From 598f7fcd84f655dd204ad5e258dc1c41cc806cde Mon Sep 17 00:00:00 2001 From: aria1th <35677394+aria1th@users.noreply.github.com> Date: Mon, 16 Jan 2023 02:46:21 +0900 Subject: [PATCH] Fix loss_dict problem --- modules/hypernetworks/hypernetwork.py | 4 +++- 1 file changed, 3 insertions(+), 1 deletion(-) diff --git a/modules/hypernetworks/hypernetwork.py b/modules/hypernetworks/hypernetwork.py index bbd1f673c..438e3e9f5 100644 --- a/modules/hypernetworks/hypernetwork.py +++ b/modules/hypernetworks/hypernetwork.py @@ -561,6 +561,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi _loss_step = 0 #internal # size = len(ds.indexes) # loss_dict = defaultdict(lambda : deque(maxlen = 1024)) + loss_logging = [] # losses = torch.zeros((size,)) # previous_mean_losses = [0] # previous_mean_loss = 0 @@ -601,6 +602,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi else: c = stack_conds(batch.cond).to(devices.device, non_blocking=pin_memory) loss = shared.sd_model(x, c)[0] / gradient_step + loss_logging.append(loss.item()) del x del c @@ -644,7 +646,7 @@ def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradi if shared.opts.training_enable_tensorboard: epoch_num = hypernetwork.step // len(ds) epoch_step = hypernetwork.step - (epoch_num * len(ds)) + 1 - mean_loss = sum(sum(x) for x in loss_dict.values()) / sum(len(x) for x in loss_dict.values()) + mean_loss = sum(loss_logging) / len(loss_logging) textual_inversion.tensorboard_add(tensorboard_writer, loss=mean_loss, global_step=hypernetwork.step, step=epoch_step, learn_rate=scheduler.learn_rate, epoch_num=epoch_num) textual_inversion.write_loss(log_directory, "hypernetwork_loss.csv", hypernetwork.step, steps_per_epoch, {