diff --git a/.gitignore b/.gitignore index 3532dab37..7afc93953 100644 --- a/.gitignore +++ b/.gitignore @@ -25,3 +25,4 @@ __pycache__ /.idea notification.mp3 /SwinIR +/textual_inversion diff --git a/README.md b/README.md index 5ded94f98..15e224e8f 100644 --- a/README.md +++ b/README.md @@ -11,12 +11,12 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - One click install and run script (but you still must install python and git) - Outpainting - Inpainting -- Prompt -- Stable Diffusion upscale +- Prompt Matrix +- Stable Diffusion Upscale - Attention, specify parts of text that the model should pay more attention to - - a man in a ((txuedo)) - will pay more attentinoto tuxedo - - a man in a (txuedo:1.21) - alternative syntax -- Loopback, run img2img procvessing multiple times + - a man in a ((tuxedo)) - will pay more attention to tuxedo + - a man in a (tuxedo:1.21) - alternative syntax +- Loopback, run img2img processing multiple times - X/Y plot, a way to draw a 2 dimensional plot of images with different parameters - Textual Inversion - have as many embeddings as you want and use any names you like for them @@ -35,15 +35,15 @@ Check the [custom scripts](https://github.com/AUTOMATIC1111/stable-diffusion-web - 4GB video card support (also reports of 2GB working) - Correct seeds for batches - Prompt length validation - - get length of prompt in tokensas you type - - get a warning after geenration if some text was truncated + - get length of prompt in tokens as you type + - get a warning after generation if some text was truncated - Generation parameters - parameters you used to generate images are saved with that image - in PNG chunks for PNG, in EXIF for JPEG - can drag the image to PNG info tab to restore generation parameters and automatically copy them into UI - can be disabled in settings - Settings page -- Running arbitrary python code from UI (must run with commandline flag to enable) +- Running arbitrary python code from UI (must run with --allow-code to enable) - Mouseover hints for most UI elements - Possible to change defaults/mix/max/step values for UI elements via text config - Random artist button diff --git a/javascript/progressbar.js b/javascript/progressbar.js index 21f25b38d..1e297abbe 100644 --- a/javascript/progressbar.js +++ b/javascript/progressbar.js @@ -30,6 +30,7 @@ function check_progressbar(id_part, id_progressbar, id_progressbar_span, id_inte onUiUpdate(function(){ check_progressbar('txt2img', 'txt2img_progressbar', 'txt2img_progress_span', 'txt2img_interrupt', 'txt2img_preview', 'txt2img_gallery') check_progressbar('img2img', 'img2img_progressbar', 'img2img_progress_span', 'img2img_interrupt', 'img2img_preview', 'img2img_gallery') + check_progressbar('ti', 'ti_progressbar', 'ti_progress_span', 'ti_interrupt', 'ti_preview', 'ti_gallery') }) function requestMoreProgress(id_part, id_progressbar_span, id_interrupt){ diff --git a/javascript/textualInversion.js b/javascript/textualInversion.js new file mode 100644 index 000000000..8061be089 --- /dev/null +++ b/javascript/textualInversion.js @@ -0,0 +1,8 @@ + + +function start_training_textual_inversion(){ + requestProgress('ti') + gradioApp().querySelector('#ti_error').innerHTML='' + + return args_to_array(arguments) +} diff --git a/javascript/ui.js b/javascript/ui.js index e8f289b44..b1053201c 100644 --- a/javascript/ui.js +++ b/javascript/ui.js @@ -199,12 +199,18 @@ let txt2img_textarea, img2img_textarea = undefined; let wait_time = 800 let token_timeout; -function submit_prompt(event, generate_button_id) { - if (event.altKey && event.keyCode === 13) { - event.preventDefault(); - gradioApp().getElementById(generate_button_id).click(); - return; - } +function update_txt2img_tokens(...args) { + update_token_counter("txt2img_token_button") + if (args.length == 2) + return args[0] + return args; +} + +function update_img2img_tokens(...args) { + update_token_counter("img2img_token_button") + if (args.length == 2) + return args[0] + return args; } function update_token_counter(button_id) { @@ -213,6 +219,14 @@ function update_token_counter(button_id) { token_timeout = setTimeout(() => gradioApp().getElementById(button_id)?.click(), wait_time); } +function submit_prompt(event, generate_button_id) { + if (event.altKey && event.keyCode === 13) { + event.preventDefault(); + gradioApp().getElementById(generate_button_id).click(); + return; + } +} + function restart_reload(){ document.body.innerHTML='

Reloading...

'; setTimeout(function(){location.reload()},2000) diff --git a/launch.py b/launch.py index d2793ed20..57405feab 100644 --- a/launch.py +++ b/launch.py @@ -15,6 +15,7 @@ requirements_file = os.environ.get('REQS_FILE', "requirements_versions.txt") commandline_args = os.environ.get('COMMANDLINE_ARGS', "") gfpgan_package = os.environ.get('GFPGAN_PACKAGE', "git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379") +clip_package = os.environ.get('CLIP_PACKAGE', "git+https://github.com/openai/CLIP.git@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1") stable_diffusion_commit_hash = os.environ.get('STABLE_DIFFUSION_COMMIT_HASH', "69ae4b35e0a0f6ee1af8bb9a5d0016ccb27e36dc") taming_transformers_commit_hash = os.environ.get('TAMING_TRANSFORMERS_COMMIT_HASH', "24268930bf1dce879235a7fddd0b2355b84d7ea6") @@ -111,6 +112,9 @@ if not skip_torch_cuda_test: if not is_installed("gfpgan"): run_pip(f"install {gfpgan_package}", "gfpgan") +if not is_installed("clip"): + run_pip(f"install {clip_package}", "clip") + os.makedirs(dir_repos, exist_ok=True) git_clone("https://github.com/CompVis/stable-diffusion.git", repo_dir('stable-diffusion'), "Stable Diffusion", stable_diffusion_commit_hash) diff --git a/modules/devices.py b/modules/devices.py index 07bb23397..ff82f2f64 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -32,10 +32,9 @@ def enable_tf32(): errors.run(enable_tf32, "Enabling TF32") - device = get_optimal_device() device_codeformer = cpu if has_mps else device - +dtype = torch.float16 def randn(seed, shape): # Pytorch currently doesn't handle setting randomness correctly when the metal backend is used. diff --git a/modules/esrgan_model.py b/modules/esrgan_model.py index ea91abfe8..4aed9283c 100644 --- a/modules/esrgan_model.py +++ b/modules/esrgan_model.py @@ -73,8 +73,8 @@ def fix_model_layers(crt_model, pretrained_net): class UpscalerESRGAN(Upscaler): def __init__(self, dirname): self.name = "ESRGAN" - self.model_url = "https://drive.google.com/u/0/uc?id=1TPrz5QKd8DHHt1k8SRtm6tMiPjz_Qene&export=download" - self.model_name = "ESRGAN 4x" + self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/ESRGAN.pth" + self.model_name = "ESRGAN_4x" self.scalers = [] self.user_path = dirname self.model_path = os.path.join(models_path, self.name) diff --git a/modules/images.py b/modules/images.py index f1aed5d6b..d75632440 100644 --- a/modules/images.py +++ b/modules/images.py @@ -311,7 +311,12 @@ def apply_filename_pattern(x, p, seed, prompt): x = x.replace("[cfg]", str(p.cfg_scale)) x = x.replace("[width]", str(p.width)) x = x.replace("[height]", str(p.height)) - x = x.replace("[styles]", sanitize_filename_part(", ".join([x for x in p.styles if not x == "None"]), replace_spaces=False)) + + #currently disabled if using the save button, will work otherwise + # if enabled it will cause a bug because styles is not included in the save_files data dictionary + if hasattr(p, "styles"): + x = x.replace("[styles]", sanitize_filename_part(", ".join([x for x in p.styles if not x == "None"]), replace_spaces=False)) + x = x.replace("[sampler]", sanitize_filename_part(sd_samplers.samplers[p.sampler_index].name, replace_spaces=False)) x = x.replace("[model_hash]", shared.sd_model.sd_model_hash) diff --git a/modules/img2img.py b/modules/img2img.py index 03e934e96..f4455c90f 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -103,7 +103,9 @@ def img2img(mode: int, prompt: str, negative_prompt: str, prompt_style: str, pro inpaint_full_res_padding=inpaint_full_res_padding, inpainting_mask_invert=inpainting_mask_invert, ) - print(f"\nimg2img: {prompt}", file=shared.progress_print_out) + + if shared.cmd_opts.enable_console_prompts: + print(f"\nimg2img: {prompt}", file=shared.progress_print_out) p.extra_generation_params["Mask blur"] = mask_blur diff --git a/modules/modelloader.py b/modules/modelloader.py index 8c862b42f..b0f2f33d2 100644 --- a/modules/modelloader.py +++ b/modules/modelloader.py @@ -5,7 +5,6 @@ import importlib from urllib.parse import urlparse from basicsr.utils.download_util import load_file_from_url - from modules import shared from modules.upscaler import Upscaler from modules.paths import script_path, models_path @@ -43,7 +42,7 @@ def load_models(model_path: str, model_url: str = None, command_path: str = None for place in places: if os.path.exists(place): for file in glob.iglob(place + '**/**', recursive=True): - full_path = os.path.join(place, file) + full_path = file if os.path.isdir(full_path): continue if len(ext_filter) != 0: @@ -121,16 +120,30 @@ def move_files(src_path: str, dest_path: str, ext_filter: str = None): def load_upscalers(): + sd = shared.script_path + # We can only do this 'magic' method to dynamically load upscalers if they are referenced, + # so we'll try to import any _model.py files before looking in __subclasses__ + modules_dir = os.path.join(sd, "modules") + for file in os.listdir(modules_dir): + if "_model.py" in file: + model_name = file.replace("_model.py", "") + full_model = f"modules.{model_name}_model" + try: + importlib.import_module(full_model) + except: + pass datas = [] + c_o = vars(shared.cmd_opts) for cls in Upscaler.__subclasses__(): name = cls.__name__ module_name = cls.__module__ module = importlib.import_module(module_name) class_ = getattr(module, name) - cmd_name = f"{name.lower().replace('upscaler', '')}-models-path" + cmd_name = f"{name.lower().replace('upscaler', '')}_models_path" opt_string = None try: - opt_string = shared.opts.__getattr__(cmd_name) + if cmd_name in c_o: + opt_string = c_o[cmd_name] except: pass scaler = class_(opt_string) diff --git a/modules/processing.py b/modules/processing.py index 1da753a2c..0a4b6198f 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -56,7 +56,7 @@ class StableDiffusionProcessing: self.prompt: str = prompt self.prompt_for_display: str = None self.negative_prompt: str = (negative_prompt or "") - self.styles: str = styles + self.styles: list = styles or [] self.seed: int = seed self.subseed: int = subseed self.subseed_strength: float = subseed_strength @@ -271,7 +271,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Denoising strength": getattr(p, 'denoising_strength', None), - "Eta": (None if p.sampler.eta == p.sampler.default_eta else p.sampler.eta), + "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta), } generation_params.update(p.extra_generation_params) @@ -295,8 +295,11 @@ def process_images(p: StableDiffusionProcessing) -> Processed: fix_seed(p) - os.makedirs(p.outpath_samples, exist_ok=True) - os.makedirs(p.outpath_grids, exist_ok=True) + if p.outpath_samples is not None: + os.makedirs(p.outpath_samples, exist_ok=True) + + if p.outpath_grids is not None: + os.makedirs(p.outpath_grids, exist_ok=True) modules.sd_hijack.model_hijack.apply_circular(p.tiling) @@ -323,7 +326,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed: return create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration, position_in_batch) if os.path.exists(cmd_opts.embeddings_dir): - model_hijack.load_textual_inversion_embeddings(cmd_opts.embeddings_dir, p.sd_model) + model_hijack.embedding_db.load_textual_inversion_embeddings() infotexts = [] output_images = [] diff --git a/modules/scunet_model.py b/modules/scunet_model.py new file mode 100644 index 000000000..7987ac145 --- /dev/null +++ b/modules/scunet_model.py @@ -0,0 +1,90 @@ +import os.path +import sys +import traceback + +import PIL.Image +import numpy as np +import torch +from basicsr.utils.download_util import load_file_from_url + +import modules.upscaler +from modules import shared, modelloader +from modules.paths import models_path +from modules.scunet_model_arch import SCUNet as net + + +class UpscalerScuNET(modules.upscaler.Upscaler): + def __init__(self, dirname): + self.name = "ScuNET" + self.model_path = os.path.join(models_path, self.name) + self.model_name = "ScuNET GAN" + self.model_name2 = "ScuNET PSNR" + self.model_url = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_gan.pth" + self.model_url2 = "https://github.com/cszn/KAIR/releases/download/v1.0/scunet_color_real_psnr.pth" + self.user_path = dirname + super().__init__() + model_paths = self.find_models(ext_filter=[".pth"]) + scalers = [] + add_model2 = True + for file in model_paths: + if "http" in file: + name = self.model_name + else: + name = modelloader.friendly_name(file) + if name == self.model_name2 or file == self.model_url2: + add_model2 = False + try: + scaler_data = modules.upscaler.UpscalerData(name, file, self, 4) + scalers.append(scaler_data) + except Exception: + print(f"Error loading ScuNET model: {file}", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + if add_model2: + scaler_data2 = modules.upscaler.UpscalerData(self.model_name2, self.model_url2, self) + scalers.append(scaler_data2) + self.scalers = scalers + + def do_upscale(self, img: PIL.Image, selected_file): + torch.cuda.empty_cache() + + model = self.load_model(selected_file) + if model is None: + return img + + device = shared.device + img = np.array(img) + img = img[:, :, ::-1] + img = np.moveaxis(img, 2, 0) / 255 + img = torch.from_numpy(img).float() + img = img.unsqueeze(0).to(shared.device) + + img = img.to(device) + with torch.no_grad(): + output = model(img) + output = output.squeeze().float().cpu().clamp_(0, 1).numpy() + output = 255. * np.moveaxis(output, 0, 2) + output = output.astype(np.uint8) + output = output[:, :, ::-1] + torch.cuda.empty_cache() + return PIL.Image.fromarray(output, 'RGB') + + def load_model(self, path: str): + device = shared.device + if "http" in path: + filename = load_file_from_url(url=self.model_url, model_dir=self.model_path, file_name="%s.pth" % self.name, + progress=True) + else: + filename = path + if not os.path.exists(os.path.join(self.model_path, filename)) or filename is None: + print(f"ScuNET: Unable to load model from {filename}", file=sys.stderr) + return None + + model = net(in_nc=3, config=[4, 4, 4, 4, 4, 4, 4], dim=64) + model.load_state_dict(torch.load(filename), strict=True) + model.eval() + for k, v in model.named_parameters(): + v.requires_grad = False + model = model.to(device) + + return model + diff --git a/modules/scunet_model_arch.py b/modules/scunet_model_arch.py new file mode 100644 index 000000000..972a2639a --- /dev/null +++ b/modules/scunet_model_arch.py @@ -0,0 +1,265 @@ +# -*- coding: utf-8 -*- +import numpy as np +import torch +import torch.nn as nn +from einops import rearrange +from einops.layers.torch import Rearrange +from timm.models.layers import trunc_normal_, DropPath + + +class WMSA(nn.Module): + """ Self-attention module in Swin Transformer + """ + + def __init__(self, input_dim, output_dim, head_dim, window_size, type): + super(WMSA, self).__init__() + self.input_dim = input_dim + self.output_dim = output_dim + self.head_dim = head_dim + self.scale = self.head_dim ** -0.5 + self.n_heads = input_dim // head_dim + self.window_size = window_size + self.type = type + self.embedding_layer = nn.Linear(self.input_dim, 3 * self.input_dim, bias=True) + + self.relative_position_params = nn.Parameter( + torch.zeros((2 * window_size - 1) * (2 * window_size - 1), self.n_heads)) + + self.linear = nn.Linear(self.input_dim, self.output_dim) + + trunc_normal_(self.relative_position_params, std=.02) + self.relative_position_params = torch.nn.Parameter( + self.relative_position_params.view(2 * window_size - 1, 2 * window_size - 1, self.n_heads).transpose(1, + 2).transpose( + 0, 1)) + + def generate_mask(self, h, w, p, shift): + """ generating the mask of SW-MSA + Args: + shift: shift parameters in CyclicShift. + Returns: + attn_mask: should be (1 1 w p p), + """ + # supporting sqaure. + attn_mask = torch.zeros(h, w, p, p, p, p, dtype=torch.bool, device=self.relative_position_params.device) + if self.type == 'W': + return attn_mask + + s = p - shift + attn_mask[-1, :, :s, :, s:, :] = True + attn_mask[-1, :, s:, :, :s, :] = True + attn_mask[:, -1, :, :s, :, s:] = True + attn_mask[:, -1, :, s:, :, :s] = True + attn_mask = rearrange(attn_mask, 'w1 w2 p1 p2 p3 p4 -> 1 1 (w1 w2) (p1 p2) (p3 p4)') + return attn_mask + + def forward(self, x): + """ Forward pass of Window Multi-head Self-attention module. + Args: + x: input tensor with shape of [b h w c]; + attn_mask: attention mask, fill -inf where the value is True; + Returns: + output: tensor shape [b h w c] + """ + if self.type != 'W': x = torch.roll(x, shifts=(-(self.window_size // 2), -(self.window_size // 2)), dims=(1, 2)) + x = rearrange(x, 'b (w1 p1) (w2 p2) c -> b w1 w2 p1 p2 c', p1=self.window_size, p2=self.window_size) + h_windows = x.size(1) + w_windows = x.size(2) + # sqaure validation + # assert h_windows == w_windows + + x = rearrange(x, 'b w1 w2 p1 p2 c -> b (w1 w2) (p1 p2) c', p1=self.window_size, p2=self.window_size) + qkv = self.embedding_layer(x) + q, k, v = rearrange(qkv, 'b nw np (threeh c) -> threeh b nw np c', c=self.head_dim).chunk(3, dim=0) + sim = torch.einsum('hbwpc,hbwqc->hbwpq', q, k) * self.scale + # Adding learnable relative embedding + sim = sim + rearrange(self.relative_embedding(), 'h p q -> h 1 1 p q') + # Using Attn Mask to distinguish different subwindows. + if self.type != 'W': + attn_mask = self.generate_mask(h_windows, w_windows, self.window_size, shift=self.window_size // 2) + sim = sim.masked_fill_(attn_mask, float("-inf")) + + probs = nn.functional.softmax(sim, dim=-1) + output = torch.einsum('hbwij,hbwjc->hbwic', probs, v) + output = rearrange(output, 'h b w p c -> b w p (h c)') + output = self.linear(output) + output = rearrange(output, 'b (w1 w2) (p1 p2) c -> b (w1 p1) (w2 p2) c', w1=h_windows, p1=self.window_size) + + if self.type != 'W': output = torch.roll(output, shifts=(self.window_size // 2, self.window_size // 2), + dims=(1, 2)) + return output + + def relative_embedding(self): + cord = torch.tensor(np.array([[i, j] for i in range(self.window_size) for j in range(self.window_size)])) + relation = cord[:, None, :] - cord[None, :, :] + self.window_size - 1 + # negative is allowed + return self.relative_position_params[:, relation[:, :, 0].long(), relation[:, :, 1].long()] + + +class Block(nn.Module): + def __init__(self, input_dim, output_dim, head_dim, window_size, drop_path, type='W', input_resolution=None): + """ SwinTransformer Block + """ + super(Block, self).__init__() + self.input_dim = input_dim + self.output_dim = output_dim + assert type in ['W', 'SW'] + self.type = type + if input_resolution <= window_size: + self.type = 'W' + + self.ln1 = nn.LayerNorm(input_dim) + self.msa = WMSA(input_dim, input_dim, head_dim, window_size, self.type) + self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() + self.ln2 = nn.LayerNorm(input_dim) + self.mlp = nn.Sequential( + nn.Linear(input_dim, 4 * input_dim), + nn.GELU(), + nn.Linear(4 * input_dim, output_dim), + ) + + def forward(self, x): + x = x + self.drop_path(self.msa(self.ln1(x))) + x = x + self.drop_path(self.mlp(self.ln2(x))) + return x + + +class ConvTransBlock(nn.Module): + def __init__(self, conv_dim, trans_dim, head_dim, window_size, drop_path, type='W', input_resolution=None): + """ SwinTransformer and Conv Block + """ + super(ConvTransBlock, self).__init__() + self.conv_dim = conv_dim + self.trans_dim = trans_dim + self.head_dim = head_dim + self.window_size = window_size + self.drop_path = drop_path + self.type = type + self.input_resolution = input_resolution + + assert self.type in ['W', 'SW'] + if self.input_resolution <= self.window_size: + self.type = 'W' + + self.trans_block = Block(self.trans_dim, self.trans_dim, self.head_dim, self.window_size, self.drop_path, + self.type, self.input_resolution) + self.conv1_1 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True) + self.conv1_2 = nn.Conv2d(self.conv_dim + self.trans_dim, self.conv_dim + self.trans_dim, 1, 1, 0, bias=True) + + self.conv_block = nn.Sequential( + nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False), + nn.ReLU(True), + nn.Conv2d(self.conv_dim, self.conv_dim, 3, 1, 1, bias=False) + ) + + def forward(self, x): + conv_x, trans_x = torch.split(self.conv1_1(x), (self.conv_dim, self.trans_dim), dim=1) + conv_x = self.conv_block(conv_x) + conv_x + trans_x = Rearrange('b c h w -> b h w c')(trans_x) + trans_x = self.trans_block(trans_x) + trans_x = Rearrange('b h w c -> b c h w')(trans_x) + res = self.conv1_2(torch.cat((conv_x, trans_x), dim=1)) + x = x + res + + return x + + +class SCUNet(nn.Module): + # def __init__(self, in_nc=3, config=[2, 2, 2, 2, 2, 2, 2], dim=64, drop_path_rate=0.0, input_resolution=256): + def __init__(self, in_nc=3, config=None, dim=64, drop_path_rate=0.0, input_resolution=256): + super(SCUNet, self).__init__() + if config is None: + config = [2, 2, 2, 2, 2, 2, 2] + self.config = config + self.dim = dim + self.head_dim = 32 + self.window_size = 8 + + # drop path rate for each layer + dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(config))] + + self.m_head = [nn.Conv2d(in_nc, dim, 3, 1, 1, bias=False)] + + begin = 0 + self.m_down1 = [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution) + for i in range(config[0])] + \ + [nn.Conv2d(dim, 2 * dim, 2, 2, 0, bias=False)] + + begin += config[0] + self.m_down2 = [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 2) + for i in range(config[1])] + \ + [nn.Conv2d(2 * dim, 4 * dim, 2, 2, 0, bias=False)] + + begin += config[1] + self.m_down3 = [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 4) + for i in range(config[2])] + \ + [nn.Conv2d(4 * dim, 8 * dim, 2, 2, 0, bias=False)] + + begin += config[2] + self.m_body = [ConvTransBlock(4 * dim, 4 * dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 8) + for i in range(config[3])] + + begin += config[3] + self.m_up3 = [nn.ConvTranspose2d(8 * dim, 4 * dim, 2, 2, 0, bias=False), ] + \ + [ConvTransBlock(2 * dim, 2 * dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 4) + for i in range(config[4])] + + begin += config[4] + self.m_up2 = [nn.ConvTranspose2d(4 * dim, 2 * dim, 2, 2, 0, bias=False), ] + \ + [ConvTransBlock(dim, dim, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution // 2) + for i in range(config[5])] + + begin += config[5] + self.m_up1 = [nn.ConvTranspose2d(2 * dim, dim, 2, 2, 0, bias=False), ] + \ + [ConvTransBlock(dim // 2, dim // 2, self.head_dim, self.window_size, dpr[i + begin], + 'W' if not i % 2 else 'SW', input_resolution) + for i in range(config[6])] + + self.m_tail = [nn.Conv2d(dim, in_nc, 3, 1, 1, bias=False)] + + self.m_head = nn.Sequential(*self.m_head) + self.m_down1 = nn.Sequential(*self.m_down1) + self.m_down2 = nn.Sequential(*self.m_down2) + self.m_down3 = nn.Sequential(*self.m_down3) + self.m_body = nn.Sequential(*self.m_body) + self.m_up3 = nn.Sequential(*self.m_up3) + self.m_up2 = nn.Sequential(*self.m_up2) + self.m_up1 = nn.Sequential(*self.m_up1) + self.m_tail = nn.Sequential(*self.m_tail) + # self.apply(self._init_weights) + + def forward(self, x0): + + h, w = x0.size()[-2:] + paddingBottom = int(np.ceil(h / 64) * 64 - h) + paddingRight = int(np.ceil(w / 64) * 64 - w) + x0 = nn.ReplicationPad2d((0, paddingRight, 0, paddingBottom))(x0) + + x1 = self.m_head(x0) + x2 = self.m_down1(x1) + x3 = self.m_down2(x2) + x4 = self.m_down3(x3) + x = self.m_body(x4) + x = self.m_up3(x + x4) + x = self.m_up2(x + x3) + x = self.m_up1(x + x2) + x = self.m_tail(x + x1) + + x = x[..., :h, :w] + + return x + + def _init_weights(self, m): + if isinstance(m, nn.Linear): + trunc_normal_(m.weight, std=.02) + if m.bias is not None: + nn.init.constant_(m.bias, 0) + elif isinstance(m, nn.LayerNorm): + nn.init.constant_(m.bias, 0) + nn.init.constant_(m.weight, 1.0) \ No newline at end of file diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index fa7eaeb89..3fa062422 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -6,244 +6,41 @@ import torch import numpy as np from torch import einsum -from modules import prompt_parser +import modules.textual_inversion.textual_inversion +from modules import prompt_parser, devices, sd_hijack_optimizations, shared from modules.shared import opts, device, cmd_opts -from ldm.util import default -from einops import rearrange import ldm.modules.attention import ldm.modules.diffusionmodules.model - -# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion -def split_cross_attention_forward_v1(self, x, context=None, mask=None): - h = self.heads - - q = self.to_q(x) - context = default(context, x) - k = self.to_k(context) - v = self.to_v(context) - del context, x - - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) - - r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) - for i in range(0, q.shape[0], 2): - end = i + 2 - s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) - s1 *= self.scale - - s2 = s1.softmax(dim=-1) - del s1 - - r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) - del s2 - - r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) - del r1 - - return self.to_out(r2) +attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward +diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity +diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward -# taken from https://github.com/Doggettx/stable-diffusion -def split_cross_attention_forward(self, x, context=None, mask=None): - h = self.heads +def apply_optimizations(): + if cmd_opts.opt_split_attention_v1: + ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward_v1 + elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): + ldm.modules.attention.CrossAttention.forward = sd_hijack_optimizations.split_cross_attention_forward + ldm.modules.diffusionmodules.model.nonlinearity = sd_hijack_optimizations.nonlinearity_hijack + ldm.modules.diffusionmodules.model.AttnBlock.forward = sd_hijack_optimizations.cross_attention_attnblock_forward - q_in = self.to_q(x) - context = default(context, x) - k_in = self.to_k(context) * self.scale - v_in = self.to_v(context) - del context, x - q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) - del q_in, k_in, v_in +def undo_optimizations(): + ldm.modules.attention.CrossAttention.forward = attention_CrossAttention_forward + ldm.modules.diffusionmodules.model.nonlinearity = diffusionmodules_model_nonlinearity + ldm.modules.diffusionmodules.model.AttnBlock.forward = diffusionmodules_model_AttnBlock_forward - r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) - - stats = torch.cuda.memory_stats(q.device) - mem_active = stats['active_bytes.all.current'] - mem_reserved = stats['reserved_bytes.all.current'] - mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) - mem_free_torch = mem_reserved - mem_active - mem_free_total = mem_free_cuda + mem_free_torch - - gb = 1024 ** 3 - tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() - modifier = 3 if q.element_size() == 2 else 2.5 - mem_required = tensor_size * modifier - steps = 1 - - if mem_required > mem_free_total: - steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) - # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " - # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") - - if steps > 64: - max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 - raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' - f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') - - slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] - for i in range(0, q.shape[1], slice_size): - end = i + slice_size - s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) - - s2 = s1.softmax(dim=-1, dtype=q.dtype) - del s1 - - r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) - del s2 - - del q, k, v - - r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) - del r1 - - return self.to_out(r2) - -def nonlinearity_hijack(x): - # swish - t = torch.sigmoid(x) - x *= t - del t - - return x - -def cross_attention_attnblock_forward(self, x): - h_ = x - h_ = self.norm(h_) - q1 = self.q(h_) - k1 = self.k(h_) - v = self.v(h_) - - # compute attention - b, c, h, w = q1.shape - - q2 = q1.reshape(b, c, h*w) - del q1 - - q = q2.permute(0, 2, 1) # b,hw,c - del q2 - - k = k1.reshape(b, c, h*w) # b,c,hw - del k1 - - h_ = torch.zeros_like(k, device=q.device) - - stats = torch.cuda.memory_stats(q.device) - mem_active = stats['active_bytes.all.current'] - mem_reserved = stats['reserved_bytes.all.current'] - mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) - mem_free_torch = mem_reserved - mem_active - mem_free_total = mem_free_cuda + mem_free_torch - - tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() - mem_required = tensor_size * 2.5 - steps = 1 - - if mem_required > mem_free_total: - steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) - - slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] - for i in range(0, q.shape[1], slice_size): - end = i + slice_size - - w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] - w2 = w1 * (int(c)**(-0.5)) - del w1 - w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) - del w2 - - # attend to values - v1 = v.reshape(b, c, h*w) - w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) - del w3 - - h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] - del v1, w4 - - h2 = h_.reshape(b, c, h, w) - del h_ - - h3 = self.proj_out(h2) - del h2 - - h3 += x - - return h3 class StableDiffusionModelHijack: - ids_lookup = {} - word_embeddings = {} - word_embeddings_checksums = {} fixes = None comments = [] - dir_mtime = None layers = None circular_enabled = False clip = None - def load_textual_inversion_embeddings(self, dirname, model): - mt = os.path.getmtime(dirname) - if self.dir_mtime is not None and mt <= self.dir_mtime: - return - - self.dir_mtime = mt - self.ids_lookup.clear() - self.word_embeddings.clear() - - tokenizer = model.cond_stage_model.tokenizer - - def const_hash(a): - r = 0 - for v in a: - r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF - return r - - def process_file(path, filename): - name = os.path.splitext(filename)[0] - - data = torch.load(path, map_location="cpu") - - # textual inversion embeddings - if 'string_to_param' in data: - param_dict = data['string_to_param'] - if hasattr(param_dict, '_parameters'): - param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11 - assert len(param_dict) == 1, 'embedding file has multiple terms in it' - emb = next(iter(param_dict.items()))[1] - # diffuser concepts - elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: - assert len(data.keys()) == 1, 'embedding file has multiple terms in it' - - emb = next(iter(data.values())) - if len(emb.shape) == 1: - emb = emb.unsqueeze(0) - - self.word_embeddings[name] = emb.detach().to(device) - self.word_embeddings_checksums[name] = f'{const_hash(emb.reshape(-1)*100)&0xffff:04x}' - - ids = tokenizer([name], add_special_tokens=False)['input_ids'][0] - - first_id = ids[0] - if first_id not in self.ids_lookup: - self.ids_lookup[first_id] = [] - self.ids_lookup[first_id].append((ids, name)) - - for fn in os.listdir(dirname): - try: - fullfn = os.path.join(dirname, fn) - - if os.stat(fullfn).st_size == 0: - continue - - process_file(fullfn, fn) - except Exception: - print(f"Error loading emedding {fn}:", file=sys.stderr) - print(traceback.format_exc(), file=sys.stderr) - continue - - print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.") + embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase(cmd_opts.embeddings_dir) def hijack(self, m): model_embeddings = m.cond_stage_model.transformer.text_model.embeddings @@ -253,12 +50,7 @@ class StableDiffusionModelHijack: self.clip = m.cond_stage_model - if cmd_opts.opt_split_attention_v1: - ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward_v1 - elif not cmd_opts.disable_opt_split_attention and (cmd_opts.opt_split_attention or torch.cuda.is_available()): - ldm.modules.attention.CrossAttention.forward = split_cross_attention_forward - ldm.modules.diffusionmodules.model.nonlinearity = nonlinearity_hijack - ldm.modules.diffusionmodules.model.AttnBlock.forward = cross_attention_attnblock_forward + apply_optimizations() def flatten(el): flattened = [flatten(children) for children in el.children()] @@ -296,7 +88,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): def __init__(self, wrapped, hijack): super().__init__() self.wrapped = wrapped - self.hijack = hijack + self.hijack: StableDiffusionModelHijack = hijack self.tokenizer = wrapped.tokenizer self.max_length = wrapped.max_length self.token_mults = {} @@ -317,7 +109,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): if mult != 1.0: self.token_mults[ident] = mult - def tokenize_line(self, line, used_custom_terms, hijack_comments): id_start = self.wrapped.tokenizer.bos_token_id id_end = self.wrapped.tokenizer.eos_token_id @@ -339,28 +130,19 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): while i < len(tokens): token = tokens[i] - possible_matches = self.hijack.ids_lookup.get(token, None) + embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) - if possible_matches is None: + if embedding is None: remade_tokens.append(token) multipliers.append(weight) + i += 1 else: - found = False - for ids, word in possible_matches: - if tokens[i:i + len(ids)] == ids: - emb_len = int(self.hijack.word_embeddings[word].shape[0]) - fixes.append((len(remade_tokens), word)) - remade_tokens += [0] * emb_len - multipliers += [weight] * emb_len - i += len(ids) - 1 - found = True - used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word])) - break - - if not found: - remade_tokens.append(token) - multipliers.append(weight) - i += 1 + emb_len = int(embedding.vec.shape[0]) + fixes.append((len(remade_tokens), embedding)) + remade_tokens += [0] * emb_len + multipliers += [weight] * emb_len + used_custom_terms.append((embedding.name, embedding.checksum())) + i += embedding_length_in_tokens if len(remade_tokens) > maxlen - 2: vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} @@ -431,32 +213,23 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): while i < len(tokens): token = tokens[i] - possible_matches = self.hijack.ids_lookup.get(token, None) + embedding, embedding_length_in_tokens = self.hijack.embedding_db.find_embedding_at_position(tokens, i) mult_change = self.token_mults.get(token) if opts.enable_emphasis else None if mult_change is not None: mult *= mult_change - elif possible_matches is None: + i += 1 + elif embedding is None: remade_tokens.append(token) multipliers.append(mult) + i += 1 else: - found = False - for ids, word in possible_matches: - if tokens[i:i+len(ids)] == ids: - emb_len = int(self.hijack.word_embeddings[word].shape[0]) - fixes.append((len(remade_tokens), word)) - remade_tokens += [0] * emb_len - multipliers += [mult] * emb_len - i += len(ids) - 1 - found = True - used_custom_terms.append((word, self.hijack.word_embeddings_checksums[word])) - break - - if not found: - remade_tokens.append(token) - multipliers.append(mult) - - i += 1 + emb_len = int(embedding.vec.shape[0]) + fixes.append((len(remade_tokens), embedding)) + remade_tokens += [0] * emb_len + multipliers += [mult] * emb_len + used_custom_terms.append((embedding.name, embedding.checksum())) + i += embedding_length_in_tokens if len(remade_tokens) > maxlen - 2: vocab = {v: k for k, v in self.wrapped.tokenizer.get_vocab().items()} @@ -464,6 +237,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): overflowing_words = [vocab.get(int(x), "") for x in ovf] overflowing_text = self.wrapped.tokenizer.convert_tokens_to_string(''.join(overflowing_words)) hijack_comments.append(f"Warning: too many input tokens; some ({len(overflowing_words)}) have been truncated:\n{overflowing_text}\n") + token_count = len(remade_tokens) remade_tokens = remade_tokens + [id_end] * (maxlen - 2 - len(remade_tokens)) remade_tokens = [id_start] + remade_tokens[0:maxlen-2] + [id_end] @@ -484,7 +258,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): else: batch_multipliers, remade_batch_tokens, used_custom_terms, hijack_comments, hijack_fixes, token_count = self.process_text(text) - self.hijack.fixes = hijack_fixes self.hijack.comments = hijack_comments @@ -517,14 +290,19 @@ class EmbeddingsWithFixes(torch.nn.Module): inputs_embeds = self.wrapped(input_ids) - if batch_fixes is not None: - for fixes, tensor in zip(batch_fixes, inputs_embeds): - for offset, word in fixes: - emb = self.embeddings.word_embeddings[word] - emb_len = min(tensor.shape[0]-offset-1, emb.shape[0]) - tensor[offset+1:offset+1+emb_len] = self.embeddings.word_embeddings[word][0:emb_len] + if batch_fixes is None or len(batch_fixes) == 0 or max([len(x) for x in batch_fixes]) == 0: + return inputs_embeds - return inputs_embeds + vecs = [] + for fixes, tensor in zip(batch_fixes, inputs_embeds): + for offset, embedding in fixes: + emb = embedding.vec + emb_len = min(tensor.shape[0]-offset-1, emb.shape[0]) + tensor = torch.cat([tensor[0:offset+1], emb[0:emb_len], tensor[offset+1+emb_len:]]) + + vecs.append(tensor) + + return torch.stack(vecs) def add_circular_option_to_conv_2d(): diff --git a/modules/sd_hijack_optimizations.py b/modules/sd_hijack_optimizations.py new file mode 100644 index 000000000..9c079e578 --- /dev/null +++ b/modules/sd_hijack_optimizations.py @@ -0,0 +1,164 @@ +import math +import torch +from torch import einsum + +from ldm.util import default +from einops import rearrange + + +# see https://github.com/basujindal/stable-diffusion/pull/117 for discussion +def split_cross_attention_forward_v1(self, x, context=None, mask=None): + h = self.heads + + q = self.to_q(x) + context = default(context, x) + k = self.to_k(context) + v = self.to_v(context) + del context, x + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) + + r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device) + for i in range(0, q.shape[0], 2): + end = i + 2 + s1 = einsum('b i d, b j d -> b i j', q[i:end], k[i:end]) + s1 *= self.scale + + s2 = s1.softmax(dim=-1) + del s1 + + r1[i:end] = einsum('b i j, b j d -> b i d', s2, v[i:end]) + del s2 + + r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) + del r1 + + return self.to_out(r2) + + +# taken from https://github.com/Doggettx/stable-diffusion +def split_cross_attention_forward(self, x, context=None, mask=None): + h = self.heads + + q_in = self.to_q(x) + context = default(context, x) + k_in = self.to_k(context) * self.scale + v_in = self.to_v(context) + del context, x + + q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q_in, k_in, v_in)) + del q_in, k_in, v_in + + r1 = torch.zeros(q.shape[0], q.shape[1], v.shape[2], device=q.device, dtype=q.dtype) + + stats = torch.cuda.memory_stats(q.device) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) + mem_free_torch = mem_reserved - mem_active + mem_free_total = mem_free_cuda + mem_free_torch + + gb = 1024 ** 3 + tensor_size = q.shape[0] * q.shape[1] * k.shape[1] * q.element_size() + modifier = 3 if q.element_size() == 2 else 2.5 + mem_required = tensor_size * modifier + steps = 1 + + if mem_required > mem_free_total: + steps = 2 ** (math.ceil(math.log(mem_required / mem_free_total, 2))) + # print(f"Expected tensor size:{tensor_size/gb:0.1f}GB, cuda free:{mem_free_cuda/gb:0.1f}GB " + # f"torch free:{mem_free_torch/gb:0.1f} total:{mem_free_total/gb:0.1f} steps:{steps}") + + if steps > 64: + max_res = math.floor(math.sqrt(math.sqrt(mem_free_total / 2.5)) / 8) * 64 + raise RuntimeError(f'Not enough memory, use lower resolution (max approx. {max_res}x{max_res}). ' + f'Need: {mem_required / 64 / gb:0.1f}GB free, Have:{mem_free_total / gb:0.1f}GB free') + + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + s1 = einsum('b i d, b j d -> b i j', q[:, i:end], k) + + s2 = s1.softmax(dim=-1, dtype=q.dtype) + del s1 + + r1[:, i:end] = einsum('b i j, b j d -> b i d', s2, v) + del s2 + + del q, k, v + + r2 = rearrange(r1, '(b h) n d -> b n (h d)', h=h) + del r1 + + return self.to_out(r2) + +def nonlinearity_hijack(x): + # swish + t = torch.sigmoid(x) + x *= t + del t + + return x + +def cross_attention_attnblock_forward(self, x): + h_ = x + h_ = self.norm(h_) + q1 = self.q(h_) + k1 = self.k(h_) + v = self.v(h_) + + # compute attention + b, c, h, w = q1.shape + + q2 = q1.reshape(b, c, h*w) + del q1 + + q = q2.permute(0, 2, 1) # b,hw,c + del q2 + + k = k1.reshape(b, c, h*w) # b,c,hw + del k1 + + h_ = torch.zeros_like(k, device=q.device) + + stats = torch.cuda.memory_stats(q.device) + mem_active = stats['active_bytes.all.current'] + mem_reserved = stats['reserved_bytes.all.current'] + mem_free_cuda, _ = torch.cuda.mem_get_info(torch.cuda.current_device()) + mem_free_torch = mem_reserved - mem_active + mem_free_total = mem_free_cuda + mem_free_torch + + tensor_size = q.shape[0] * q.shape[1] * k.shape[2] * q.element_size() + mem_required = tensor_size * 2.5 + steps = 1 + + if mem_required > mem_free_total: + steps = 2**(math.ceil(math.log(mem_required / mem_free_total, 2))) + + slice_size = q.shape[1] // steps if (q.shape[1] % steps) == 0 else q.shape[1] + for i in range(0, q.shape[1], slice_size): + end = i + slice_size + + w1 = torch.bmm(q[:, i:end], k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] + w2 = w1 * (int(c)**(-0.5)) + del w1 + w3 = torch.nn.functional.softmax(w2, dim=2, dtype=q.dtype) + del w2 + + # attend to values + v1 = v.reshape(b, c, h*w) + w4 = w3.permute(0, 2, 1) # b,hw,hw (first hw of k, second of q) + del w3 + + h_[:, :, i:end] = torch.bmm(v1, w4) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] + del v1, w4 + + h2 = h_.reshape(b, c, h, w) + del h_ + + h3 = self.proj_out(h2) + del h2 + + h3 += x + + return h3 diff --git a/modules/sd_models.py b/modules/sd_models.py index 2539f14cd..5f9920647 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -8,14 +8,11 @@ from omegaconf import OmegaConf from ldm.util import instantiate_from_config -from modules import shared, modelloader +from modules import shared, modelloader, devices from modules.paths import models_path model_dir = "Stable-diffusion" model_path = os.path.abspath(os.path.join(models_path, model_dir)) -model_name = "sd-v1-4.ckpt" -model_url = "https://drive.yerf.org/wl/?id=EBfTrmcCCUAGaQBXVIj5lJmEhjoP1tgl&mode=grid&download=1" -user_dir = None CheckpointInfo = namedtuple("CheckpointInfo", ['filename', 'title', 'hash', 'model_name']) checkpoints_list = {} @@ -30,12 +27,10 @@ except Exception: pass -def setup_model(dirname): - global user_dir - user_dir = dirname +def setup_model(): if not os.path.exists(model_path): os.makedirs(model_path) - checkpoints_list.clear() + list_models() @@ -45,13 +40,13 @@ def checkpoint_tiles(): def list_models(): checkpoints_list.clear() - model_list = modelloader.load_models(model_path=model_path, model_url=model_url, command_path=user_dir, ext_filter=[".ckpt"], download_name=model_name) + model_list = modelloader.load_models(model_path=model_path, command_path=shared.cmd_opts.ckpt_dir, ext_filter=[".ckpt"]) def modeltitle(path, shorthash): abspath = os.path.abspath(path) - if user_dir is not None and abspath.startswith(user_dir): - name = abspath.replace(user_dir, '') + if shared.cmd_opts.ckpt_dir is not None and abspath.startswith(shared.cmd_opts.ckpt_dir): + name = abspath.replace(shared.cmd_opts.ckpt_dir, '') elif abspath.startswith(model_path): name = abspath.replace(model_path, '') else: @@ -69,7 +64,7 @@ def list_models(): h = model_hash(cmd_ckpt) title, short_model_name = modeltitle(cmd_ckpt, h) checkpoints_list[title] = CheckpointInfo(cmd_ckpt, title, h, short_model_name) - shared.opts.sd_model_checkpoint = title + shared.opts.data['sd_model_checkpoint'] = title elif cmd_ckpt is not None and cmd_ckpt != shared.default_sd_model_file: print(f"Checkpoint in --ckpt argument not found (Possible it was moved to {model_path}: {cmd_ckpt}", file=sys.stderr) for filename in model_list: @@ -106,8 +101,11 @@ def select_checkpoint(): if len(checkpoints_list) == 0: print(f"No checkpoints found. When searching for checkpoints, looked at:", file=sys.stderr) - print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr) - print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) + if shared.cmd_opts.ckpt is not None: + print(f" - file {os.path.abspath(shared.cmd_opts.ckpt)}", file=sys.stderr) + print(f" - directory {model_path}", file=sys.stderr) + if shared.cmd_opts.ckpt_dir is not None: + print(f" - directory {os.path.abspath(shared.cmd_opts.ckpt_dir)}", file=sys.stderr) print(f"Can't run without a checkpoint. Find and place a .ckpt file into any of those locations. The program will exit.", file=sys.stderr) exit(1) @@ -134,6 +132,8 @@ def load_model_weights(model, checkpoint_file, sd_model_hash): if not shared.cmd_opts.no_half: model.half() + devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16 + model.sd_model_hash = sd_model_hash model.sd_model_checkpint = checkpoint_file diff --git a/modules/sd_samplers.py b/modules/sd_samplers.py index 925222148..9316875ab 100644 --- a/modules/sd_samplers.py +++ b/modules/sd_samplers.py @@ -77,7 +77,9 @@ def extended_tdqm(sequence, *args, desc=None, **kwargs): state.sampling_steps = len(sequence) state.sampling_step = 0 - for x in tqdm.tqdm(sequence, *args, desc=state.job, file=shared.progress_print_out, **kwargs): + seq = sequence if cmd_opts.disable_console_progressbars else tqdm.tqdm(sequence, *args, desc=state.job, file=shared.progress_print_out, **kwargs) + + for x in seq: if state.interrupted: break @@ -207,7 +209,9 @@ def extended_trange(sampler, count, *args, **kwargs): state.sampling_steps = count state.sampling_step = 0 - for x in tqdm.trange(count, *args, desc=state.job, file=shared.progress_print_out, **kwargs): + seq = range(count) if cmd_opts.disable_console_progressbars else tqdm.trange(count, *args, desc=state.job, file=shared.progress_print_out, **kwargs) + + for x in seq: if state.interrupted: break diff --git a/modules/shared.py b/modules/shared.py index ac968b2d2..1bf7a6c14 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -40,6 +40,7 @@ parser.add_argument("--gfpgan-models-path", type=str, help="Path to directory wi parser.add_argument("--esrgan-models-path", type=str, help="Path to directory with ESRGAN model file(s).", default=os.path.join(model_path, 'ESRGAN')) parser.add_argument("--bsrgan-models-path", type=str, help="Path to directory with BSRGAN model file(s).", default=os.path.join(model_path, 'BSRGAN')) parser.add_argument("--realesrgan-models-path", type=str, help="Path to directory with RealESRGAN model file(s).", default=os.path.join(model_path, 'RealESRGAN')) +parser.add_argument("--scunet-models-path", type=str, help="Path to directory with ScuNET model file(s).", default=os.path.join(model_path, 'ScuNET')) parser.add_argument("--swinir-models-path", type=str, help="Path to directory with SwinIR model file(s).", default=os.path.join(model_path, 'SwinIR')) parser.add_argument("--ldsr-models-path", type=str, help="Path to directory with LDSR model file(s).", default=os.path.join(model_path, 'LDSR')) parser.add_argument("--opt-split-attention", action='store_true', help="force-enables cross-attention layer optimization. By default, it's on for torch.cuda and off for other torch devices.") @@ -57,6 +58,9 @@ parser.add_argument("--opt-channelslast", action='store_true', help="change memo parser.add_argument("--styles-file", type=str, help="filename to use for styles", default=os.path.join(script_path, 'styles.csv')) parser.add_argument("--autolaunch", action='store_true', help="open the webui URL in the system's default browser upon launch", default=False) parser.add_argument("--use-textbox-seed", action='store_true', help="use textbox for seeds in UI (no up/down, but possible to input long seeds)", default=False) +parser.add_argument("--disable-console-progressbars", action='store_true', help="do not output progressbars to console", default=False) +parser.add_argument("--enable-console-prompts", action='store_true', help="print prompts to console when generating with txt2img and img2img", default=False) + cmd_opts = parser.parse_args() device = get_optimal_device() @@ -78,6 +82,7 @@ class State: current_latent = None current_image = None current_image_sampling_step = 0 + textinfo = None def interrupt(self): self.interrupted = True @@ -88,7 +93,7 @@ class State: self.current_image_sampling_step = 0 def get_job_timestamp(self): - return datetime.datetime.now().strftime("%Y%m%d%H%M%S") + return datetime.datetime.now().strftime("%Y%m%d%H%M%S") # shouldn't this return job_timestamp? state = State() @@ -318,14 +323,14 @@ class TotalTQDM: ) def update(self): - if not opts.multiple_tqdm: + if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars: return if self._tqdm is None: self.reset() self._tqdm.update() def updateTotal(self, new_total): - if not opts.multiple_tqdm: + if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars: return if self._tqdm is None: self.reset() diff --git a/modules/swinir_model.py b/modules/swinir_model.py index 41fda5a7c..9bd454c69 100644 --- a/modules/swinir_model.py +++ b/modules/swinir_model.py @@ -5,6 +5,7 @@ import numpy as np import torch from PIL import Image from basicsr.utils.download_util import load_file_from_url +from tqdm import tqdm from modules import modelloader from modules.paths import models_path @@ -122,18 +123,20 @@ def inference(img, model, tile, tile_overlap, window_size, scale): E = torch.zeros(b, c, h * sf, w * sf, dtype=torch.half, device=device).type_as(img) W = torch.zeros_like(E, dtype=torch.half, device=device) - for h_idx in h_idx_list: - for w_idx in w_idx_list: - in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] - out_patch = model(in_patch) - out_patch_mask = torch.ones_like(out_patch) + with tqdm(total=len(h_idx_list) * len(w_idx_list), desc="SwinIR tiles") as pbar: + for h_idx in h_idx_list: + for w_idx in w_idx_list: + in_patch = img[..., h_idx: h_idx + tile, w_idx: w_idx + tile] + out_patch = model(in_patch) + out_patch_mask = torch.ones_like(out_patch) - E[ - ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf - ].add_(out_patch) - W[ - ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf - ].add_(out_patch_mask) + E[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch) + W[ + ..., h_idx * sf: (h_idx + tile) * sf, w_idx * sf: (w_idx + tile) * sf + ].add_(out_patch_mask) + pbar.update(1) output = E.div_(W) return output diff --git a/modules/textual_inversion/dataset.py b/modules/textual_inversion/dataset.py new file mode 100644 index 000000000..7e134a08f --- /dev/null +++ b/modules/textual_inversion/dataset.py @@ -0,0 +1,76 @@ +import os +import numpy as np +import PIL +import torch +from PIL import Image +from torch.utils.data import Dataset +from torchvision import transforms + +import random +import tqdm + + +class PersonalizedBase(Dataset): + def __init__(self, data_root, size=None, repeats=100, flip_p=0.5, placeholder_token="*", width=512, height=512, model=None, device=None, template_file=None): + + self.placeholder_token = placeholder_token + + self.size = size + self.width = width + self.height = height + self.flip = transforms.RandomHorizontalFlip(p=flip_p) + + self.dataset = [] + + with open(template_file, "r") as file: + lines = [x.strip() for x in file.readlines()] + + self.lines = lines + + assert data_root, 'dataset directory not specified' + + self.image_paths = [os.path.join(data_root, file_path) for file_path in os.listdir(data_root)] + print("Preparing dataset...") + for path in tqdm.tqdm(self.image_paths): + image = Image.open(path) + image = image.convert('RGB') + image = image.resize((self.width, self.height), PIL.Image.BICUBIC) + + filename = os.path.basename(path) + filename_tokens = os.path.splitext(filename)[0].replace('_', '-').replace(' ', '-').split('-') + filename_tokens = [token for token in filename_tokens if token.isalpha()] + + npimage = np.array(image).astype(np.uint8) + npimage = (npimage / 127.5 - 1.0).astype(np.float32) + + torchdata = torch.from_numpy(npimage).to(device=device, dtype=torch.float32) + torchdata = torch.moveaxis(torchdata, 2, 0) + + init_latent = model.get_first_stage_encoding(model.encode_first_stage(torchdata.unsqueeze(dim=0))).squeeze() + + self.dataset.append((init_latent, filename_tokens)) + + self.length = len(self.dataset) * repeats + + self.initial_indexes = np.arange(self.length) % len(self.dataset) + self.indexes = None + self.shuffle() + + def shuffle(self): + self.indexes = self.initial_indexes[torch.randperm(self.initial_indexes.shape[0])] + + def __len__(self): + return self.length + + def __getitem__(self, i): + if i % len(self.dataset) == 0: + self.shuffle() + + index = self.indexes[i % len(self.indexes)] + x, filename_tokens = self.dataset[index] + + text = random.choice(self.lines) + text = text.replace("[name]", self.placeholder_token) + text = text.replace("[filewords]", ' '.join(filename_tokens)) + + return x, text diff --git a/modules/textual_inversion/textual_inversion.py b/modules/textual_inversion/textual_inversion.py new file mode 100644 index 000000000..1183aab76 --- /dev/null +++ b/modules/textual_inversion/textual_inversion.py @@ -0,0 +1,267 @@ +import os +import sys +import traceback + +import torch +import tqdm +import html +import datetime + +from modules import shared, devices, sd_hijack, processing, sd_models +import modules.textual_inversion.dataset + + +class Embedding: + def __init__(self, vec, name, step=None): + self.vec = vec + self.name = name + self.step = step + self.cached_checksum = None + self.sd_checkpoint = None + self.sd_checkpoint_name = None + + def save(self, filename): + embedding_data = { + "string_to_token": {"*": 265}, + "string_to_param": {"*": self.vec}, + "name": self.name, + "step": self.step, + "sd_checkpoint": self.sd_checkpoint, + "sd_checkpoint_name": self.sd_checkpoint_name, + } + + torch.save(embedding_data, filename) + + def checksum(self): + if self.cached_checksum is not None: + return self.cached_checksum + + def const_hash(a): + r = 0 + for v in a: + r = (r * 281 ^ int(v) * 997) & 0xFFFFFFFF + return r + + self.cached_checksum = f'{const_hash(self.vec.reshape(-1) * 100) & 0xffff:04x}' + return self.cached_checksum + + +class EmbeddingDatabase: + def __init__(self, embeddings_dir): + self.ids_lookup = {} + self.word_embeddings = {} + self.dir_mtime = None + self.embeddings_dir = embeddings_dir + + def register_embedding(self, embedding, model): + + self.word_embeddings[embedding.name] = embedding + + ids = model.cond_stage_model.tokenizer([embedding.name], add_special_tokens=False)['input_ids'][0] + + first_id = ids[0] + if first_id not in self.ids_lookup: + self.ids_lookup[first_id] = [] + + self.ids_lookup[first_id] = sorted(self.ids_lookup[first_id] + [(ids, embedding)], key=lambda x: len(x[0]), reverse=True) + + return embedding + + def load_textual_inversion_embeddings(self): + mt = os.path.getmtime(self.embeddings_dir) + if self.dir_mtime is not None and mt <= self.dir_mtime: + return + + self.dir_mtime = mt + self.ids_lookup.clear() + self.word_embeddings.clear() + + def process_file(path, filename): + name = os.path.splitext(filename)[0] + + data = torch.load(path, map_location="cpu") + + # textual inversion embeddings + if 'string_to_param' in data: + param_dict = data['string_to_param'] + if hasattr(param_dict, '_parameters'): + param_dict = getattr(param_dict, '_parameters') # fix for torch 1.12.1 loading saved file from torch 1.11 + assert len(param_dict) == 1, 'embedding file has multiple terms in it' + emb = next(iter(param_dict.items()))[1] + # diffuser concepts + elif type(data) == dict and type(next(iter(data.values()))) == torch.Tensor: + assert len(data.keys()) == 1, 'embedding file has multiple terms in it' + + emb = next(iter(data.values())) + if len(emb.shape) == 1: + emb = emb.unsqueeze(0) + else: + raise Exception(f"Couldn't identify {filename} as neither textual inversion embedding nor diffuser concept.") + + vec = emb.detach().to(devices.device, dtype=torch.float32) + embedding = Embedding(vec, name) + embedding.step = data.get('step', None) + embedding.sd_checkpoint = data.get('hash', None) + embedding.sd_checkpoint_name = data.get('sd_checkpoint_name', None) + self.register_embedding(embedding, shared.sd_model) + + for fn in os.listdir(self.embeddings_dir): + try: + fullfn = os.path.join(self.embeddings_dir, fn) + + if os.stat(fullfn).st_size == 0: + continue + + process_file(fullfn, fn) + except Exception: + print(f"Error loading emedding {fn}:", file=sys.stderr) + print(traceback.format_exc(), file=sys.stderr) + continue + + print(f"Loaded a total of {len(self.word_embeddings)} textual inversion embeddings.") + + def find_embedding_at_position(self, tokens, offset): + token = tokens[offset] + possible_matches = self.ids_lookup.get(token, None) + + if possible_matches is None: + return None, None + + for ids, embedding in possible_matches: + if tokens[offset:offset + len(ids)] == ids: + return embedding, len(ids) + + return None, None + + +def create_embedding(name, num_vectors_per_token, init_text='*'): + cond_model = shared.sd_model.cond_stage_model + embedding_layer = cond_model.wrapped.transformer.text_model.embeddings + + ids = cond_model.tokenizer(init_text, max_length=num_vectors_per_token, return_tensors="pt", add_special_tokens=False)["input_ids"] + embedded = embedding_layer.token_embedding.wrapped(ids.to(devices.device)).squeeze(0) + vec = torch.zeros((num_vectors_per_token, embedded.shape[1]), device=devices.device) + + for i in range(num_vectors_per_token): + vec[i] = embedded[i * int(embedded.shape[0]) // num_vectors_per_token] + + fn = os.path.join(shared.cmd_opts.embeddings_dir, f"{name}.pt") + assert not os.path.exists(fn), f"file {fn} already exists" + + embedding = Embedding(vec, name) + embedding.step = 0 + embedding.save(fn) + + return fn + + +def train_embedding(embedding_name, learn_rate, data_root, log_directory, steps, create_image_every, save_embedding_every, template_file): + assert embedding_name, 'embedding not selected' + + shared.state.textinfo = "Initializing textual inversion training..." + shared.state.job_count = steps + + filename = os.path.join(shared.cmd_opts.embeddings_dir, f'{embedding_name}.pt') + + log_directory = os.path.join(log_directory, datetime.datetime.now().strftime("%Y-%d-%m"), embedding_name) + + if save_embedding_every > 0: + embedding_dir = os.path.join(log_directory, "embeddings") + os.makedirs(embedding_dir, exist_ok=True) + else: + embedding_dir = None + + if create_image_every > 0: + images_dir = os.path.join(log_directory, "images") + os.makedirs(images_dir, exist_ok=True) + else: + images_dir = None + + cond_model = shared.sd_model.cond_stage_model + + shared.state.textinfo = f"Preparing dataset from {html.escape(data_root)}..." + with torch.autocast("cuda"): + ds = modules.textual_inversion.dataset.PersonalizedBase(data_root=data_root, size=512, placeholder_token=embedding_name, model=shared.sd_model, device=devices.device, template_file=template_file) + + hijack = sd_hijack.model_hijack + + embedding = hijack.embedding_db.word_embeddings[embedding_name] + embedding.vec.requires_grad = True + + optimizer = torch.optim.AdamW([embedding.vec], lr=learn_rate) + + losses = torch.zeros((32,)) + + last_saved_file = "" + last_saved_image = "" + + ititial_step = embedding.step or 0 + if ititial_step > steps: + return embedding, filename + + pbar = tqdm.tqdm(enumerate(ds), total=steps-ititial_step) + for i, (x, text) in pbar: + embedding.step = i + ititial_step + + if embedding.step > steps: + break + + if shared.state.interrupted: + break + + with torch.autocast("cuda"): + c = cond_model([text]) + loss = shared.sd_model(x.unsqueeze(0), c)[0] + + losses[embedding.step % losses.shape[0]] = loss.item() + + optimizer.zero_grad() + loss.backward() + optimizer.step() + + pbar.set_description(f"loss: {losses.mean():.7f}") + + if embedding.step > 0 and embedding_dir is not None and embedding.step % save_embedding_every == 0: + last_saved_file = os.path.join(embedding_dir, f'{embedding_name}-{embedding.step}.pt') + embedding.save(last_saved_file) + + if embedding.step > 0 and images_dir is not None and embedding.step % create_image_every == 0: + last_saved_image = os.path.join(images_dir, f'{embedding_name}-{embedding.step}.png') + + p = processing.StableDiffusionProcessingTxt2Img( + sd_model=shared.sd_model, + prompt=text, + steps=20, + do_not_save_grid=True, + do_not_save_samples=True, + ) + + processed = processing.process_images(p) + image = processed.images[0] + + shared.state.current_image = image + image.save(last_saved_image) + + last_saved_image += f", prompt: {text}" + + shared.state.job_no = embedding.step + + shared.state.textinfo = f""" +

+Loss: {losses.mean():.7f}
+Step: {embedding.step}
+Last prompt: {html.escape(text)}
+Last saved embedding: {html.escape(last_saved_file)}
+Last saved image: {html.escape(last_saved_image)}
+

+""" + + checkpoint = sd_models.select_checkpoint() + + embedding.sd_checkpoint = checkpoint.hash + embedding.sd_checkpoint_name = checkpoint.model_name + embedding.cached_checksum = None + embedding.save(filename) + + return embedding, filename + diff --git a/modules/textual_inversion/ui.py b/modules/textual_inversion/ui.py new file mode 100644 index 000000000..633037d8e --- /dev/null +++ b/modules/textual_inversion/ui.py @@ -0,0 +1,32 @@ +import html + +import gradio as gr + +import modules.textual_inversion.textual_inversion as ti +from modules import sd_hijack, shared + + +def create_embedding(name, initialization_text, nvpt): + filename = ti.create_embedding(name, nvpt, init_text=initialization_text) + + sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() + + return gr.Dropdown.update(choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())), f"Created: {filename}", "" + + +def train_embedding(*args): + + try: + sd_hijack.undo_optimizations() + + embedding, filename = ti.train_embedding(*args) + + res = f""" +Training {'interrupted' if shared.state.interrupted else 'finished'} at {embedding.step} steps. +Embedding saved to {html.escape(filename)} +""" + return res, "" + except Exception: + raise + finally: + sd_hijack.apply_optimizations() diff --git a/modules/txt2img.py b/modules/txt2img.py index 5368e4d00..d4406c3c0 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -34,7 +34,9 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: denoising_strength=denoising_strength if enable_hr else None, ) - print(f"\ntxt2img: {prompt}", file=shared.progress_print_out) + if cmd_opts.enable_console_prompts: + print(f"\ntxt2img: {prompt}", file=shared.progress_print_out) + processed = modules.scripts.scripts_txt2img.run(p, *args) if processed is None: diff --git a/modules/ui.py b/modules/ui.py index 6b30f84ba..78a15d83a 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -11,6 +11,7 @@ import time import traceback import platform import subprocess as sp +from functools import reduce import numpy as np import torch @@ -21,6 +22,7 @@ import gradio as gr import gradio.utils import gradio.routes +from modules import sd_hijack from modules.paths import script_path from modules.shared import opts, cmd_opts import modules.shared as shared @@ -32,6 +34,9 @@ import modules.gfpgan_model import modules.codeformer_model import modules.styles import modules.generation_parameters_copypaste +from modules.prompt_parser import get_learned_conditioning_prompt_schedules +from modules.images import apply_filename_pattern, get_next_sequence_number +import modules.textual_inversion.ui # this is a fix for Windows users. Without it, javascript files will be served with text/html content-type and the bowser will not show any UI mimetypes.init() @@ -94,14 +99,31 @@ def send_gradio_gallery_to_image(x): def save_files(js_data, images, index): - import csv - - os.makedirs(opts.outdir_save, exist_ok=True) - + import csv filenames = [] + #quick dictionary to class object conversion. Its neccesary due apply_filename_pattern requiring it + class MyObject: + def __init__(self, d=None): + if d is not None: + for key, value in d.items(): + setattr(self, key, value) + data = json.loads(js_data) + + p = MyObject(data) + path = opts.outdir_save + save_to_dirs = opts.save_to_dirs + + if save_to_dirs: + dirname = apply_filename_pattern(opts.directories_filename_pattern or "[prompt_words]", p, p.seed, p.prompt) + path = os.path.join(opts.outdir_save, dirname) + + os.makedirs(path, exist_ok=True) + + if index > -1 and opts.save_selected_only and (index >= data["index_of_first_image"]): # ensures we are looking at a specific non-grid picture, and we have save_selected_only + images = [images[index]] infotexts = [data["infotexts"][index]] else: @@ -113,11 +135,20 @@ def save_files(js_data, images, index): if at_start: writer.writerow(["prompt", "seed", "width", "height", "sampler", "cfgs", "steps", "filename", "negative_prompt"]) - filename_base = str(int(time.time() * 1000)) + file_decoration = opts.samples_filename_pattern or "[seed]-[prompt_spaces]" + if file_decoration != "": + file_decoration = "-" + file_decoration.lower() + file_decoration = apply_filename_pattern(file_decoration, p, p.seed, p.prompt) + truncated = (file_decoration[:240] + '..') if len(file_decoration) > 240 else file_decoration + filename_base = truncated extension = opts.samples_format.lower() + + basecount = get_next_sequence_number(path, "") for i, filedata in enumerate(images): - filename = filename_base + ("" if len(images) == 1 else "-" + str(i + 1)) + f".{extension}" - filepath = os.path.join(opts.outdir_save, filename) + file_number = f"{basecount+i:05}" + filename = file_number + filename_base + f".{extension}" + filepath = os.path.join(path, filename) + if filedata.startswith("data:image/png;base64,"): filedata = filedata[len("data:image/png;base64,"):] @@ -142,8 +173,8 @@ def save_files(js_data, images, index): return '', '', plaintext_to_html(f"Saved: {filenames[0]}") -def wrap_gradio_call(func): - def f(*args, **kwargs): +def wrap_gradio_call(func, extra_outputs=None): + def f(*args, extra_outputs_array=extra_outputs, **kwargs): run_memmon = opts.memmon_poll_rate > 0 and not shared.mem_mon.disabled if run_memmon: shared.mem_mon.monitor() @@ -159,7 +190,10 @@ def wrap_gradio_call(func): shared.state.job = "" shared.state.job_count = 0 - res = [None, '', f"
{plaintext_to_html(type(e).__name__+': '+str(e))}
"] + if extra_outputs_array is None: + extra_outputs_array = [None, ''] + + res = extra_outputs_array + [f"
{plaintext_to_html(type(e).__name__+': '+str(e))}
"] elapsed = time.perf_counter() - t @@ -179,6 +213,7 @@ def wrap_gradio_call(func): res[-1] += f"

Time taken: {elapsed:.2f}s

{vram_html}
" shared.state.interrupted = False + shared.state.job_count = 0 return tuple(res) @@ -187,7 +222,7 @@ def wrap_gradio_call(func): def check_progress_call(id_part): if shared.state.job_count == 0: - return "", gr_show(False), gr_show(False) + return "", gr_show(False), gr_show(False), gr_show(False) progress = 0 @@ -219,13 +254,19 @@ def check_progress_call(id_part): else: preview_visibility = gr_show(True) - return f"

{progressbar}

", preview_visibility, image + if shared.state.textinfo is not None: + textinfo_result = gr.HTML.update(value=shared.state.textinfo, visible=True) + else: + textinfo_result = gr_show(False) + + return f"

{progressbar}

", preview_visibility, image, textinfo_result def check_progress_call_initial(id_part): shared.state.job_count = -1 shared.state.current_latent = None shared.state.current_image = None + shared.state.textinfo = None return check_progress_call(id_part) @@ -345,8 +386,11 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info: outputs=[seed, dummy_component] ) -def update_token_counter(text): - tokens, token_count, max_length = model_hijack.tokenize(text) +def update_token_counter(text, steps): + prompt_schedules = get_learned_conditioning_prompt_schedules([text], steps) + flat_prompts = reduce(lambda list1, list2: list1+list2, prompt_schedules) + prompts = [prompt_text for step,prompt_text in flat_prompts] + tokens, token_count, max_length = max([model_hijack.tokenize(prompt) for prompt in prompts], key=lambda args: args[1]) style_class = ' class="red"' if (token_count > max_length) else "" return f"{token_count}/{max_length}" @@ -364,8 +408,7 @@ def create_toprow(is_img2img): roll = gr.Button(value=art_symbol, elem_id="roll", visible=len(shared.artist_db.artists) > 0) paste = gr.Button(value=paste_symbol, elem_id="paste") token_counter = gr.HTML(value="", elem_id=f"{id_part}_token_counter") - hidden_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") - hidden_button.click(fn=update_token_counter, inputs=[prompt], outputs=[token_counter]) + token_button = gr.Button(visible=False, elem_id=f"{id_part}_token_button") with gr.Column(scale=10, elem_id="style_pos_col"): prompt_style = gr.Dropdown(label="Style 1", elem_id=f"{id_part}_style_index", choices=[k for k, v in shared.prompt_styles.styles.items()], value=next(iter(shared.prompt_styles.styles.keys())), visible=len(shared.prompt_styles.styles) > 1) @@ -396,16 +439,19 @@ def create_toprow(is_img2img): prompt_style_apply = gr.Button('Apply style', elem_id="style_apply") save_style = gr.Button('Create style', elem_id="style_create") - return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, interrogate, prompt_style_apply, save_style, paste + return prompt, roll, prompt_style, negative_prompt, prompt_style2, submit, interrogate, prompt_style_apply, save_style, paste, token_counter, token_button -def setup_progressbar(progressbar, preview, id_part): +def setup_progressbar(progressbar, preview, id_part, textinfo=None): + if textinfo is None: + textinfo = gr.HTML(visible=False) + check_progress = gr.Button('Check progress', elem_id=f"{id_part}_check_progress", visible=False) check_progress.click( fn=lambda: check_progress_call(id_part), show_progress=False, inputs=[], - outputs=[progressbar, preview, preview], + outputs=[progressbar, preview, preview, textinfo], ) check_progress_initial = gr.Button('Check progress (first)', elem_id=f"{id_part}_check_progress_initial", visible=False) @@ -413,13 +459,16 @@ def setup_progressbar(progressbar, preview, id_part): fn=lambda: check_progress_call_initial(id_part), show_progress=False, inputs=[], - outputs=[progressbar, preview, preview], + outputs=[progressbar, preview, preview, textinfo], ) -def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): +def create_ui(wrap_gradio_gpu_call): + import modules.img2img + import modules.txt2img + with gr.Blocks(analytics_enabled=False) as txt2img_interface: - txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, txt2img_prompt_style_apply, txt2img_save_style, paste = create_toprow(is_img2img=False) + txt2img_prompt, roll, txt2img_prompt_style, txt2img_negative_prompt, txt2img_prompt_style2, submit, _, txt2img_prompt_style_apply, txt2img_save_style, paste, token_counter, token_button = create_toprow(is_img2img=False) dummy_component = gr.Label(visible=False) with gr.Row(elem_id='txt2img_progress_row'): @@ -483,7 +532,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): connect_reuse_seed(subseed, reuse_subseed, generation_info, dummy_component, is_subseed=True) txt2img_args = dict( - fn=txt2img, + fn=wrap_gradio_gpu_call(modules.txt2img.txt2img), _js="submit", inputs=[ txt2img_prompt, @@ -539,6 +588,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): roll.click( fn=roll_artist, + _js="update_txt2img_tokens", inputs=[ txt2img_prompt, ], @@ -567,9 +617,10 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d)), ] modules.generation_parameters_copypaste.connect_paste(paste, txt2img_paste_fields, txt2img_prompt) + token_button.click(fn=update_token_counter, inputs=[txt2img_prompt, steps], outputs=[token_counter]) with gr.Blocks(analytics_enabled=False) as img2img_interface: - img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_prompt_style_apply, img2img_save_style, paste = create_toprow(is_img2img=True) + img2img_prompt, roll, img2img_prompt_style, img2img_negative_prompt, img2img_prompt_style2, submit, img2img_interrogate, img2img_prompt_style_apply, img2img_save_style, paste, token_counter, token_button = create_toprow(is_img2img=True) with gr.Row(elem_id='img2img_progress_row'): with gr.Column(scale=1): @@ -675,7 +726,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): ) img2img_args = dict( - fn=img2img, + fn=wrap_gradio_gpu_call(modules.img2img.img2img), _js="submit_img2img", inputs=[ dummy_component, @@ -743,6 +794,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): roll.click( fn=roll_artist, + _js="update_img2img_tokens", inputs=[ img2img_prompt, ], @@ -753,6 +805,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): prompts = [(txt2img_prompt, txt2img_negative_prompt), (img2img_prompt, img2img_negative_prompt)] style_dropdowns = [(txt2img_prompt_style, txt2img_prompt_style2), (img2img_prompt_style, img2img_prompt_style2)] + style_js_funcs = ["update_txt2img_tokens", "update_img2img_tokens"] for button, (prompt, negative_prompt) in zip([txt2img_save_style, img2img_save_style], prompts): button.click( @@ -764,9 +817,10 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): outputs=[txt2img_prompt_style, img2img_prompt_style, txt2img_prompt_style2, img2img_prompt_style2], ) - for button, (prompt, negative_prompt), (style1, style2) in zip([txt2img_prompt_style_apply, img2img_prompt_style_apply], prompts, style_dropdowns): + for button, (prompt, negative_prompt), (style1, style2), js_func in zip([txt2img_prompt_style_apply, img2img_prompt_style_apply], prompts, style_dropdowns, style_js_funcs): button.click( fn=apply_styles, + _js=js_func, inputs=[prompt, negative_prompt, style1, style2], outputs=[prompt, negative_prompt, style1, style2], ) @@ -789,6 +843,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): (denoising_strength, "Denoising strength"), ] modules.generation_parameters_copypaste.connect_paste(paste, img2img_paste_fields, img2img_prompt) + token_button.click(fn=update_token_counter, inputs=[img2img_prompt, steps], outputs=[token_counter]) with gr.Blocks(analytics_enabled=False) as extras_interface: with gr.Row().style(equal_height=False): @@ -828,7 +883,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): open_extras_folder = gr.Button('Open output directory', elem_id=button_id) submit.click( - fn=run_extras, + fn=wrap_gradio_gpu_call(modules.extras.run_extras), _js="get_extras_tab_index", inputs=[ dummy_component, @@ -878,7 +933,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): pnginfo_send_to_img2img = gr.Button('Send to img2img') image.change( - fn=wrap_gradio_call(run_pnginfo), + fn=wrap_gradio_call(modules.extras.run_pnginfo), inputs=[image], outputs=[html, generation_info, html2], ) @@ -887,7 +942,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): with gr.Row().style(equal_height=False): with gr.Column(variant='panel'): gr.HTML(value="

A merger of the two checkpoints will be generated in your checkpoint directory.

") - + with gr.Row(): primary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_primary_model_name", label="Primary Model Name") secondary_model_name = gr.Dropdown(modules.sd_models.checkpoint_tiles(), elem_id="modelmerger_secondary_model_name", label="Secondary Model Name") @@ -896,10 +951,98 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): interp_method = gr.Radio(choices=["Weighted Sum", "Sigmoid", "Inverse Sigmoid"], value="Weighted Sum", label="Interpolation Method") save_as_half = gr.Checkbox(value=False, label="Safe as float16") modelmerger_merge = gr.Button(elem_id="modelmerger_merge", label="Merge", variant='primary') - + with gr.Column(variant='panel'): submit_result = gr.Textbox(elem_id="modelmerger_result", show_label=False) + sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() + + with gr.Blocks() as textual_inversion_interface: + with gr.Row().style(equal_height=False): + with gr.Column(): + with gr.Group(): + gr.HTML(value="

Create a new embedding

") + + new_embedding_name = gr.Textbox(label="Name") + initialization_text = gr.Textbox(label="Initialization text", value="*") + nvpt = gr.Slider(label="Number of vectors per token", minimum=1, maximum=75, step=1, value=1) + + with gr.Row(): + with gr.Column(scale=3): + gr.HTML(value="") + + with gr.Column(): + create_embedding = gr.Button(value="Create", variant='primary') + + with gr.Group(): + gr.HTML(value="

Train an embedding; must specify a directory with a set of 512x512 images

") + train_embedding_name = gr.Dropdown(label='Embedding', choices=sorted(sd_hijack.model_hijack.embedding_db.word_embeddings.keys())) + learn_rate = gr.Number(label='Learning rate', value=5.0e-03) + dataset_directory = gr.Textbox(label='Dataset directory', placeholder="Path to directory with input images") + log_directory = gr.Textbox(label='Log directory', placeholder="Path to directory where to write outputs", value="textual_inversion") + template_file = gr.Textbox(label='Prompt template file', value=os.path.join(script_path, "textual_inversion_templates", "style_filewords.txt")) + steps = gr.Number(label='Max steps', value=100000, precision=0) + create_image_every = gr.Number(label='Save an image to log directory every N steps, 0 to disable', value=1000, precision=0) + save_embedding_every = gr.Number(label='Save a copy of embedding to log directory every N steps, 0 to disable', value=1000, precision=0) + + with gr.Row(): + with gr.Column(scale=2): + gr.HTML(value="") + + with gr.Column(): + with gr.Row(): + interrupt_training = gr.Button(value="Interrupt") + train_embedding = gr.Button(value="Train", variant='primary') + + with gr.Column(): + progressbar = gr.HTML(elem_id="ti_progressbar") + ti_output = gr.Text(elem_id="ti_output", value="", show_label=False) + + ti_gallery = gr.Gallery(label='Output', show_label=False, elem_id='ti_gallery').style(grid=4) + ti_preview = gr.Image(elem_id='ti_preview', visible=False) + ti_progress = gr.HTML(elem_id="ti_progress", value="") + ti_outcome = gr.HTML(elem_id="ti_error", value="") + setup_progressbar(progressbar, ti_preview, 'ti', textinfo=ti_progress) + + create_embedding.click( + fn=modules.textual_inversion.ui.create_embedding, + inputs=[ + new_embedding_name, + initialization_text, + nvpt, + ], + outputs=[ + train_embedding_name, + ti_output, + ti_outcome, + ] + ) + + train_embedding.click( + fn=wrap_gradio_gpu_call(modules.textual_inversion.ui.train_embedding, extra_outputs=[gr.update()]), + _js="start_training_textual_inversion", + inputs=[ + train_embedding_name, + learn_rate, + dataset_directory, + log_directory, + steps, + create_image_every, + save_embedding_every, + template_file, + ], + outputs=[ + ti_output, + ti_outcome, + ] + ) + + interrupt_training.click( + fn=lambda: shared.state.interrupt(), + inputs=[], + outputs=[], + ) + def create_setting_component(key): def fun(): return opts.data[key] if key in opts.data else opts.data_labels[key].default @@ -1036,6 +1179,7 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): (extras_interface, "Extras", "extras"), (pnginfo_interface, "PNG Info", "pnginfo"), (modelmerger_interface, "Checkpoint Merger", "modelmerger"), + (textual_inversion_interface, "Textual inversion", "ti"), (settings_interface, "Settings", "settings"), ] @@ -1071,11 +1215,11 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo, run_modelmerger): def modelmerger(*args): try: - results = run_modelmerger(*args) + results = modules.extras.run_modelmerger(*args) except Exception as e: print("Error loading/saving model file:", file=sys.stderr) print(traceback.format_exc(), file=sys.stderr) - modules.sd_models.list_models() #To remove the potentially missing models from the list + modules.sd_models.list_models() # to remove the potentially missing models from the list return ["Error loading/saving model file. It doesn't exist or the name contains illegal characters"] + [gr.Dropdown.update(choices=modules.sd_models.checkpoint_tiles()) for _ in range(3)] return results diff --git a/requirements.txt b/requirements.txt index 7cb9d3293..d4b337fce 100644 --- a/requirements.txt +++ b/requirements.txt @@ -13,14 +13,12 @@ Pillow pytorch_lightning realesrgan scikit-image>=0.19 -git+https://github.com/TencentARC/GFPGAN.git@8d2447a2d918f8eba5a4a01463fd48e45126a379 timm==0.4.12 transformers==4.19.2 torch einops jsonmerge clean-fid -git+https://github.com/openai/CLIP@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1 resize-right torchdiffeq kornia diff --git a/requirements_versions.txt b/requirements_versions.txt index 1e8006e05..8a9acf205 100644 --- a/requirements_versions.txt +++ b/requirements_versions.txt @@ -18,7 +18,6 @@ piexif==1.1.3 einops==0.4.1 jsonmerge==1.8.0 clean-fid==0.1.29 -git+https://github.com/openai/CLIP@d50d76daa670286dd6cacf3bcd80b5e4823fc8e1 resize-right==0.0.2 torchdiffeq==0.2.3 kornia==0.6.7 diff --git a/style.css b/style.css index 79d6bb0dc..39586bf18 100644 --- a/style.css +++ b/style.css @@ -157,7 +157,7 @@ button{ max-width: 10em; } -#txt2img_preview, #img2img_preview{ +#txt2img_preview, #img2img_preview, #ti_preview{ position: absolute; width: 320px; left: 0; @@ -172,18 +172,18 @@ button{ } @media screen and (min-width: 768px) { - #txt2img_preview, #img2img_preview { + #txt2img_preview, #img2img_preview, #ti_preview { position: absolute; } } @media screen and (max-width: 767px) { - #txt2img_preview, #img2img_preview { + #txt2img_preview, #img2img_preview, #ti_preview { position: relative; } } -#txt2img_preview div.left-0.top-0, #img2img_preview div.left-0.top-0{ +#txt2img_preview div.left-0.top-0, #img2img_preview div.left-0.top-0, #ti_preview div.left-0.top-0{ display: none; } @@ -247,7 +247,7 @@ input[type="range"]{ #txt2img_negative_prompt, #img2img_negative_prompt{ } -#txt2img_progressbar, #img2img_progressbar{ +#txt2img_progressbar, #img2img_progressbar, #ti_progressbar{ position: absolute; z-index: 1000; right: 0; diff --git a/textual_inversion_templates/style.txt b/textual_inversion_templates/style.txt new file mode 100644 index 000000000..15af2d6b8 --- /dev/null +++ b/textual_inversion_templates/style.txt @@ -0,0 +1,19 @@ +a painting, art by [name] +a rendering, art by [name] +a cropped painting, art by [name] +the painting, art by [name] +a clean painting, art by [name] +a dirty painting, art by [name] +a dark painting, art by [name] +a picture, art by [name] +a cool painting, art by [name] +a close-up painting, art by [name] +a bright painting, art by [name] +a cropped painting, art by [name] +a good painting, art by [name] +a close-up painting, art by [name] +a rendition, art by [name] +a nice painting, art by [name] +a small painting, art by [name] +a weird painting, art by [name] +a large painting, art by [name] diff --git a/textual_inversion_templates/style_filewords.txt b/textual_inversion_templates/style_filewords.txt new file mode 100644 index 000000000..b3a8159a8 --- /dev/null +++ b/textual_inversion_templates/style_filewords.txt @@ -0,0 +1,19 @@ +a painting of [filewords], art by [name] +a rendering of [filewords], art by [name] +a cropped painting of [filewords], art by [name] +the painting of [filewords], art by [name] +a clean painting of [filewords], art by [name] +a dirty painting of [filewords], art by [name] +a dark painting of [filewords], art by [name] +a picture of [filewords], art by [name] +a cool painting of [filewords], art by [name] +a close-up painting of [filewords], art by [name] +a bright painting of [filewords], art by [name] +a cropped painting of [filewords], art by [name] +a good painting of [filewords], art by [name] +a close-up painting of [filewords], art by [name] +a rendition of [filewords], art by [name] +a nice painting of [filewords], art by [name] +a small painting of [filewords], art by [name] +a weird painting of [filewords], art by [name] +a large painting of [filewords], art by [name] diff --git a/textual_inversion_templates/subject.txt b/textual_inversion_templates/subject.txt new file mode 100644 index 000000000..79f36aa05 --- /dev/null +++ b/textual_inversion_templates/subject.txt @@ -0,0 +1,27 @@ +a photo of a [name] +a rendering of a [name] +a cropped photo of the [name] +the photo of a [name] +a photo of a clean [name] +a photo of a dirty [name] +a dark photo of the [name] +a photo of my [name] +a photo of the cool [name] +a close-up photo of a [name] +a bright photo of the [name] +a cropped photo of a [name] +a photo of the [name] +a good photo of the [name] +a photo of one [name] +a close-up photo of the [name] +a rendition of the [name] +a photo of the clean [name] +a rendition of a [name] +a photo of a nice [name] +a good photo of a [name] +a photo of the nice [name] +a photo of the small [name] +a photo of the weird [name] +a photo of the large [name] +a photo of a cool [name] +a photo of a small [name] diff --git a/textual_inversion_templates/subject_filewords.txt b/textual_inversion_templates/subject_filewords.txt new file mode 100644 index 000000000..008652a6b --- /dev/null +++ b/textual_inversion_templates/subject_filewords.txt @@ -0,0 +1,27 @@ +a photo of a [name], [filewords] +a rendering of a [name], [filewords] +a cropped photo of the [name], [filewords] +the photo of a [name], [filewords] +a photo of a clean [name], [filewords] +a photo of a dirty [name], [filewords] +a dark photo of the [name], [filewords] +a photo of my [name], [filewords] +a photo of the cool [name], [filewords] +a close-up photo of a [name], [filewords] +a bright photo of the [name], [filewords] +a cropped photo of a [name], [filewords] +a photo of the [name], [filewords] +a good photo of the [name], [filewords] +a photo of one [name], [filewords] +a close-up photo of the [name], [filewords] +a rendition of the [name], [filewords] +a photo of the clean [name], [filewords] +a rendition of a [name], [filewords] +a photo of a nice [name], [filewords] +a good photo of a [name], [filewords] +a photo of the nice [name], [filewords] +a photo of the small [name], [filewords] +a photo of the weird [name], [filewords] +a photo of the large [name], [filewords] +a photo of a cool [name], [filewords] +a photo of a small [name], [filewords] diff --git a/webui.py b/webui.py index 140040ca1..634956978 100644 --- a/webui.py +++ b/webui.py @@ -6,30 +6,29 @@ from modules import devices from modules.paths import script_path import signal import threading -import modules.paths + import modules.codeformer_model as codeformer -import modules.esrgan_model as esrgan -import modules.bsrgan_model as bsrgan import modules.extras import modules.face_restoration import modules.gfpgan_model as gfpgan import modules.img2img -import modules.ldsr_model as ldsr + import modules.lowvram -import modules.realesrgan_model as realesrgan +import modules.paths import modules.scripts import modules.sd_hijack import modules.sd_models import modules.shared as shared -import modules.swinir_model as swinir import modules.txt2img + import modules.ui +from modules import devices from modules import modelloader from modules.paths import script_path from modules.shared import cmd_opts modelloader.cleanup_models() -modules.sd_models.setup_model(cmd_opts.ckpt_dir) +modules.sd_models.setup_model() codeformer.setup_model(cmd_opts.codeformer_models_path) gfpgan.setup_model(cmd_opts.gfpgan_models_path) shared.face_restorers.append(modules.face_restoration.FaceRestoration()) @@ -47,7 +46,7 @@ def wrap_queued_call(func): return f -def wrap_gradio_gpu_call(func): +def wrap_gradio_gpu_call(func, extra_outputs=None): def f(*args, **kwargs): devices.torch_gc() @@ -59,6 +58,7 @@ def wrap_gradio_gpu_call(func): shared.state.current_image = None shared.state.current_image_sampling_step = 0 shared.state.interrupted = False + shared.state.textinfo = None with queue_lock: res = func(*args, **kwargs) @@ -70,7 +70,7 @@ def wrap_gradio_gpu_call(func): return res - return modules.ui.wrap_gradio_call(f) + return modules.ui.wrap_gradio_call(f, extra_outputs=extra_outputs) modules.scripts.load_scripts(os.path.join(script_path, "scripts")) @@ -89,15 +89,8 @@ def webui(): while 1: - demo = modules.ui.create_ui( - txt2img=wrap_gradio_gpu_call(modules.txt2img.txt2img), - img2img=wrap_gradio_gpu_call(modules.img2img.img2img), - run_extras=wrap_gradio_gpu_call(modules.extras.run_extras), - run_pnginfo=modules.extras.run_pnginfo, - run_modelmerger=modules.extras.run_modelmerger - ) - - + demo = modules.ui.create_ui(wrap_gradio_gpu_call=wrap_gradio_gpu_call) + demo.launch( share=cmd_opts.share, server_name="0.0.0.0" if cmd_opts.listen else None, @@ -123,5 +116,6 @@ def webui(): print('Restarting Gradio') + if __name__ == "__main__": webui()