mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-05-06 20:09:06 +08:00
Translate and optimize code to comply with coding styles
This commit is contained in:
parent
4ded88c46e
commit
654ee7ec00
@ -1,17 +1,25 @@
|
||||
import modules.scripts as scripts
|
||||
"""
|
||||
Txt2Img Prompt Optimizer (Multilingual)
|
||||
|
||||
This script optimizes text prompts for Stable Diffusion image generation.
|
||||
It can detect non-English prompts, translate them to English, and then optimize them
|
||||
for better image generation results.
|
||||
|
||||
The script uses a LangGraph workflow to manage the optimization process, with nodes for
|
||||
language detection, translation, and optimization. If LangGraph is not available,
|
||||
it falls back to a simplified workflow.
|
||||
"""
|
||||
|
||||
from modules import scripts
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img
|
||||
import os
|
||||
import re
|
||||
import json
|
||||
from dotenv import load_dotenv
|
||||
import requests
|
||||
from typing import Dict, List, Literal, TypedDict, Union, Optional, Any, Callable, Annotated
|
||||
import functools
|
||||
from typing import Dict, Literal, TypedDict, Optional, Any
|
||||
|
||||
# Try to import LangGraph related libraries
|
||||
try:
|
||||
from langgraph.graph import StateGraph, END, START
|
||||
from langgraph.checkpoint.memory import MemorySaver
|
||||
from langgraph.graph import StateGraph, END
|
||||
LANGGRAPH_AVAILABLE = True
|
||||
except ImportError:
|
||||
LANGGRAPH_AVAILABLE = False
|
||||
@ -36,14 +44,13 @@ DEEPSEEK_API_KEY = os.getenv("DEEPSEEK_API_KEY")
|
||||
# Define state type
|
||||
class PromptState(TypedDict):
|
||||
original_prompt: str
|
||||
language: str # Changed: from is_chinese to language, can be "english", "chinese", "other", etc.
|
||||
language: str
|
||||
translated_prompt: Optional[str]
|
||||
optimized_prompt: Optional[str]
|
||||
error: Optional[str]
|
||||
|
||||
|
||||
class PromptTemplate(BaseModel):
|
||||
"""Prompt template Pydantic model"""
|
||||
"""Prompt template for specific tasks"""
|
||||
name: str = Field(..., description="Template name")
|
||||
content: str = Field(..., description="Template content")
|
||||
|
||||
@ -55,7 +62,7 @@ class PromptTemplates(BaseModel):
|
||||
txt2img_optimizer: PromptTemplate = Field(
|
||||
default=PromptTemplate(
|
||||
name="Stable Diffusion Prompt Optimizer",
|
||||
content="""
|
||||
content="""\
|
||||
You are an expert prompt engineer for Stable Diffusion image generation with deep knowledge of how SD models interpret text.
|
||||
|
||||
Your task is to transform standard prompts into highly optimized versions that produce exceptional quality images. Follow these guidelines:
|
||||
@ -85,7 +92,7 @@ class PromptTemplates(BaseModel):
|
||||
language_detector: PromptTemplate = Field(
|
||||
default=PromptTemplate(
|
||||
name="Language Detector",
|
||||
content="""
|
||||
content="""\
|
||||
You are a language detection expert. Your task is to identify if the given text is in English or not.
|
||||
|
||||
Analyze the provided text and determine if it's in English. Return ONLY 'yes' if the text is primarily in English, or 'no' if it's primarily in another language.
|
||||
@ -102,7 +109,7 @@ class PromptTemplates(BaseModel):
|
||||
universal_translator: PromptTemplate = Field(
|
||||
default=PromptTemplate(
|
||||
name="Universal Translator",
|
||||
content="""
|
||||
content="""\
|
||||
You are a professional translator specializing in translating text to English for image generation.
|
||||
|
||||
Your task is to accurately translate prompts from any language to English while preserving the original meaning and intent. Follow these guidelines:
|
||||
@ -129,6 +136,21 @@ class PromptTemplates(BaseModel):
|
||||
TEMPLATES = PromptTemplates()
|
||||
|
||||
|
||||
# Helper function for simple language detection
|
||||
def simple_language_detection(prompt: str) -> str:
|
||||
"""Simple language detection based on ASCII character ratio"""
|
||||
if not prompt:
|
||||
return "unknown"
|
||||
|
||||
non_ascii_chars = 0
|
||||
for char in prompt:
|
||||
if ord(char) > 127:
|
||||
non_ascii_chars += 1
|
||||
|
||||
language = "english" if (non_ascii_chars / len(prompt) < 0.3) else "other"
|
||||
print(f"Simple language detection: Prompt '{prompt}' detected as '{'English' if language == 'english' else 'Non-English'}'")
|
||||
return language
|
||||
|
||||
# Agent functions
|
||||
def router_agent(state: PromptState) -> Dict[str, Any]:
|
||||
"""Determine the language of the prompt"""
|
||||
@ -171,38 +193,25 @@ def router_agent(state: PromptState) -> Dict[str, Any]:
|
||||
else:
|
||||
print(f"RouterAgent: Language detection failed - {response.status_code} - {response.text}")
|
||||
# Fallback to simple detection
|
||||
non_ascii_chars = 0
|
||||
for char in prompt:
|
||||
if ord(char) > 127:
|
||||
non_ascii_chars += 1
|
||||
|
||||
language = "english" if (non_ascii_chars / len(prompt) < 0.3) else "other"
|
||||
print(f"RouterAgent: Prompt '{prompt}' detected as '{'English' if language == 'english' else 'Non-English'}' (simple detection)")
|
||||
language = simple_language_detection(prompt)
|
||||
return {"language": language}
|
||||
except Exception as e:
|
||||
print(f"RouterAgent: Language detection failed - {str(e)}")
|
||||
# Fallback to simple detection
|
||||
non_ascii_chars = 0
|
||||
for char in prompt:
|
||||
if ord(char) > 127:
|
||||
non_ascii_chars += 1
|
||||
|
||||
language = "english" if (non_ascii_chars / len(prompt) < 0.3) else "other"
|
||||
print(f"RouterAgent: Prompt '{prompt}' detected as '{'English' if language == 'english' else 'Non-English'}' (simple detection)")
|
||||
language = simple_language_detection(prompt)
|
||||
return {"language": language}
|
||||
|
||||
|
||||
def translator_agent(state: PromptState) -> Dict[str, Any]:
|
||||
"""Translate non-English prompts to English"""
|
||||
prompt = state["original_prompt"]
|
||||
language = state["language"]
|
||||
|
||||
if language == "english":
|
||||
print(f"TranslatorAgent: Prompt is already in English, no translation needed")
|
||||
print("TranslatorAgent: Prompt is already in English, no translation needed")
|
||||
return {"translated_prompt": prompt}
|
||||
|
||||
if not DEEPSEEK_API_KEY:
|
||||
print(f"TranslatorAgent: Warning - DEEPSEEK_API_KEY not set, using simplified translation")
|
||||
print("TranslatorAgent: Warning - DEEPSEEK_API_KEY not set, using simplified translation")
|
||||
return {"error": "DEEPSEEK_API_KEY not set", "translated_prompt": prompt}
|
||||
|
||||
try:
|
||||
@ -332,19 +341,19 @@ def create_prompt_optimization_graph():
|
||||
return None
|
||||
|
||||
# Create state graph
|
||||
workflow = StateGraph(PromptState)
|
||||
graph = StateGraph(PromptState)
|
||||
|
||||
# Add nodes
|
||||
workflow.add_node("router", router_agent)
|
||||
workflow.add_node("translator", translator_agent)
|
||||
workflow.add_node("optimizer", optimizer_agent)
|
||||
graph.add_node("router", router_agent)
|
||||
graph.add_node("translator", translator_agent)
|
||||
graph.add_node("optimizer", optimizer_agent)
|
||||
|
||||
# Add edges
|
||||
# From start to router
|
||||
workflow.set_entry_point("router")
|
||||
graph.set_entry_point("router")
|
||||
|
||||
# From router to translator or optimizer (based on language)
|
||||
workflow.add_conditional_edges(
|
||||
graph.add_conditional_edges(
|
||||
"router",
|
||||
should_translate,
|
||||
{
|
||||
@ -354,18 +363,18 @@ def create_prompt_optimization_graph():
|
||||
)
|
||||
|
||||
# From translator to optimizer
|
||||
workflow.add_edge("translator", "optimizer")
|
||||
graph.add_edge("translator", "optimizer")
|
||||
|
||||
# From optimizer to end
|
||||
workflow.add_edge("optimizer", END)
|
||||
graph.add_edge("optimizer", END)
|
||||
|
||||
# Compile workflow
|
||||
return workflow.compile()
|
||||
return graph.compile()
|
||||
|
||||
# Simplified workflow (used when LangGraph is not available)
|
||||
def simple_prompt_optimization_workflow(prompt: str) -> str:
|
||||
"""Simplified prompt optimization workflow"""
|
||||
print(f"\n--- Simplified workflow started ---")
|
||||
print("\n--- Simplified workflow started ---")
|
||||
print(f"Original prompt: '{prompt}'")
|
||||
|
||||
# Initialize state
|
||||
@ -395,7 +404,7 @@ def simple_prompt_optimization_workflow(prompt: str) -> str:
|
||||
state["error"] = optimizer_result["error"]
|
||||
|
||||
print(f"Final optimized prompt: '{state['optimized_prompt']}'")
|
||||
print(f"--- Simplified workflow finished ---\n")
|
||||
print("--- Simplified workflow finished ---\n")
|
||||
|
||||
return state["optimized_prompt"] or prompt
|
||||
|
||||
@ -479,11 +488,16 @@ class PromptOptimizer(scripts.Script):
|
||||
|
||||
def postprocess(self, p, processed):
|
||||
"""Post-process after image generation"""
|
||||
# Add original prompt to extra generation params
|
||||
if hasattr(self, 'extra_generation_params') and hasattr(self, 'main_prompt'):
|
||||
processed.infotexts[0] = processed.infotexts[0].replace(
|
||||
"Prompt: ", f"Prompt: {self.extra_generation_params.get('Original prompt', '')}\nOptimized: "
|
||||
)
|
||||
# Nothing to do here
|
||||
return processed
|
||||
|
||||
def optimize_prompt(self, prompt):
|
||||
"""Optimize prompt to improve generation quality"""
|
||||
def optimize_prompt(self, prompt: str) -> str:
|
||||
"""Optimize a prompt using the workflow"""
|
||||
if not prompt:
|
||||
return prompt
|
||||
|
||||
@ -491,7 +505,7 @@ class PromptOptimizer(scripts.Script):
|
||||
if self.graph is not None:
|
||||
# Use LangGraph workflow
|
||||
try:
|
||||
print(f"\n--- LangGraph started ---")
|
||||
print("\n--- LangGraph started ---")
|
||||
print(f"Original prompt: '{prompt}'")
|
||||
|
||||
# Create initial state
|
||||
@ -508,43 +522,21 @@ class PromptOptimizer(scripts.Script):
|
||||
|
||||
optimized = final_state.get("optimized_prompt") or prompt
|
||||
print(f"Final optimized prompt: '{optimized}'")
|
||||
print(f"--- LangGraph finished ---\n")
|
||||
print("--- LangGraph finished ---\n")
|
||||
return optimized
|
||||
except Exception as e:
|
||||
print(f"LangGraph failed: {str(e)}")
|
||||
# Fallback to simplified workflow
|
||||
print(f"LangGraph workflow error: {str(e)}")
|
||||
print("Falling back to simplified workflow")
|
||||
return simple_prompt_optimization_workflow(prompt)
|
||||
else:
|
||||
# Use simplified workflow
|
||||
return simple_prompt_optimization_workflow(prompt)
|
||||
|
||||
|
||||
# Check if we're in a Stable Diffusion Webui environment
|
||||
try:
|
||||
from modules.processing import StableDiffusionProcessingTxt2Img
|
||||
except ImportError:
|
||||
# Create a mock class for testing outside of webui
|
||||
class StableDiffusionProcessingTxt2Img:
|
||||
"""Mock class for testing outside of webui"""
|
||||
def __init__(self):
|
||||
self.prompt = ""
|
||||
self.all_prompts = []
|
||||
self.main_prompt = ""
|
||||
self.extra_generation_params = {}
|
||||
|
||||
def setup_prompts(self):
|
||||
"""Mock setup_prompts method"""
|
||||
pass
|
||||
|
||||
|
||||
# For standalone testing
|
||||
if __name__ == "__main__":
|
||||
# Test the prompt optimization workflow
|
||||
test_prompts = [
|
||||
"a cat",
|
||||
"beautiful landscape",
|
||||
"portrait of a woman",
|
||||
"科幻城市", # Chinese: "sci-fi city"
|
||||
"a beautiful landscape with mountains", # English
|
||||
"美丽的山水画", # Chinese: "beautiful landscape painting"
|
||||
]
|
||||
|
||||
|
Loading…
x
Reference in New Issue
Block a user