diff --git a/modules/extras.py b/modules/extras.py index 385430dc7..f04ddfc26 100644 --- a/modules/extras.py +++ b/modules/extras.py @@ -1,231 +1,16 @@ -from __future__ import annotations -import math import os import re -import sys -import traceback import shutil -import numpy as np -from PIL import Image import torch import tqdm -from typing import Callable, List, OrderedDict, Tuple -from functools import partial -from dataclasses import dataclass - -from modules import processing, shared, images, devices, sd_models, sd_samplers, sd_vae -from modules.shared import opts -import modules.gfpgan_model +from modules import shared, images, sd_models, sd_vae from modules.ui import plaintext_to_html -import modules.codeformer_model import gradio as gr import safetensors.torch -class LruCache(OrderedDict): - @dataclass(frozen=True) - class Key: - image_hash: int - info_hash: int - args_hash: int - - @dataclass - class Value: - image: Image.Image - info: str - - def __init__(self, max_size: int = 5, *args, **kwargs): - super().__init__(*args, **kwargs) - self._max_size = max_size - - def get(self, key: LruCache.Key) -> LruCache.Value: - ret = super().get(key) - if ret is not None: - self.move_to_end(key) # Move to end of eviction list - return ret - - def put(self, key: LruCache.Key, value: LruCache.Value) -> None: - self[key] = value - while len(self) > self._max_size: - self.popitem(last=False) - - -cached_images: LruCache = LruCache(max_size=5) - - -def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True): - devices.torch_gc() - - shared.state.begin() - shared.state.job = 'extras' - - imageArr = [] - # Also keep track of original file names - imageNameArr = [] - outputs = [] - - if extras_mode == 1: - #convert file to pillow image - for img in image_folder: - image = Image.open(img) - imageArr.append(image) - imageNameArr.append(os.path.splitext(img.orig_name)[0]) - elif extras_mode == 2: - assert not shared.cmd_opts.hide_ui_dir_config, '--hide-ui-dir-config option must be disabled' - - if input_dir == '': - return outputs, "Please select an input directory.", '' - image_list = shared.listfiles(input_dir) - for img in image_list: - try: - image = Image.open(img) - except Exception: - continue - imageArr.append(image) - imageNameArr.append(img) - else: - imageArr.append(image) - imageNameArr.append(None) - - if extras_mode == 2 and output_dir != '': - outpath = output_dir - else: - outpath = opts.outdir_samples or opts.outdir_extras_samples - - # Extra operation definitions - - def run_gfpgan(image: Image.Image, info: str) -> Tuple[Image.Image, str]: - shared.state.job = 'extras-gfpgan' - restored_img = modules.gfpgan_model.gfpgan_fix_faces(np.array(image, dtype=np.uint8)) - res = Image.fromarray(restored_img) - - if gfpgan_visibility < 1.0: - res = Image.blend(image, res, gfpgan_visibility) - - info += f"GFPGAN visibility:{round(gfpgan_visibility, 2)}\n" - return (res, info) - - def run_codeformer(image: Image.Image, info: str) -> Tuple[Image.Image, str]: - shared.state.job = 'extras-codeformer' - restored_img = modules.codeformer_model.codeformer.restore(np.array(image, dtype=np.uint8), w=codeformer_weight) - res = Image.fromarray(restored_img) - - if codeformer_visibility < 1.0: - res = Image.blend(image, res, codeformer_visibility) - - info += f"CodeFormer w: {round(codeformer_weight, 2)}, CodeFormer visibility:{round(codeformer_visibility, 2)}\n" - return (res, info) - - def upscale(image, scaler_index, resize, mode, resize_w, resize_h, crop): - shared.state.job = 'extras-upscale' - upscaler = shared.sd_upscalers[scaler_index] - res = upscaler.scaler.upscale(image, resize, upscaler.data_path) - if mode == 1 and crop: - cropped = Image.new("RGB", (resize_w, resize_h)) - cropped.paste(res, box=(resize_w // 2 - res.width // 2, resize_h // 2 - res.height // 2)) - res = cropped - return res - - def run_prepare_crop(image: Image.Image, info: str) -> Tuple[Image.Image, str]: - # Actual crop happens in run_upscalers_blend, this just sets upscaling_resize and adds info text - nonlocal upscaling_resize - if resize_mode == 1: - upscaling_resize = max(upscaling_resize_w/image.width, upscaling_resize_h/image.height) - crop_info = " (crop)" if upscaling_crop else "" - info += f"Resize to: {upscaling_resize_w:g}x{upscaling_resize_h:g}{crop_info}\n" - return (image, info) - - @dataclass - class UpscaleParams: - upscaler_idx: int - blend_alpha: float - - def run_upscalers_blend(params: List[UpscaleParams], image: Image.Image, info: str) -> Tuple[Image.Image, str]: - blended_result: Image.Image = None - image_hash: str = hash(np.array(image.getdata()).tobytes()) - for upscaler in params: - upscale_args = (upscaler.upscaler_idx, upscaling_resize, resize_mode, - upscaling_resize_w, upscaling_resize_h, upscaling_crop) - cache_key = LruCache.Key(image_hash=image_hash, - info_hash=hash(info), - args_hash=hash(upscale_args)) - cached_entry = cached_images.get(cache_key) - if cached_entry is None: - res = upscale(image, *upscale_args) - info += f"Upscale: {round(upscaling_resize, 3)}, visibility: {upscaler.blend_alpha}, model:{shared.sd_upscalers[upscaler.upscaler_idx].name}\n" - cached_images.put(cache_key, LruCache.Value(image=res, info=info)) - else: - res, info = cached_entry.image, cached_entry.info - - if blended_result is None: - blended_result = res - else: - blended_result = Image.blend(blended_result, res, upscaler.blend_alpha) - return (blended_result, info) - - # Build a list of operations to run - facefix_ops: List[Callable] = [] - facefix_ops += [run_gfpgan] if gfpgan_visibility > 0 else [] - facefix_ops += [run_codeformer] if codeformer_visibility > 0 else [] - - upscale_ops: List[Callable] = [] - upscale_ops += [run_prepare_crop] if resize_mode == 1 else [] - - if upscaling_resize != 0: - step_params: List[UpscaleParams] = [] - step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_1, blend_alpha=1.0)) - if extras_upscaler_2 != 0 and extras_upscaler_2_visibility > 0: - step_params.append(UpscaleParams(upscaler_idx=extras_upscaler_2, blend_alpha=extras_upscaler_2_visibility)) - - upscale_ops.append(partial(run_upscalers_blend, step_params)) - - extras_ops: List[Callable] = (upscale_ops + facefix_ops) if upscale_first else (facefix_ops + upscale_ops) - - for image, image_name in zip(imageArr, imageNameArr): - if image is None: - return outputs, "Please select an input image.", '' - - shared.state.textinfo = f'Processing image {image_name}' - - existing_pnginfo = image.info or {} - - image = image.convert("RGB") - info = "" - # Run each operation on each image - for op in extras_ops: - image, info = op(image, info) - - if opts.use_original_name_batch and image_name is not None: - basename = os.path.splitext(os.path.basename(image_name))[0] - else: - basename = '' - - if opts.enable_pnginfo: # append info before save - image.info = existing_pnginfo - image.info["extras"] = info - - if save_output: - # Add upscaler name as a suffix. - suffix = f"-{shared.sd_upscalers[extras_upscaler_1].name}" if shared.opts.use_upscaler_name_as_suffix else "" - # Add second upscaler if applicable. - if suffix and extras_upscaler_2 and extras_upscaler_2_visibility: - suffix += f"-{shared.sd_upscalers[extras_upscaler_2].name}" - - images.save_image(image, path=outpath, basename=basename, seed=None, prompt=None, extension=opts.samples_format, info=info, short_filename=True, - no_prompt=True, grid=False, pnginfo_section_name="extras", existing_info=existing_pnginfo, forced_filename=None, suffix=suffix) - - if extras_mode != 2 or show_extras_results : - outputs.append(image) - - devices.torch_gc() - - return outputs, plaintext_to_html(info), '' - -def clear_cache(): - cached_images.clear() - def run_pnginfo(image): if image is None: diff --git a/modules/postprocessing.py b/modules/postprocessing.py index 385430dc7..cb85720b5 100644 --- a/modules/postprocessing.py +++ b/modules/postprocessing.py @@ -1,28 +1,18 @@ from __future__ import annotations -import math import os -import re -import sys -import traceback -import shutil import numpy as np from PIL import Image -import torch -import tqdm - from typing import Callable, List, OrderedDict, Tuple from functools import partial from dataclasses import dataclass -from modules import processing, shared, images, devices, sd_models, sd_samplers, sd_vae +from modules import shared, images, devices, ui_components from modules.shared import opts import modules.gfpgan_model -from modules.ui import plaintext_to_html import modules.codeformer_model -import gradio as gr -import safetensors.torch + class LruCache(OrderedDict): @dataclass(frozen=True) @@ -55,7 +45,7 @@ class LruCache(OrderedDict): cached_images: LruCache = LruCache(max_size=5) -def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True): +def run_postprocessing(extras_mode, resize_mode, image, image_folder, input_dir, output_dir, show_extras_results, gfpgan_visibility, codeformer_visibility, codeformer_weight, upscaling_resize, upscaling_resize_w, upscaling_resize_h, upscaling_crop, extras_upscaler_1, extras_upscaler_2, extras_upscaler_2_visibility, upscale_first: bool, save_output: bool = True): devices.torch_gc() shared.state.begin() @@ -221,246 +211,9 @@ def run_extras(extras_mode, resize_mode, image, image_folder, input_dir, output_ devices.torch_gc() - return outputs, plaintext_to_html(info), '' + return outputs, ui_components.plaintext_to_html(info), '' + def clear_cache(): cached_images.clear() - -def run_pnginfo(image): - if image is None: - return '', '', '' - - geninfo, items = images.read_info_from_image(image) - items = {**{'parameters': geninfo}, **items} - - info = '' - for key, text in items.items(): - info += f""" -
-

{plaintext_to_html(str(key))}

-

{plaintext_to_html(str(text))}

-
-""".strip()+"\n" - - if len(info) == 0: - message = "Nothing found in the image." - info = f"

{message}

" - - return '', geninfo, info - - -def create_config(ckpt_result, config_source, a, b, c): - def config(x): - res = sd_models.find_checkpoint_config(x) if x else None - return res if res != shared.sd_default_config else None - - if config_source == 0: - cfg = config(a) or config(b) or config(c) - elif config_source == 1: - cfg = config(b) - elif config_source == 2: - cfg = config(c) - else: - cfg = None - - if cfg is None: - return - - filename, _ = os.path.splitext(ckpt_result) - checkpoint_filename = filename + ".yaml" - - print("Copying config:") - print(" from:", cfg) - print(" to:", checkpoint_filename) - shutil.copyfile(cfg, checkpoint_filename) - - -checkpoint_dict_skip_on_merge = ["cond_stage_model.transformer.text_model.embeddings.position_ids"] - - -def to_half(tensor, enable): - if enable and tensor.dtype == torch.float: - return tensor.half() - - return tensor - - -def run_modelmerger(id_task, primary_model_name, secondary_model_name, tertiary_model_name, interp_method, multiplier, save_as_half, custom_name, checkpoint_format, config_source, bake_in_vae, discard_weights): - shared.state.begin() - shared.state.job = 'model-merge' - - def fail(message): - shared.state.textinfo = message - shared.state.end() - return [*[gr.update() for _ in range(4)], message] - - def weighted_sum(theta0, theta1, alpha): - return ((1 - alpha) * theta0) + (alpha * theta1) - - def get_difference(theta1, theta2): - return theta1 - theta2 - - def add_difference(theta0, theta1_2_diff, alpha): - return theta0 + (alpha * theta1_2_diff) - - def filename_weighted_sum(): - a = primary_model_info.model_name - b = secondary_model_info.model_name - Ma = round(1 - multiplier, 2) - Mb = round(multiplier, 2) - - return f"{Ma}({a}) + {Mb}({b})" - - def filename_add_difference(): - a = primary_model_info.model_name - b = secondary_model_info.model_name - c = tertiary_model_info.model_name - M = round(multiplier, 2) - - return f"{a} + {M}({b} - {c})" - - def filename_nothing(): - return primary_model_info.model_name - - theta_funcs = { - "Weighted sum": (filename_weighted_sum, None, weighted_sum), - "Add difference": (filename_add_difference, get_difference, add_difference), - "No interpolation": (filename_nothing, None, None), - } - filename_generator, theta_func1, theta_func2 = theta_funcs[interp_method] - shared.state.job_count = (1 if theta_func1 else 0) + (1 if theta_func2 else 0) - - if not primary_model_name: - return fail("Failed: Merging requires a primary model.") - - primary_model_info = sd_models.checkpoints_list[primary_model_name] - - if theta_func2 and not secondary_model_name: - return fail("Failed: Merging requires a secondary model.") - - secondary_model_info = sd_models.checkpoints_list[secondary_model_name] if theta_func2 else None - - if theta_func1 and not tertiary_model_name: - return fail(f"Failed: Interpolation method ({interp_method}) requires a tertiary model.") - - tertiary_model_info = sd_models.checkpoints_list[tertiary_model_name] if theta_func1 else None - - result_is_inpainting_model = False - - if theta_func2: - shared.state.textinfo = f"Loading B" - print(f"Loading {secondary_model_info.filename}...") - theta_1 = sd_models.read_state_dict(secondary_model_info.filename, map_location='cpu') - else: - theta_1 = None - - if theta_func1: - shared.state.textinfo = f"Loading C" - print(f"Loading {tertiary_model_info.filename}...") - theta_2 = sd_models.read_state_dict(tertiary_model_info.filename, map_location='cpu') - - shared.state.textinfo = 'Merging B and C' - shared.state.sampling_steps = len(theta_1.keys()) - for key in tqdm.tqdm(theta_1.keys()): - if key in checkpoint_dict_skip_on_merge: - continue - - if 'model' in key: - if key in theta_2: - t2 = theta_2.get(key, torch.zeros_like(theta_1[key])) - theta_1[key] = theta_func1(theta_1[key], t2) - else: - theta_1[key] = torch.zeros_like(theta_1[key]) - - shared.state.sampling_step += 1 - del theta_2 - - shared.state.nextjob() - - shared.state.textinfo = f"Loading {primary_model_info.filename}..." - print(f"Loading {primary_model_info.filename}...") - theta_0 = sd_models.read_state_dict(primary_model_info.filename, map_location='cpu') - - print("Merging...") - shared.state.textinfo = 'Merging A and B' - shared.state.sampling_steps = len(theta_0.keys()) - for key in tqdm.tqdm(theta_0.keys()): - if theta_1 and 'model' in key and key in theta_1: - - if key in checkpoint_dict_skip_on_merge: - continue - - a = theta_0[key] - b = theta_1[key] - - # this enables merging an inpainting model (A) with another one (B); - # where normal model would have 4 channels, for latenst space, inpainting model would - # have another 4 channels for unmasked picture's latent space, plus one channel for mask, for a total of 9 - if a.shape != b.shape and a.shape[0:1] + a.shape[2:] == b.shape[0:1] + b.shape[2:]: - if a.shape[1] == 4 and b.shape[1] == 9: - raise RuntimeError("When merging inpainting model with a normal one, A must be the inpainting model.") - - assert a.shape[1] == 9 and b.shape[1] == 4, f"Bad dimensions for merged layer {key}: A={a.shape}, B={b.shape}" - - theta_0[key][:, 0:4, :, :] = theta_func2(a[:, 0:4, :, :], b, multiplier) - result_is_inpainting_model = True - else: - theta_0[key] = theta_func2(a, b, multiplier) - - theta_0[key] = to_half(theta_0[key], save_as_half) - - shared.state.sampling_step += 1 - - del theta_1 - - bake_in_vae_filename = sd_vae.vae_dict.get(bake_in_vae, None) - if bake_in_vae_filename is not None: - print(f"Baking in VAE from {bake_in_vae_filename}") - shared.state.textinfo = 'Baking in VAE' - vae_dict = sd_vae.load_vae_dict(bake_in_vae_filename, map_location='cpu') - - for key in vae_dict.keys(): - theta_0_key = 'first_stage_model.' + key - if theta_0_key in theta_0: - theta_0[theta_0_key] = to_half(vae_dict[key], save_as_half) - - del vae_dict - - if save_as_half and not theta_func2: - for key in theta_0.keys(): - theta_0[key] = to_half(theta_0[key], save_as_half) - - if discard_weights: - regex = re.compile(discard_weights) - for key in list(theta_0): - if re.search(regex, key): - theta_0.pop(key, None) - - ckpt_dir = shared.cmd_opts.ckpt_dir or sd_models.model_path - - filename = filename_generator() if custom_name == '' else custom_name - filename += ".inpainting" if result_is_inpainting_model else "" - filename += "." + checkpoint_format - - output_modelname = os.path.join(ckpt_dir, filename) - - shared.state.nextjob() - shared.state.textinfo = "Saving" - print(f"Saving to {output_modelname}...") - - _, extension = os.path.splitext(output_modelname) - if extension.lower() == ".safetensors": - safetensors.torch.save_file(theta_0, output_modelname, metadata={"format": "pt"}) - else: - torch.save(theta_0, output_modelname) - - sd_models.list_models() - - create_config(output_modelname, config_source, primary_model_info, secondary_model_info, tertiary_model_info) - - print(f"Checkpoint saved to {output_modelname}.") - shared.state.textinfo = "Checkpoint saved" - shared.state.end() - - return [*[gr.Dropdown.update(choices=sd_models.checkpoint_tiles()) for _ in range(4)], "Checkpoint saved to " + output_modelname] diff --git a/modules/ui.py b/modules/ui.py index eb4b7e6b7..4116e167e 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -20,7 +20,7 @@ import numpy as np from PIL import Image, PngImagePlugin from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call -from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks +from modules import sd_hijack, sd_models, localization, script_callbacks, ui_extensions, deepbooru, sd_vae, extra_networks, postprocessing, ui_components from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML from modules.paths import script_path @@ -95,8 +95,8 @@ extra_networks_symbol = '\U0001F3B4' # 🎴 def plaintext_to_html(text): - text = "

" + "
\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "

" - return text + return ui_components.plaintext_to_html(text) + def send_gradio_gallery_to_image(x): if len(x) == 0: @@ -1152,7 +1152,7 @@ def create_ui(): result_images, html_info_x, html_info, html_log = create_output_panel("extras", opts.outdir_extras_samples) submit.click( - fn=wrap_gradio_gpu_call(modules.extras.run_extras, extra_outputs=[None, '']), + fn=wrap_gradio_gpu_call(postprocessing.run_postprocessing, extra_outputs=[None, '']), _js="get_extras_tab_index", inputs=[ dummy_component, @@ -1183,7 +1183,7 @@ def create_ui(): parameters_copypaste.add_paste_fields("extras", extras_image, None) extras_image.change( - fn=modules.extras.clear_cache, + fn=postprocessing.clear_cache, inputs=[], outputs=[] ) diff --git a/modules/ui_components.py b/modules/ui_components.py index 463244256..989cc87bd 100644 --- a/modules/ui_components.py +++ b/modules/ui_components.py @@ -1,3 +1,5 @@ +import html + import gradio as gr @@ -47,3 +49,8 @@ class FormColorPicker(gr.ColorPicker, gr.components.FormComponent): def get_block_name(self): return "colorpicker" + + +def plaintext_to_html(text): + text = "

" + "
\n".join([f"{html.escape(x)}" for x in text.split('\n')]) + "

" + return text diff --git a/webui.py b/webui.py index d235da74b..7cf5885ec 100644 --- a/webui.py +++ b/webui.py @@ -22,7 +22,6 @@ if ".dev" in torch.__version__ or "+git" in torch.__version__: from modules import shared, devices, sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks import modules.codeformer_model as codeformer -import modules.extras import modules.face_restoration import modules.gfpgan_model as gfpgan import modules.img2img