mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-21 13:50:12 +08:00
Merge pull request #14314 from gayshub/master
Add allow specify the task id and get the location of task in the queue of pending task
This commit is contained in:
commit
5b7d86d42b
@ -31,7 +31,7 @@ from typing import Any
|
|||||||
import piexif
|
import piexif
|
||||||
import piexif.helper
|
import piexif.helper
|
||||||
from contextlib import closing
|
from contextlib import closing
|
||||||
|
from modules.progress import create_task_id, add_task_to_queue, start_task, finish_task, current_task
|
||||||
|
|
||||||
def script_name_to_index(name, scripts):
|
def script_name_to_index(name, scripts):
|
||||||
try:
|
try:
|
||||||
@ -336,6 +336,9 @@ class Api:
|
|||||||
return script_args
|
return script_args
|
||||||
|
|
||||||
def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI):
|
def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI):
|
||||||
|
task_id = create_task_id("text2img")
|
||||||
|
if txt2imgreq.force_task_id is None:
|
||||||
|
task_id = txt2imgreq.force_task_id
|
||||||
script_runner = scripts.scripts_txt2img
|
script_runner = scripts.scripts_txt2img
|
||||||
if not script_runner.scripts:
|
if not script_runner.scripts:
|
||||||
script_runner.initialize_scripts(False)
|
script_runner.initialize_scripts(False)
|
||||||
@ -362,6 +365,8 @@ class Api:
|
|||||||
send_images = args.pop('send_images', True)
|
send_images = args.pop('send_images', True)
|
||||||
args.pop('save_images', None)
|
args.pop('save_images', None)
|
||||||
|
|
||||||
|
add_task_to_queue(task_id)
|
||||||
|
|
||||||
with self.queue_lock:
|
with self.queue_lock:
|
||||||
with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p:
|
with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p:
|
||||||
p.is_api = True
|
p.is_api = True
|
||||||
@ -371,12 +376,14 @@ class Api:
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
shared.state.begin(job="scripts_txt2img")
|
shared.state.begin(job="scripts_txt2img")
|
||||||
|
start_task(task_id)
|
||||||
if selectable_scripts is not None:
|
if selectable_scripts is not None:
|
||||||
p.script_args = script_args
|
p.script_args = script_args
|
||||||
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
|
processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
|
||||||
else:
|
else:
|
||||||
p.script_args = tuple(script_args) # Need to pass args as tuple here
|
p.script_args = tuple(script_args) # Need to pass args as tuple here
|
||||||
processed = process_images(p)
|
processed = process_images(p)
|
||||||
|
finish_task(task_id)
|
||||||
finally:
|
finally:
|
||||||
shared.state.end()
|
shared.state.end()
|
||||||
shared.total_tqdm.clear()
|
shared.total_tqdm.clear()
|
||||||
@ -386,6 +393,10 @@ class Api:
|
|||||||
return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())
|
||||||
|
|
||||||
def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI):
|
def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI):
|
||||||
|
task_id = create_task_id("img2img")
|
||||||
|
if img2imgreq.force_task_id is None:
|
||||||
|
task_id = img2imgreq.force_task_id
|
||||||
|
|
||||||
init_images = img2imgreq.init_images
|
init_images = img2imgreq.init_images
|
||||||
if init_images is None:
|
if init_images is None:
|
||||||
raise HTTPException(status_code=404, detail="Init image not found")
|
raise HTTPException(status_code=404, detail="Init image not found")
|
||||||
@ -422,6 +433,8 @@ class Api:
|
|||||||
send_images = args.pop('send_images', True)
|
send_images = args.pop('send_images', True)
|
||||||
args.pop('save_images', None)
|
args.pop('save_images', None)
|
||||||
|
|
||||||
|
add_task_to_queue(task_id)
|
||||||
|
|
||||||
with self.queue_lock:
|
with self.queue_lock:
|
||||||
with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p:
|
with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p:
|
||||||
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
p.init_images = [decode_base64_to_image(x) for x in init_images]
|
||||||
@ -432,12 +445,14 @@ class Api:
|
|||||||
|
|
||||||
try:
|
try:
|
||||||
shared.state.begin(job="scripts_img2img")
|
shared.state.begin(job="scripts_img2img")
|
||||||
|
start_task(task_id)
|
||||||
if selectable_scripts is not None:
|
if selectable_scripts is not None:
|
||||||
p.script_args = script_args
|
p.script_args = script_args
|
||||||
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
|
processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
|
||||||
else:
|
else:
|
||||||
p.script_args = tuple(script_args) # Need to pass args as tuple here
|
p.script_args = tuple(script_args) # Need to pass args as tuple here
|
||||||
processed = process_images(p)
|
processed = process_images(p)
|
||||||
|
finish_task(task_id)
|
||||||
finally:
|
finally:
|
||||||
shared.state.end()
|
shared.state.end()
|
||||||
shared.total_tqdm.clear()
|
shared.total_tqdm.clear()
|
||||||
@ -511,7 +526,7 @@ class Api:
|
|||||||
if shared.state.current_image and not req.skip_current_image:
|
if shared.state.current_image and not req.skip_current_image:
|
||||||
current_image = encode_pil_to_base64(shared.state.current_image)
|
current_image = encode_pil_to_base64(shared.state.current_image)
|
||||||
|
|
||||||
return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)
|
return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo, current_task=current_task)
|
||||||
|
|
||||||
def interrogateapi(self, interrogatereq: models.InterrogateRequest):
|
def interrogateapi(self, interrogatereq: models.InterrogateRequest):
|
||||||
image_b64 = interrogatereq.image
|
image_b64 = interrogatereq.image
|
||||||
|
@ -107,6 +107,7 @@ StableDiffusionTxt2ImgProcessingAPI = PydanticModelGenerator(
|
|||||||
{"key": "send_images", "type": bool, "default": True},
|
{"key": "send_images", "type": bool, "default": True},
|
||||||
{"key": "save_images", "type": bool, "default": False},
|
{"key": "save_images", "type": bool, "default": False},
|
||||||
{"key": "alwayson_scripts", "type": dict, "default": {}},
|
{"key": "alwayson_scripts", "type": dict, "default": {}},
|
||||||
|
{"key": "force_task_id", "type": str, "default": None},
|
||||||
]
|
]
|
||||||
).generate_model()
|
).generate_model()
|
||||||
|
|
||||||
@ -124,6 +125,7 @@ StableDiffusionImg2ImgProcessingAPI = PydanticModelGenerator(
|
|||||||
{"key": "send_images", "type": bool, "default": True},
|
{"key": "send_images", "type": bool, "default": True},
|
||||||
{"key": "save_images", "type": bool, "default": False},
|
{"key": "save_images", "type": bool, "default": False},
|
||||||
{"key": "alwayson_scripts", "type": dict, "default": {}},
|
{"key": "alwayson_scripts", "type": dict, "default": {}},
|
||||||
|
{"key": "force_task_id", "type": str, "default": None},
|
||||||
]
|
]
|
||||||
).generate_model()
|
).generate_model()
|
||||||
|
|
||||||
|
@ -1060,6 +1060,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
|||||||
hr_sampler_name: str = None
|
hr_sampler_name: str = None
|
||||||
hr_prompt: str = ''
|
hr_prompt: str = ''
|
||||||
hr_negative_prompt: str = ''
|
hr_negative_prompt: str = ''
|
||||||
|
force_task_id: str = None
|
||||||
|
|
||||||
cached_hr_uc = [None, None]
|
cached_hr_uc = [None, None]
|
||||||
cached_hr_c = [None, None]
|
cached_hr_c = [None, None]
|
||||||
@ -1393,6 +1394,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
|||||||
inpainting_mask_invert: int = 0
|
inpainting_mask_invert: int = 0
|
||||||
initial_noise_multiplier: float = None
|
initial_noise_multiplier: float = None
|
||||||
latent_mask: Image = None
|
latent_mask: Image = None
|
||||||
|
force_task_id: str = None
|
||||||
|
|
||||||
image_mask: Any = field(default=None, init=False)
|
image_mask: Any = field(default=None, init=False)
|
||||||
|
|
||||||
|
@ -8,10 +8,13 @@ from pydantic import BaseModel, Field
|
|||||||
from modules.shared import opts
|
from modules.shared import opts
|
||||||
|
|
||||||
import modules.shared as shared
|
import modules.shared as shared
|
||||||
|
from collections import OrderedDict
|
||||||
|
import string
|
||||||
|
import random
|
||||||
|
from typing import List
|
||||||
|
|
||||||
current_task = None
|
current_task = None
|
||||||
pending_tasks = {}
|
pending_tasks = OrderedDict()
|
||||||
finished_tasks = []
|
finished_tasks = []
|
||||||
recorded_results = []
|
recorded_results = []
|
||||||
recorded_results_limit = 2
|
recorded_results_limit = 2
|
||||||
@ -34,6 +37,11 @@ def finish_task(id_task):
|
|||||||
if len(finished_tasks) > 16:
|
if len(finished_tasks) > 16:
|
||||||
finished_tasks.pop(0)
|
finished_tasks.pop(0)
|
||||||
|
|
||||||
|
def create_task_id(task_type):
|
||||||
|
N = 7
|
||||||
|
res = ''.join(random.choices(string.ascii_uppercase +
|
||||||
|
string.digits, k=N))
|
||||||
|
return f"task({task_type}-{res})"
|
||||||
|
|
||||||
def record_results(id_task, res):
|
def record_results(id_task, res):
|
||||||
recorded_results.append((id_task, res))
|
recorded_results.append((id_task, res))
|
||||||
@ -44,6 +52,9 @@ def record_results(id_task, res):
|
|||||||
def add_task_to_queue(id_job):
|
def add_task_to_queue(id_job):
|
||||||
pending_tasks[id_job] = time.time()
|
pending_tasks[id_job] = time.time()
|
||||||
|
|
||||||
|
class PendingTasksResponse(BaseModel):
|
||||||
|
size: int = Field(title="Pending task size")
|
||||||
|
tasks: List[str] = Field(title="Pending task ids")
|
||||||
|
|
||||||
class ProgressRequest(BaseModel):
|
class ProgressRequest(BaseModel):
|
||||||
id_task: str = Field(default=None, title="Task ID", description="id of the task to get progress for")
|
id_task: str = Field(default=None, title="Task ID", description="id of the task to get progress for")
|
||||||
@ -63,8 +74,14 @@ class ProgressResponse(BaseModel):
|
|||||||
|
|
||||||
|
|
||||||
def setup_progress_api(app):
|
def setup_progress_api(app):
|
||||||
|
app.add_api_route("/internal/pendingTasks", get_pending_tasks, methods=["GET"])
|
||||||
return app.add_api_route("/internal/progress", progressapi, methods=["POST"], response_model=ProgressResponse)
|
return app.add_api_route("/internal/progress", progressapi, methods=["POST"], response_model=ProgressResponse)
|
||||||
|
|
||||||
|
def get_pending_tasks():
|
||||||
|
pending_tasks_ids = list(pending_tasks)
|
||||||
|
pending_len = len(pending_tasks_ids)
|
||||||
|
return PendingTasksResponse(size=pending_len, tasks=pending_tasks_ids)
|
||||||
|
|
||||||
|
|
||||||
def progressapi(req: ProgressRequest):
|
def progressapi(req: ProgressRequest):
|
||||||
active = req.id_task == current_task
|
active = req.id_task == current_task
|
||||||
|
Loading…
Reference in New Issue
Block a user