diff --git a/javascript/generationParams.js b/javascript/generationParams.js new file mode 100644 index 000000000..95f050939 --- /dev/null +++ b/javascript/generationParams.js @@ -0,0 +1,33 @@ +// attaches listeners to the txt2img and img2img galleries to update displayed generation param text when the image changes + +let txt2img_gallery, img2img_gallery, modal = undefined; +onUiUpdate(function(){ + if (!txt2img_gallery) { + txt2img_gallery = attachGalleryListeners("txt2img") + } + if (!img2img_gallery) { + img2img_gallery = attachGalleryListeners("img2img") + } + if (!modal) { + modal = gradioApp().getElementById('lightboxModal') + modalObserver.observe(modal, { attributes : true, attributeFilter : ['style'] }); + } +}); + +let modalObserver = new MutationObserver(function(mutations) { + mutations.forEach(function(mutationRecord) { + let selectedTab = gradioApp().querySelector('#tabs div button.bg-white')?.innerText + if (mutationRecord.target.style.display === 'none' && selectedTab === 'txt2img' || selectedTab === 'img2img') + gradioApp().getElementById(selectedTab+"_generation_info_button").click() + }); +}); + +function attachGalleryListeners(tab_name) { + gallery = gradioApp().querySelector('#'+tab_name+'_gallery') + gallery?.addEventListener('click', () => gradioApp().getElementById(tab_name+"_generation_info_button").click()); + gallery?.addEventListener('keydown', (e) => { + if (e.keyCode == 37 || e.keyCode == 39) // left or right arrow + gradioApp().getElementById(tab_name+"_generation_info_button").click() + }); + return gallery; +} diff --git a/modules/api/api.py b/modules/api/api.py index 688469ad7..596a6616a 100644 --- a/modules/api/api.py +++ b/modules/api/api.py @@ -15,6 +15,9 @@ from modules.sd_models import checkpoints_list from modules.realesrgan_model import get_realesrgan_models from typing import List +if shared.cmd_opts.deepdanbooru: + from modules.deepbooru import get_deepbooru_tags + def upscaler_to_index(name: str): try: return [x.name.lower() for x in shared.sd_upscalers].index(name.lower()) @@ -220,11 +223,20 @@ class Api: if image_b64 is None: raise HTTPException(status_code=404, detail="Image not found") - img = self.__base64_to_image(image_b64) + img = decode_base64_to_image(image_b64) + img = img.convert('RGB') # Override object param with self.queue_lock: - processed = shared.interrogator.interrogate(img) + if interrogatereq.model == "clip": + processed = shared.interrogator.interrogate(img) + elif interrogatereq.model == "deepdanbooru": + if shared.cmd_opts.deepdanbooru: + processed = get_deepbooru_tags(img) + else: + raise HTTPException(status_code=404, detail="Model not found. Add --deepdanbooru when launching for using the model.") + else: + raise HTTPException(status_code=404, detail="Model not found") return InterrogateResponse(caption=processed) diff --git a/modules/api/models.py b/modules/api/models.py index 34dbfa163..f9cd929e6 100644 --- a/modules/api/models.py +++ b/modules/api/models.py @@ -170,6 +170,7 @@ class ProgressResponse(BaseModel): class InterrogateRequest(BaseModel): image: str = Field(default="", title="Image", description="Image to work on, must be a Base64 string containing the image's data.") + model: str = Field(default="clip", title="Model", description="The interrogate model used.") class InterrogateResponse(BaseModel): caption: str = Field(default=None, title="Caption", description="The generated caption for the image.") diff --git a/modules/ngrok.py b/modules/ngrok.py index 25c53af85..64c9a3c27 100644 --- a/modules/ngrok.py +++ b/modules/ngrok.py @@ -1,14 +1,23 @@ from pyngrok import ngrok, conf, exception - def connect(token, port, region): + account = None if token == None: token = 'None' + else: + if ':' in token: + # token = authtoken:username:password + account = token.split(':')[1] + ':' + token.split(':')[-1] + token = token.split(':')[0] + config = conf.PyngrokConfig( auth_token=token, region=region ) try: - public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url + if account == None: + public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True).public_url + else: + public_url = ngrok.connect(port, pyngrok_config=config, bind_tls=True, auth=account).public_url except exception.PyngrokNgrokError: print(f'Invalid ngrok authtoken, ngrok connection aborted.\n' f'Your token: {token}, get the right one on https://dashboard.ngrok.com/get-started/your-authtoken') diff --git a/modules/sd_models.py b/modules/sd_models.py index 34c57bfa7..80addf030 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -163,13 +163,21 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): checkpoint_file = checkpoint_info.filename sd_model_hash = checkpoint_info.hash - if shared.opts.sd_checkpoint_cache > 0 and hasattr(model, "sd_checkpoint_info"): + cache_enabled = shared.opts.sd_checkpoint_cache > 0 + + if cache_enabled: sd_vae.restore_base_vae(model) - checkpoints_loaded[model.sd_checkpoint_info] = model.state_dict().copy() vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file) - if checkpoint_info not in checkpoints_loaded: + if cache_enabled and checkpoint_info in checkpoints_loaded: + # use checkpoint cache + vae_name = sd_vae.get_filename(vae_file) if vae_file else None + vae_message = f" with {vae_name} VAE" if vae_name else "" + print(f"Loading weights [{sd_model_hash}]{vae_message} from cache") + model.load_state_dict(checkpoints_loaded[checkpoint_info]) + else: + # load from file print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}") pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location) @@ -180,6 +188,10 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): del pl_sd model.load_state_dict(sd, strict=False) del sd + + if cache_enabled: + # cache newly loaded model + checkpoints_loaded[checkpoint_info] = model.state_dict().copy() if shared.cmd_opts.opt_channelslast: model.to(memory_format=torch.channels_last) @@ -199,14 +211,9 @@ def load_model_weights(model, checkpoint_info, vae_file="auto"): model.first_stage_model.to(devices.dtype_vae) - else: - vae_name = sd_vae.get_filename(vae_file) if vae_file else None - vae_message = f" with {vae_name} VAE" if vae_name else "" - print(f"Loading weights [{sd_model_hash}]{vae_message} from cache") - model.load_state_dict(checkpoints_loaded[checkpoint_info]) - - if shared.opts.sd_checkpoint_cache > 0: - while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache: + # clean up cache if limit is reached + if cache_enabled: + while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache + 1: # we need to count the current model checkpoints_loaded.popitem(last=False) # LRU model.sd_model_hash = sd_model_hash diff --git a/modules/shared.py b/modules/shared.py index e8bacd3c9..caabf0785 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -319,6 +319,8 @@ options_templates.update(options_section(('system', "System"), { options_templates.update(options_section(('training', "Training"), { "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."), + "shuffle_tags": OptionInfo(False, "Shuffleing tags by ',' when create texts."), + "tag_drop_out": OptionInfo(0, "Dropout tags when create texts", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.1}), "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training can be resumed with HN itself and matching optim file."), "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index ad7265778..eb75c3769 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -98,7 +98,12 @@ class PersonalizedBase(Dataset): def create_text(self, filename_text): text = random.choice(self.lines) text = text.replace("[name]", self.placeholder_token) - text = text.replace("[filewords]", filename_text) + tags = filename_text.split(',') + if shared.opts.tag_drop_out != 0: + tags = [t for t in tags if random.random() > shared.opts.tag_drop_out] + if shared.opts.shuffle_tags: + random.shuffle(tags) + text = text.replace("[filewords]", ','.join(tags)) return text def __len__(self): diff --git a/modules/ui.py b/modules/ui.py index 7ea1177f6..5dce7f3bf 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -566,6 +566,19 @@ def apply_setting(key, value): return value +def update_generation_info(args): + generation_info, html_info, img_index = args + try: + generation_info = json.loads(generation_info) + if img_index < 0 or img_index >= len(generation_info["infotexts"]): + return html_info + return plaintext_to_html(generation_info["infotexts"][img_index]) + except Exception: + pass + # if the json parse or anything else fails, just return the old html_info + return html_info + + def create_refresh_button(refresh_component, refresh_method, refreshed_args, elem_id): def refresh(): refresh_method() @@ -638,6 +651,15 @@ Requested path was: {f} with gr.Group(): html_info = gr.HTML() generation_info = gr.Textbox(visible=False) + if tabname == 'txt2img' or tabname == 'img2img': + generation_info_button = gr.Button(visible=False, elem_id=f"{tabname}_generation_info_button") + generation_info_button.click( + fn=update_generation_info, + _js="(x, y) => [x, y, selected_gallery_index()]", + inputs=[generation_info, html_info], + outputs=[html_info], + preprocess=False + ) save.click( fn=wrap_gradio_call(save_files), diff --git a/scripts/prompt_matrix.py b/scripts/prompt_matrix.py index e49c9b205..4d1e152d2 100644 --- a/scripts/prompt_matrix.py +++ b/scripts/prompt_matrix.py @@ -80,6 +80,8 @@ class Script(scripts.Script): grid = images.image_grid(processed.images, p.batch_size, rows=1 << ((len(prompt_matrix_parts) - 1) // 2)) grid = images.draw_prompt_matrix(grid, p.width, p.height, prompt_matrix_parts) processed.images.insert(0, grid) + processed.index_of_first_image = 1 + processed.infotexts.insert(0, processed.infotexts[0]) if opts.grid_save: images.save_image(processed.images[0], p.outpath_grids, "prompt_matrix", prompt=original_prompt, seed=processed.seed, grid=True, p=p) diff --git a/scripts/prompts_from_file.py b/scripts/prompts_from_file.py index 3388bc77a..32fe6bdba 100644 --- a/scripts/prompts_from_file.py +++ b/scripts/prompts_from_file.py @@ -145,6 +145,8 @@ class Script(scripts.Script): state.job_count = job_count images = [] + all_prompts = [] + infotexts = [] for n, args in enumerate(jobs): state.job = f"{state.job_no + 1} out of {state.job_count}" @@ -157,5 +159,7 @@ class Script(scripts.Script): if checkbox_iterate: p.seed = p.seed + (p.batch_size * p.n_iter) + all_prompts += proc.all_prompts + infotexts += proc.infotexts - return Processed(p, images, p.seed, "") + return Processed(p, images, p.seed, "", all_prompts=all_prompts, infotexts=infotexts)