mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-19 21:00:14 +08:00
Merge remote-tracking branch 'origin/api'
This commit is contained in:
commit
5daf9cbb98
68
modules/api/api.py
Normal file
68
modules/api/api.py
Normal file
@ -0,0 +1,68 @@
|
||||
from modules.api.processing import StableDiffusionProcessingAPI
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img, process_images
|
||||
from modules.sd_samplers import all_samplers
|
||||
from modules.extras import run_pnginfo
|
||||
import modules.shared as shared
|
||||
import uvicorn
|
||||
from fastapi import Body, APIRouter, HTTPException
|
||||
from fastapi.responses import JSONResponse
|
||||
from pydantic import BaseModel, Field, Json
|
||||
import json
|
||||
import io
|
||||
import base64
|
||||
|
||||
sampler_to_index = lambda name: next(filter(lambda row: name.lower() == row[1].name.lower(), enumerate(all_samplers)), None)
|
||||
|
||||
class TextToImageResponse(BaseModel):
|
||||
images: list[str] = Field(default=None, title="Image", description="The generated image in base64 format.")
|
||||
parameters: Json
|
||||
info: Json
|
||||
|
||||
|
||||
class Api:
|
||||
def __init__(self, app, queue_lock):
|
||||
self.router = APIRouter()
|
||||
self.app = app
|
||||
self.queue_lock = queue_lock
|
||||
self.app.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"])
|
||||
|
||||
def text2imgapi(self, txt2imgreq: StableDiffusionProcessingAPI ):
|
||||
sampler_index = sampler_to_index(txt2imgreq.sampler_index)
|
||||
|
||||
if sampler_index is None:
|
||||
raise HTTPException(status_code=404, detail="Sampler not found")
|
||||
|
||||
populate = txt2imgreq.copy(update={ # Override __init__ params
|
||||
"sd_model": shared.sd_model,
|
||||
"sampler_index": sampler_index[0],
|
||||
"do_not_save_samples": True,
|
||||
"do_not_save_grid": True
|
||||
}
|
||||
)
|
||||
p = StableDiffusionProcessingTxt2Img(**vars(populate))
|
||||
# Override object param
|
||||
with self.queue_lock:
|
||||
processed = process_images(p)
|
||||
|
||||
b64images = []
|
||||
for i in processed.images:
|
||||
buffer = io.BytesIO()
|
||||
i.save(buffer, format="png")
|
||||
b64images.append(base64.b64encode(buffer.getvalue()))
|
||||
|
||||
return TextToImageResponse(images=b64images, parameters=json.dumps(vars(txt2imgreq)), info=json.dumps(processed.info))
|
||||
|
||||
|
||||
|
||||
def img2imgapi(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def extrasapi(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def pnginfoapi(self):
|
||||
raise NotImplementedError
|
||||
|
||||
def launch(self, server_name, port):
|
||||
self.app.include_router(self.router)
|
||||
uvicorn.run(self.app, host=server_name, port=port)
|
99
modules/api/processing.py
Normal file
99
modules/api/processing.py
Normal file
@ -0,0 +1,99 @@
|
||||
from inflection import underscore
|
||||
from typing import Any, Dict, Optional
|
||||
from pydantic import BaseModel, Field, create_model
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img
|
||||
import inspect
|
||||
|
||||
|
||||
API_NOT_ALLOWED = [
|
||||
"self",
|
||||
"kwargs",
|
||||
"sd_model",
|
||||
"outpath_samples",
|
||||
"outpath_grids",
|
||||
"sampler_index",
|
||||
"do_not_save_samples",
|
||||
"do_not_save_grid",
|
||||
"extra_generation_params",
|
||||
"overlay_images",
|
||||
"do_not_reload_embeddings",
|
||||
"seed_enable_extras",
|
||||
"prompt_for_display",
|
||||
"sampler_noise_scheduler_override",
|
||||
"ddim_discretize"
|
||||
]
|
||||
|
||||
class ModelDef(BaseModel):
|
||||
"""Assistance Class for Pydantic Dynamic Model Generation"""
|
||||
|
||||
field: str
|
||||
field_alias: str
|
||||
field_type: Any
|
||||
field_value: Any
|
||||
|
||||
|
||||
class PydanticModelGenerator:
|
||||
"""
|
||||
Takes in created classes and stubs them out in a way FastAPI/Pydantic is happy about:
|
||||
source_data is a snapshot of the default values produced by the class
|
||||
params are the names of the actual keys required by __init__
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
model_name: str = None,
|
||||
class_instance = None,
|
||||
additional_fields = None,
|
||||
):
|
||||
def field_type_generator(k, v):
|
||||
# field_type = str if not overrides.get(k) else overrides[k]["type"]
|
||||
# print(k, v.annotation, v.default)
|
||||
field_type = v.annotation
|
||||
|
||||
return Optional[field_type]
|
||||
|
||||
def merge_class_params(class_):
|
||||
all_classes = list(filter(lambda x: x is not object, inspect.getmro(class_)))
|
||||
parameters = {}
|
||||
for classes in all_classes:
|
||||
parameters = {**parameters, **inspect.signature(classes.__init__).parameters}
|
||||
return parameters
|
||||
|
||||
|
||||
self._model_name = model_name
|
||||
self._class_data = merge_class_params(class_instance)
|
||||
self._model_def = [
|
||||
ModelDef(
|
||||
field=underscore(k),
|
||||
field_alias=k,
|
||||
field_type=field_type_generator(k, v),
|
||||
field_value=v.default
|
||||
)
|
||||
for (k,v) in self._class_data.items() if k not in API_NOT_ALLOWED
|
||||
]
|
||||
|
||||
for fields in additional_fields:
|
||||
self._model_def.append(ModelDef(
|
||||
field=underscore(fields["key"]),
|
||||
field_alias=fields["key"],
|
||||
field_type=fields["type"],
|
||||
field_value=fields["default"]))
|
||||
|
||||
def generate_model(self):
|
||||
"""
|
||||
Creates a pydantic BaseModel
|
||||
from the json and overrides provided at initialization
|
||||
"""
|
||||
fields = {
|
||||
d.field: (d.field_type, Field(default=d.field_value, alias=d.field_alias)) for d in self._model_def
|
||||
}
|
||||
DynamicModel = create_model(self._model_name, **fields)
|
||||
DynamicModel.__config__.allow_population_by_field_name = True
|
||||
DynamicModel.__config__.allow_mutation = True
|
||||
return DynamicModel
|
||||
|
||||
StableDiffusionProcessingAPI = PydanticModelGenerator(
|
||||
"StableDiffusionProcessingTxt2Img",
|
||||
StableDiffusionProcessingTxt2Img,
|
||||
[{"key": "sampler_index", "type": str, "default": "Euler"}]
|
||||
).generate_model()
|
@ -9,6 +9,7 @@ from PIL import Image, ImageFilter, ImageOps
|
||||
import random
|
||||
import cv2
|
||||
from skimage import exposure
|
||||
from typing import Any, Dict, List, Optional
|
||||
|
||||
import modules.sd_hijack
|
||||
from modules import devices, prompt_parser, masking, sd_samplers, lowvram
|
||||
@ -51,9 +52,15 @@ def get_correct_sampler(p):
|
||||
return sd_samplers.samplers
|
||||
elif isinstance(p, modules.processing.StableDiffusionProcessingImg2Img):
|
||||
return sd_samplers.samplers_for_img2img
|
||||
elif isinstance(p, modules.api.processing.StableDiffusionProcessingAPI):
|
||||
return sd_samplers.samplers
|
||||
|
||||
class StableDiffusionProcessing:
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt="", styles=None, seed=-1, subseed=-1, subseed_strength=0, seed_resize_from_h=-1, seed_resize_from_w=-1, seed_enable_extras=True, sampler_index=0, batch_size=1, n_iter=1, steps=50, cfg_scale=7.0, width=512, height=512, restore_faces=False, tiling=False, do_not_save_samples=False, do_not_save_grid=False, extra_generation_params=None, overlay_images=None, negative_prompt=None, eta=None, do_not_reload_embeddings=False):
|
||||
class StableDiffusionProcessing():
|
||||
"""
|
||||
The first set of paramaters: sd_models -> do_not_reload_embeddings represent the minimum required to create a StableDiffusionProcessing
|
||||
|
||||
"""
|
||||
def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str="", styles: List[str]=None, seed: int=-1, subseed: int=-1, subseed_strength: float=0, seed_resize_from_h: int=-1, seed_resize_from_w: int=-1, seed_enable_extras: bool=True, sampler_index: int=0, batch_size: int=1, n_iter: int=1, steps:int =50, cfg_scale:float=7.0, width:int=512, height:int=512, restore_faces:bool=False, tiling:bool=False, do_not_save_samples:bool=False, do_not_save_grid:bool=False, extra_generation_params: Dict[Any,Any]=None, overlay_images: Any=None, negative_prompt: str=None, eta: float =None, do_not_reload_embeddings: bool=False, denoising_strength: float = 0, ddim_discretize: str = "uniform", s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = 1.0):
|
||||
self.sd_model = sd_model
|
||||
self.outpath_samples: str = outpath_samples
|
||||
self.outpath_grids: str = outpath_grids
|
||||
@ -86,10 +93,10 @@ class StableDiffusionProcessing:
|
||||
self.denoising_strength: float = 0
|
||||
self.sampler_noise_scheduler_override = None
|
||||
self.ddim_discretize = opts.ddim_discretize
|
||||
self.s_churn = opts.s_churn
|
||||
self.s_tmin = opts.s_tmin
|
||||
self.s_tmax = float('inf') # not representable as a standard ui option
|
||||
self.s_noise = opts.s_noise
|
||||
self.s_churn = s_churn or opts.s_churn
|
||||
self.s_tmin = s_tmin or opts.s_tmin
|
||||
self.s_tmax = s_tmax or float('inf') # not representable as a standard ui option
|
||||
self.s_noise = s_noise or opts.s_noise
|
||||
|
||||
if not seed_enable_extras:
|
||||
self.subseed = -1
|
||||
@ -97,6 +104,7 @@ class StableDiffusionProcessing:
|
||||
self.seed_resize_from_h = 0
|
||||
self.seed_resize_from_w = 0
|
||||
|
||||
|
||||
def init(self, all_prompts, all_seeds, all_subseeds):
|
||||
pass
|
||||
|
||||
@ -491,7 +499,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
|
||||
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
|
||||
sampler = None
|
||||
|
||||
def __init__(self, enable_hr=False, denoising_strength=0.75, firstphase_width=0, firstphase_height=0, **kwargs):
|
||||
def __init__(self, enable_hr: bool=False, denoising_strength: float=0.75, firstphase_width: int=0, firstphase_height: int=0, **kwargs):
|
||||
super().__init__(**kwargs)
|
||||
self.enable_hr = enable_hr
|
||||
self.denoising_strength = denoising_strength
|
||||
@ -717,4 +725,4 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
del x
|
||||
devices.torch_gc()
|
||||
|
||||
return samples
|
||||
return samples
|
@ -76,6 +76,8 @@ parser.add_argument("--disable-console-progressbars", action='store_true', help=
|
||||
parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False)
|
||||
parser.add_argument('--vae-path', type=str, help='Path to Variational Autoencoders model', default=None)
|
||||
parser.add_argument("--disable-safe-unpickle", action='store_true', help="disable checking pytorch models for malicious code", default=False)
|
||||
parser.add_argument("--api", action='store_true', help="use api=True to launch the api with the webui")
|
||||
parser.add_argument("--nowebui", action='store_true', help="use api=True to launch the api instead of the webui")
|
||||
|
||||
cmd_opts = parser.parse_args()
|
||||
restricted_opts = [
|
||||
|
@ -23,3 +23,4 @@ resize-right
|
||||
torchdiffeq
|
||||
kornia
|
||||
lark
|
||||
inflection
|
||||
|
@ -22,3 +22,4 @@ resize-right==0.0.2
|
||||
torchdiffeq==0.2.3
|
||||
kornia==0.6.7
|
||||
lark==1.1.2
|
||||
inflection==0.5.1
|
||||
|
58
webui.py
58
webui.py
@ -4,7 +4,7 @@ import time
|
||||
import importlib
|
||||
import signal
|
||||
import threading
|
||||
|
||||
from fastapi import FastAPI
|
||||
from fastapi.middleware.gzip import GZipMiddleware
|
||||
|
||||
from modules.paths import script_path
|
||||
@ -31,7 +31,6 @@ from modules.paths import script_path
|
||||
from modules.shared import cmd_opts
|
||||
import modules.hypernetworks.hypernetwork
|
||||
|
||||
|
||||
queue_lock = threading.Lock()
|
||||
|
||||
|
||||
@ -87,10 +86,6 @@ def initialize():
|
||||
shared.opts.onchange("sd_hypernetwork", wrap_queued_call(lambda: modules.hypernetworks.hypernetwork.load_hypernetwork(shared.opts.sd_hypernetwork)))
|
||||
shared.opts.onchange("sd_hypernetwork_strength", modules.hypernetworks.hypernetwork.apply_strength)
|
||||
|
||||
|
||||
def webui():
|
||||
initialize()
|
||||
|
||||
# make the program just exit at ctrl+c without waiting for anything
|
||||
def sigint_handler(sig, frame):
|
||||
print(f'Interrupted with signal {sig} in {frame}')
|
||||
@ -98,10 +93,37 @@ def webui():
|
||||
|
||||
signal.signal(signal.SIGINT, sigint_handler)
|
||||
|
||||
while 1:
|
||||
|
||||
def create_api(app):
|
||||
from modules.api.api import Api
|
||||
api = Api(app, queue_lock)
|
||||
return api
|
||||
|
||||
def wait_on_server(demo=None):
|
||||
while 1:
|
||||
time.sleep(0.5)
|
||||
if demo and getattr(demo, 'do_restart', False):
|
||||
time.sleep(0.5)
|
||||
demo.close()
|
||||
time.sleep(0.5)
|
||||
break
|
||||
|
||||
def api_only():
|
||||
initialize()
|
||||
|
||||
app = FastAPI()
|
||||
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
||||
api = create_api(app)
|
||||
|
||||
api.launch(server_name="0.0.0.0" if cmd_opts.listen else "127.0.0.1", port=cmd_opts.port if cmd_opts.port else 7861)
|
||||
|
||||
|
||||
def webui(launch_api=False):
|
||||
initialize()
|
||||
|
||||
while 1:
|
||||
demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call)
|
||||
|
||||
|
||||
app, local_url, share_url = demo.launch(
|
||||
share=cmd_opts.share,
|
||||
server_name="0.0.0.0" if cmd_opts.listen else None,
|
||||
@ -111,17 +133,14 @@ def webui():
|
||||
inbrowser=cmd_opts.autolaunch,
|
||||
prevent_thread_lock=True
|
||||
)
|
||||
|
||||
|
||||
app.add_middleware(GZipMiddleware, minimum_size=1000)
|
||||
|
||||
while 1:
|
||||
time.sleep(0.5)
|
||||
if getattr(demo, 'do_restart', False):
|
||||
time.sleep(0.5)
|
||||
demo.close()
|
||||
time.sleep(0.5)
|
||||
break
|
||||
if (launch_api):
|
||||
create_api(app)
|
||||
|
||||
wait_on_server(demo)
|
||||
|
||||
sd_samplers.set_samplers()
|
||||
|
||||
print('Reloading Custom Scripts')
|
||||
@ -133,5 +152,10 @@ def webui():
|
||||
print('Restarting Gradio')
|
||||
|
||||
|
||||
|
||||
task = []
|
||||
if __name__ == "__main__":
|
||||
webui()
|
||||
if cmd_opts.nowebui:
|
||||
api_only()
|
||||
else:
|
||||
webui(cmd_opts.api)
|
Loading…
Reference in New Issue
Block a user