From 6785331e22d6a488fbf5905fab56d7fec867e038 Mon Sep 17 00:00:00 2001 From: AUTOMATIC <16777216c@gmail.com> Date: Sun, 2 Oct 2022 22:59:01 +0300 Subject: [PATCH] keep textual inversion dataset latents in CPU memory to save a bit of VRAM --- modules/textual_inversion/dataset.py | 2 ++ modules/textual_inversion/textual_inversion.py | 3 +++ modules/ui.py | 4 ++-- 3 files changed, 7 insertions(+), 2 deletions(-) diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py index 7e134a08f..e8394ff65 100644 --- a/modules/textual_inversion/dataset.py +++ b/modules/textual_inversion/dataset.py @@ -8,6 +8,7 @@ from torchvision import transforms import random import tqdm +from modules import devices class PersonalizedBase(Dataset): @@ -47,6 +48,7 @@ class PersonalizedBase(Dataset): torchdata = torch.moveaxis(torchdata, 2, 0) init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze() + init_latent = init_latent.to(devices.cpu) self.dataset.append((init_latent, filename_tokens)) diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py index d4e250d87..8686f5347 100644 --- a/modules/textual_inversion/textual_inversion.py +++ b/modules/textual_inversion/textual_inversion.py @@ -212,7 +212,10 @@ def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, with torch.autocast("cuda"): c = cond_model([text]) + + x = x.to(devices.device) loss = shared.sd_model(x.unsqueeze(0), c)[0] + del x losses[embedding.step % losses.shape[0]] = loss.item() diff --git a/modules/ui.py b/modules/ui.py index e7bde53bf..d9d02ecef 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -1002,8 +1002,8 @@ def create_ui(wrap_gradio_gpu_call): log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) steps = gr.Number(label='Max steps', value=100000, precision=0) - create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=1000, precision=0) - save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=1000, precision=0) + create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=500, precision=0) + save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=500, precision=0) with gr.Row(): with gr.Column(scale=2):