|
||||
import ldm.modules.encoders.modules # noqa: F401
|
||||
startup_timer.record("import ldm")
|
||||
|
||||
|
||||
from modules import extra_networks
|
||||
from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, queue_lock # noqa: F401
|
||||
|
||||
@ -57,10 +58,15 @@ if ".dev" in torch.__version__ or "+git" in torch.__version__:
|
||||
torch.__long_version__ = torch.__version__
|
||||
torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0)
|
||||
|
||||
from modules import shared, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
|
||||
from modules import shared
|
||||
|
||||
if not shared.cmd_opts.skip_version_check:
|
||||
errors.check_versions()
|
||||
|
||||
import modules.codeformer_model as codeformer
|
||||
import modules.face_restoration
|
||||
import modules.gfpgan_model as gfpgan
|
||||
from modules import sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states
|
||||
import modules.face_restoration
|
||||
import modules.img2img
|
||||
|
||||
import modules.lowvram
|
||||
@ -129,37 +135,6 @@ def fix_asyncio_event_loop_policy():
|
||||
asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy())
|
||||
|
||||
|
||||
def check_versions():
|
||||
if shared.cmd_opts.skip_version_check:
|
||||
return
|
||||
|
||||
expected_torch_version = "2.0.0"
|
||||
|
||||
if version.parse(torch.__version__) < version.parse(expected_torch_version):
|
||||
errors.print_error_explanation(f"""
|
||||
You are running torch {torch.__version__}.
|
||||
The program is tested to work with torch {expected_torch_version}.
|
||||
To reinstall the desired version, run with commandline flag --reinstall-torch.
|
||||
Beware that this will cause a lot of large files to be downloaded, as well as
|
||||
there are reports of issues with training tab on the latest version.
|
||||
|
||||
Use --skip-version-check commandline argument to disable this check.
|
||||
""".strip())
|
||||
|
||||
expected_xformers_version = "0.0.20"
|
||||
if shared.xformers_available:
|
||||
import xformers
|
||||
|
||||
if version.parse(xformers.__version__) < version.parse(expected_xformers_version):
|
||||
errors.print_error_explanation(f"""
|
||||
You are running xformers {xformers.__version__}.
|
||||
The program is tested to work with xformers {expected_xformers_version}.
|
||||
To reinstall the desired version, run with commandline flag --reinstall-xformers.
|
||||
|
||||
Use --skip-version-check commandline argument to disable this check.
|
||||
""".strip())
|
||||
|
||||
|
||||
def restore_config_state_file():
|
||||
config_state_file = shared.opts.restore_config_state_file
|
||||
if config_state_file == "":
|
||||
@ -247,7 +222,6 @@ def initialize():
|
||||
fix_asyncio_event_loop_policy()
|
||||
validate_tls_options()
|
||||
configure_sigint_handler()
|
||||
check_versions()
|
||||
modelloader.cleanup_models()
|
||||
configure_opts_onchange()
|
||||
|
||||
@ -319,9 +293,9 @@ def initialize_rest(*, reload_script_modules=False):
|
||||
if modules.sd_hijack.current_optimizer is None:
|
||||
modules.sd_hijack.apply_optimizations()
|
||||
|
||||
Thread(target=load_model).start()
|
||||
devices.first_time_calculation()
|
||||
|
||||
Thread(target=devices.first_time_calculation).start()
|
||||
Thread(target=load_model).start()
|
||||
|
||||
shared.reload_hypernetworks()
|
||||
startup_timer.record("reload hypernetworks")
|
||||
@ -373,7 +347,7 @@ def api_only():
|
||||
api.launch(
|
||||
server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1",
|
||||
port=cmd_opts.port if cmd_opts.port else 7861,
|
||||
root_path = f"/{cmd_opts.subpath}"
|
||||
root_path=f"/{cmd_opts.subpath}" if cmd_opts.subpath else ""
|
||||
)
|
||||
|
||||
|
||||
|
15
webui.sh
15
webui.sh
@ -4,8 +4,15 @@
|
||||
# change the variables in webui-user.sh instead #
|
||||
#################################################
|
||||
|
||||
|
||||
use_venv=1
|
||||
if [[ $venv_dir == "-" ]]; then
|
||||
use_venv=0
|
||||
fi
|
||||
|
||||
SCRIPT_DIR=$( cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd )
|
||||
|
||||
|
||||
# If run from macOS, load defaults from webui-macos-env.sh
|
||||
if [[ "$OSTYPE" == "darwin"* ]]; then
|
||||
if [[ -f "$SCRIPT_DIR"/webui-macos-env.sh ]]
|
||||
@ -47,7 +54,7 @@ then
|
||||
fi
|
||||
|
||||
# python3 venv without trailing slash (defaults to ${install_dir}/${clone_dir}/venv)
|
||||
if [[ -z "${venv_dir}" ]]
|
||||
if [[ -z "${venv_dir}" ]] && [[ $use_venv -eq 1 ]]
|
||||
then
|
||||
venv_dir="venv"
|
||||
fi
|
||||
@ -164,7 +171,7 @@ do
|
||||
fi
|
||||
done
|
||||
|
||||
if ! "${python_cmd}" -c "import venv" &>/dev/null
|
||||
if [[ $use_venv -eq 1 ]] && ! "${python_cmd}" -c "import venv" &>/dev/null
|
||||
then
|
||||
printf "\n%s\n" "${delimiter}"
|
||||
printf "\e[1m\e[31mERROR: python3-venv is not installed, aborting...\e[0m"
|
||||
@ -184,7 +191,7 @@ else
|
||||
cd "${clone_dir}"/ || { printf "\e[1m\e[31mERROR: Can't cd to %s/%s/, aborting...\e[0m" "${install_dir}" "${clone_dir}"; exit 1; }
|
||||
fi
|
||||
|
||||
if [[ -z "${VIRTUAL_ENV}" ]];
|
||||
if [[ $use_venv -eq 1 ]] && [[ -z "${VIRTUAL_ENV}" ]];
|
||||
then
|
||||
printf "\n%s\n" "${delimiter}"
|
||||
printf "Create and activate python venv"
|
||||
@ -207,7 +214,7 @@ then
|
||||
fi
|
||||
else
|
||||
printf "\n%s\n" "${delimiter}"
|
||||
printf "python venv already activate: ${VIRTUAL_ENV}"
|
||||
printf "python venv already activate or run without venv: ${VIRTUAL_ENV}"
|
||||
printf "\n%s\n" "${delimiter}"
|
||||
fi
|
||||
|
||||
|
Loading…
Reference in New Issue
Block a user