diff --git a/modules/processing.py b/modules/processing.py index b47ddaa8d..007a4e05a 100755 --- a/modules/processing.py +++ b/modules/processing.py @@ -1,9 +1,11 @@ +from __future__ import annotations import json import logging import math import os import sys import hashlib +from dataclasses import dataclass, field import torch import numpy as np @@ -11,7 +13,7 @@ from PIL import Image, ImageOps import random import cv2 from skimage import exposure -from typing import Any, Dict, List +from typing import Any import modules.sd_hijack from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng @@ -104,106 +106,126 @@ def txt2img_image_conditioning(sd_model, x, width, height): return x.new_zeros(x.shape[0], 5, 1, 1, dtype=x.dtype, device=x.device) +@dataclass(repr=False) class StableDiffusionProcessing: - """ - The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing - """ + sd_model: object = None + outpath_samples: str = None + outpath_grids: str = None + prompt: str = "" + prompt_for_display: str = None + negative_prompt: str = "" + styles: list[str] = field(default_factory=list) + seed: int = -1 + subseed: int = -1 + subseed_strength: float = 0 + seed_resize_from_h: int = -1 + seed_resize_from_w: int = -1 + seed_enable_extras: bool = True + sampler_name: str = None + batch_size: int = 1 + n_iter: int = 1 + steps: int = 50 + cfg_scale: float = 7.0 + width: int = 512 + height: int = 512 + restore_faces: bool = None + tiling: bool = None + do_not_save_samples: bool = False + do_not_save_grid: bool = False + extra_generation_params: dict[str, Any] = None + overlay_images: list = None + eta: float = None + do_not_reload_embeddings: bool = False + denoising_strength: float = 0 + ddim_discretize: str = None + s_min_uncond: float = None + s_churn: float = None + s_tmax: float = None + s_tmin: float = None + s_noise: float = None + override_settings: dict[str, Any] = None + override_settings_restore_afterwards: bool = True + sampler_index: int = None + refiner_checkpoint: str = None + refiner_switch_at: float = None + token_merging_ratio = 0 + token_merging_ratio_hr = 0 + disable_extra_networks: bool = False + + script_args: list = None + cached_uc = [None, None] cached_c = [None, None] - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = None, tiling: bool = None, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, refiner_checkpoint: str = None, refiner_switch_at: float = None, script_args: list = None): - if sampler_index is not None: + sampler: sd_samplers_common.Sampler | None = field(default=None, init=False) + is_using_inpainting_conditioning: bool = field(default=False, init=False) + paste_to: tuple | None = field(default=None, init=False) + + is_hr_pass: bool = field(default=False, init=False) + + c: tuple = field(default=None, init=False) + uc: tuple = field(default=None, init=False) + + rng: rng.ImageRNG | None = field(default=None, init=False) + step_multiplier: int = field(default=1, init=False) + color_corrections: list = field(default=None, init=False) + + scripts: list = field(default=None, init=False) + all_prompts: list = field(default=None, init=False) + all_negative_prompts: list = field(default=None, init=False) + all_seeds: list = field(default=None, init=False) + all_subseeds: list = field(default=None, init=False) + iteration: int = field(default=0, init=False) + main_prompt: str = field(default=None, init=False) + main_negative_prompt: str = field(default=None, init=False) + + prompts: list = field(default=None, init=False) + negative_prompts: list = field(default=None, init=False) + seeds: list = field(default=None, init=False) + subseeds: list = field(default=None, init=False) + extra_network_data: dict = field(default=None, init=False) + + user: str = field(default=None, init=False) + + sd_model_name: str = field(default=None, init=False) + sd_model_hash: str = field(default=None, init=False) + sd_vae_name: str = field(default=None, init=False) + sd_vae_hash: str = field(default=None, init=False) + + def __post_init__(self): + if self.sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) - self.outpath_samples: str = outpath_samples - self.outpath_grids: str = outpath_grids - self.prompt: str = prompt - self.prompt_for_display: str = None - self.negative_prompt: str = (negative_prompt or "") - self.styles: list = styles or [] - self.seed: int = seed - self.subseed: int = subseed - self.subseed_strength: float = subseed_strength - self.seed_resize_from_h: int = seed_resize_from_h - self.seed_resize_from_w: int = seed_resize_from_w - self.sampler_name: str = sampler_name - self.batch_size: int = batch_size - self.n_iter: int = n_iter - self.steps: int = steps - self.cfg_scale: float = cfg_scale - self.width: int = width - self.height: int = height - self.restore_faces: bool = restore_faces - self.tiling: bool = tiling - self.do_not_save_samples: bool = do_not_save_samples - self.do_not_save_grid: bool = do_not_save_grid - self.extra_generation_params: dict = extra_generation_params or {} - self.overlay_images = overlay_images - self.eta = eta - self.do_not_reload_embeddings = do_not_reload_embeddings - self.paste_to = None - self.color_corrections = None - self.denoising_strength: float = denoising_strength self.sampler_noise_scheduler_override = None - self.ddim_discretize = ddim_discretize or opts.ddim_discretize - self.s_min_uncond = s_min_uncond or opts.s_min_uncond - self.s_churn = s_churn or opts.s_churn - self.s_tmin = s_tmin or opts.s_tmin - self.s_tmax = (s_tmax if s_tmax is not None else opts.s_tmax) or float('inf') - self.s_noise = s_noise if s_noise is not None else opts.s_noise - self.override_settings = {k: v for k, v in (override_settings or {}).items() if k not in shared.restricted_opts} - self.override_settings_restore_afterwards = override_settings_restore_afterwards - self.refiner_checkpoint = refiner_checkpoint - self.refiner_switch_at = refiner_switch_at + self.s_min_uncond = self.s_min_uncond if self.s_min_uncond is not None else opts.s_min_uncond + self.s_churn = self.s_churn if self.s_churn is not None else opts.s_churn + self.s_tmin = self.s_tmin if self.s_tmin is not None else opts.s_tmin + self.s_tmax = (self.s_tmax if self.s_tmax is not None else opts.s_tmax) or float('inf') + self.s_noise = self.s_noise if self.s_noise is not None else opts.s_noise + + self.extra_generation_params = self.extra_generation_params or {} + self.override_settings = self.override_settings or {} + self.script_args = self.script_args or {} - self.is_using_inpainting_conditioning = False - self.disable_extra_networks = False - self.token_merging_ratio = 0 - self.token_merging_ratio_hr = 0 self.refiner_checkpoint_info = None - if not seed_enable_extras: + if not self.seed_enable_extras: self.subseed = -1 self.subseed_strength = 0 self.seed_resize_from_h = 0 self.seed_resize_from_w = 0 - self.scripts = None - self.script_args = script_args - self.all_prompts = None - self.all_negative_prompts = None - self.all_seeds = None - self.all_subseeds = None - self.iteration = 0 - self.is_hr_pass = False - self.sampler = None - self.main_prompt = None - self.main_negative_prompt = None - - self.prompts = None - self.negative_prompts = None - self.extra_network_data = None - self.seeds = None - self.subseeds = None - - self.step_multiplier = 1 self.cached_uc = StableDiffusionProcessing.cached_uc self.cached_c = StableDiffusionProcessing.cached_c - self.uc = None - self.c = None - self.rng: rng.ImageRNG = None - - self.user = None - - self.sd_model_name = None - self.sd_model_hash = None - self.sd_vae_name = None - self.sd_vae_hash = None @property def sd_model(self): return shared.sd_model + @sd_model.setter + def sd_model(self, value): + pass + def txt2img_image_conditioning(self, x, width=None, height=None): self.is_using_inpainting_conditioning = self.sd_model.model.conditioning_key in {'hybrid', 'concat'} @@ -932,49 +954,51 @@ def old_hires_fix_first_pass_dimensions(width, height): return width, height +@dataclass(repr=False) class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): - sampler = None + enable_hr: bool = False + denoising_strength: float = 0.75 + firstphase_width: int = 0 + firstphase_height: int = 0 + hr_scale: float = 2.0 + hr_upscaler: str = None + hr_second_pass_steps: int = 0 + hr_resize_x: int = 0 + hr_resize_y: int = 0 + hr_checkpoint_name: str = None + hr_sampler_name: str = None + hr_prompt: str = '' + hr_negative_prompt: str = '' + cached_hr_uc = [None, None] cached_hr_c = [None, None] - def __init__(self, enable_hr: bool = False, denoising_strength: float = 0.75, firstphase_width: int = 0, firstphase_height: int = 0, hr_scale: float = 2.0, hr_upscaler: str = None, hr_second_pass_steps: int = 0, hr_resize_x: int = 0, hr_resize_y: int = 0, hr_checkpoint_name: str = None, hr_sampler_name: str = None, hr_prompt: str = '', hr_negative_prompt: str = '', **kwargs): - super().__init__(**kwargs) - self.enable_hr = enable_hr - self.denoising_strength = denoising_strength - self.hr_scale = hr_scale - self.hr_upscaler = hr_upscaler - self.hr_second_pass_steps = hr_second_pass_steps - self.hr_resize_x = hr_resize_x - self.hr_resize_y = hr_resize_y - self.hr_upscale_to_x = hr_resize_x - self.hr_upscale_to_y = hr_resize_y - self.hr_checkpoint_name = hr_checkpoint_name - self.hr_checkpoint_info = None - self.hr_sampler_name = hr_sampler_name - self.hr_prompt = hr_prompt - self.hr_negative_prompt = hr_negative_prompt - self.all_hr_prompts = None - self.all_hr_negative_prompts = None - self.latent_scale_mode = None + hr_checkpoint_info: dict = field(default=None, init=False) + hr_upscale_to_x: int = field(default=0, init=False) + hr_upscale_to_y: int = field(default=0, init=False) + truncate_x: int = field(default=0, init=False) + truncate_y: int = field(default=0, init=False) + applied_old_hires_behavior_to: tuple = field(default=None, init=False) + latent_scale_mode: dict = field(default=None, init=False) + hr_c: tuple | None = field(default=None, init=False) + hr_uc: tuple | None = field(default=None, init=False) + all_hr_prompts: list = field(default=None, init=False) + all_hr_negative_prompts: list = field(default=None, init=False) + hr_prompts: list = field(default=None, init=False) + hr_negative_prompts: list = field(default=None, init=False) + hr_extra_network_data: list = field(default=None, init=False) - if firstphase_width != 0 or firstphase_height != 0: + def __post_init__(self): + super().__post_init__() + + if self.firstphase_width != 0 or self.firstphase_height != 0: self.hr_upscale_to_x = self.width self.hr_upscale_to_y = self.height - self.width = firstphase_width - self.height = firstphase_height - - self.truncate_x = 0 - self.truncate_y = 0 - self.applied_old_hires_behavior_to = None - - self.hr_prompts = None - self.hr_negative_prompts = None - self.hr_extra_network_data = None + self.width = self.firstphase_width + self.height = self.firstphase_height self.cached_hr_uc = StableDiffusionProcessingTxt2Img.cached_hr_uc self.cached_hr_c = StableDiffusionProcessingTxt2Img.cached_hr_c - self.hr_c = None - self.hr_uc = None def calculate_target_resolution(self): if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height): @@ -1252,7 +1276,6 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return super().get_conds() - def parse_extra_network_prompts(self): res = super().parse_extra_network_prompts() @@ -1265,32 +1288,37 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): return res +@dataclass(repr=False) class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): - sampler = None + init_images: list = None + resize_mode: int = 0 + denoising_strength: float = 0.75 + image_cfg_scale: float = None + mask: Any = None + mask_blur_x: int = 4 + mask_blur_y: int = 4 + mask_blur: int = None + inpainting_fill: int = 0 + inpaint_full_res: bool = True + inpaint_full_res_padding: int = 0 + inpainting_mask_invert: int = 0 + initial_noise_multiplier: float = None + latent_mask: Image = None - def __init__(self, init_images: list = None, resize_mode: int = 0, denoising_strength: float = 0.75, image_cfg_scale: float = None, mask: Any = None, mask_blur: int = None, mask_blur_x: int = 4, mask_blur_y: int = 4, inpainting_fill: int = 0, inpaint_full_res: bool = True, inpaint_full_res_padding: int = 0, inpainting_mask_invert: int = 0, initial_noise_multiplier: float = None, **kwargs): - super().__init__(**kwargs) + image_mask: Any = field(default=None, init=False) - self.init_images = init_images - self.resize_mode: int = resize_mode - self.denoising_strength: float = denoising_strength - self.image_cfg_scale: float = image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None - self.init_latent = None - self.image_mask = mask - self.latent_mask = None - self.mask_for_overlay = None - self.mask_blur_x = mask_blur_x - self.mask_blur_y = mask_blur_y - if mask_blur is not None: - self.mask_blur = mask_blur - self.inpainting_fill = inpainting_fill - self.inpaint_full_res = inpaint_full_res - self.inpaint_full_res_padding = inpaint_full_res_padding - self.inpainting_mask_invert = inpainting_mask_invert - self.initial_noise_multiplier = opts.initial_noise_multiplier if initial_noise_multiplier is None else initial_noise_multiplier + nmask: torch.Tensor = field(default=None, init=False) + image_conditioning: torch.Tensor = field(default=None, init=False) + init_img_hash: str = field(default=None, init=False) + mask_for_overlay: Image = field(default=None, init=False) + init_latent: torch.Tensor = field(default=None, init=False) + + def __post_init__(self): + super().__post_init__() + + self.image_mask = self.mask self.mask = None - self.nmask = None - self.image_conditioning = None + self.initial_noise_multiplier = opts.initial_noise_multiplier if self.initial_noise_multiplier is None else self.initial_noise_multiplier @property def mask_blur(self): @@ -1300,15 +1328,13 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): @mask_blur.setter def mask_blur(self, value): - self.mask_blur_x = value - self.mask_blur_y = value - - @mask_blur.deleter - def mask_blur(self): - del self.mask_blur_x - del self.mask_blur_y + if isinstance(value, int): + self.mask_blur_x = value + self.mask_blur_y = value def init(self, all_prompts, all_seeds, all_subseeds): + self.image_cfg_scale: float = self.image_cfg_scale if shared.sd_model.cond_stage_key == "edit" else None + self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) crop_region = None diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index 380cdd5f7..09d1e11e3 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -305,5 +305,8 @@ class Sampler: current_iter_seeds = p.all_seeds[p.iteration * p.batch_size:(p.iteration + 1) * p.batch_size] return BrownianTreeNoiseSampler(x, sigma_min, sigma_max, seed=current_iter_seeds) + def sample(self, p, x, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + raise NotImplementedError() - + def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None, image_conditioning=None): + raise NotImplementedError()