added highres fix feature

This commit is contained in:
AUTOMATIC 2022-09-19 16:42:56 +03:00
parent 8a32a71ca3
commit 6d7ca54a1a
5 changed files with 121 additions and 38 deletions

View File

@ -72,6 +72,10 @@ titles = {
"Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.", "Checkpoint name": "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.",
"vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).", "vram": "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).",
"Highres. fix": "Use a two step process to partially create an image at smaller resolution, upscale, and then improve details in it without changing composition",
"Scale latent": "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.",
} }

View File

@ -74,11 +74,12 @@ class StableDiffusionProcessing:
self.overlay_images = overlay_images self.overlay_images = overlay_images
self.paste_to = None self.paste_to = None
self.color_corrections = None self.color_corrections = None
self.denoising_strength: float = 0
def init(self, seed): def init(self, all_prompts, all_seeds, all_subseeds):
pass pass
def sample(self, x, conditioning, unconditional_conditioning): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
raise NotImplementedError() raise NotImplementedError()
@ -303,7 +304,7 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext precision_scope = torch.autocast if cmd_opts.precision == "autocast" else contextlib.nullcontext
ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope) ema_scope = (contextlib.nullcontext if cmd_opts.lowvram else p.sd_model.ema_scope)
with torch.no_grad(), precision_scope("cuda"), ema_scope(): with torch.no_grad(), precision_scope("cuda"), ema_scope():
p.init(seed=all_seeds[0]) p.init(all_prompts, all_seeds, all_subseeds)
if state.job_count == -1: if state.job_count == -1:
state.job_count = p.n_iter state.job_count = p.n_iter
@ -328,13 +329,10 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
for comment in model_hijack.comments: for comment in model_hijack.comments:
comments[comment] = 1 comments[comment] = 1
# we manually generate all input noises because each one should have a specific seed
x = create_random_tensors([opt_C, p.height // opt_f, p.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)
if p.n_iter > 1: if p.n_iter > 1:
shared.state.job = f"Batch {n+1} out of {p.n_iter}" shared.state.job = f"Batch {n+1} out of {p.n_iter}"
samples_ddim = p.sample(x=x, conditioning=c, unconditional_conditioning=uc) samples_ddim = p.sample(conditioning=c, unconditional_conditioning=uc, seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength)
if state.interrupted: if state.interrupted:
# if we are interruped, sample returns just noise # if we are interruped, sample returns just noise
@ -406,13 +404,64 @@ def process_images(p: StableDiffusionProcessing) -> Processed:
class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing):
sampler = None sampler = None
firstphase_width = 0
firstphase_height = 0
firstphase_width_truncated = 0
firstphase_height_truncated = 0
def init(self, seed): def __init__(self, enable_hr=False, scale_latent=True, denoising_strength=0.75, **kwargs):
super().__init__(**kwargs)
self.enable_hr = enable_hr
self.scale_latent = scale_latent
self.denoising_strength = denoising_strength
def init(self, all_prompts, all_seeds, all_subseeds):
if self.enable_hr:
if state.job_count == -1:
state.job_count = self.n_iter * 2
else:
state.job_count = state.job_count * 2
desired_pixel_count = 512 * 512
actual_pixel_count = self.width * self.height
scale = math.sqrt(desired_pixel_count / actual_pixel_count)
self.firstphase_width = math.ceil(scale * self.width / 64) * 64
self.firstphase_height = math.ceil(scale * self.height / 64) * 64
self.firstphase_width_truncated = int(scale * self.width)
self.firstphase_height_truncated = int(scale * self.height)
def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
self.sampler = samplers[self.sampler_index].constructor(self.sd_model) self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
def sample(self, x, conditioning, unconditional_conditioning): if not self.enable_hr:
samples_ddim = self.sampler.sample(self, x, conditioning, unconditional_conditioning) x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
return samples_ddim samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
return samples
x = create_random_tensors([opt_C, self.firstphase_height // opt_f, self.firstphase_width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning)
truncate_x = (self.firstphase_width - self.firstphase_width_truncated) // opt_f
truncate_y = (self.firstphase_height - self.firstphase_height_truncated) // opt_f
samples = samples[:, :, truncate_y//2:samples.shape[2]-truncate_y//2, truncate_x//2:samples.shape[3]-truncate_x//2]
if self.scale_latent:
samples = torch.nn.functional.interpolate(samples, size=(self.height // opt_f, self.width // opt_f), mode="bilinear")
else:
decoded_samples = self.sd_model.decode_first_stage(samples)
decoded_samples = torch.nn.functional.interpolate(decoded_samples, size=(self.height, self.width), mode="bilinear")
samples = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(decoded_samples))
shared.state.nextjob()
self.sampler = samplers[self.sampler_index].constructor(self.sd_model)
noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample_img2img(self, samples, noise, conditioning, unconditional_conditioning, steps=self.steps)
return samples
class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
sampler = None sampler = None
@ -435,7 +484,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.mask = None self.mask = None
self.nmask = None self.nmask = None
def init(self, seed): def init(self, all_prompts, all_seeds, all_subseeds):
self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model) self.sampler = samplers_for_img2img[self.sampler_index].constructor(self.sd_model)
crop_region = None crop_region = None
@ -529,12 +578,15 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype) self.mask = torch.asarray(1.0 - latmask).to(shared.device).type(self.sd_model.dtype)
self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype) self.nmask = torch.asarray(latmask).to(shared.device).type(self.sd_model.dtype)
# this needs to be fixed to be done in sample() using actual seeds for batches
if self.inpainting_fill == 2: if self.inpainting_fill == 2:
self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], [seed + x + 1 for x in range(self.init_latent.shape[0])]) * self.nmask self.init_latent = self.init_latent * self.mask + create_random_tensors(self.init_latent.shape[1:], all_seeds[0:self.init_latent.shape[0]]) * self.nmask
elif self.inpainting_fill == 3: elif self.inpainting_fill == 3:
self.init_latent = self.init_latent * self.mask self.init_latent = self.init_latent * self.mask
def sample(self, x, conditioning, unconditional_conditioning): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength):
x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self)
samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning) samples = self.sampler.sample_img2img(self, self.init_latent, x, conditioning, unconditional_conditioning)
if self.mask is not None: if self.mask is not None:

View File

@ -38,9 +38,9 @@ samplers = [
samplers_for_img2img = [x for x in samplers if x.name != 'PLMS'] samplers_for_img2img = [x for x in samplers if x.name != 'PLMS']
def setup_img2img_steps(p): def setup_img2img_steps(p, steps=None):
if opts.img2img_fix_steps: if opts.img2img_fix_steps or steps is not None:
steps = int(p.steps / min(p.denoising_strength, 0.999)) steps = int((steps or p.steps) / min(p.denoising_strength, 0.999)) if p.denoising_strength > 0 else 0
t_enc = p.steps - 1 t_enc = p.steps - 1
else: else:
steps = p.steps steps = p.steps
@ -115,8 +115,8 @@ class VanillaStableDiffusionSampler:
self.step += 1 self.step += 1
return res return res
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning): def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
steps, t_enc = setup_img2img_steps(p) steps, t_enc = setup_img2img_steps(p, steps)
# existing code fails with cetain step counts, like 9 # existing code fails with cetain step counts, like 9
try: try:
@ -127,16 +127,16 @@ class VanillaStableDiffusionSampler:
x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise) x1 = self.sampler.stochastic_encode(x, torch.tensor([t_enc] * int(x.shape[0])).to(shared.device), noise=noise)
self.sampler.p_sample_ddim = self.p_sample_ddim_hook self.sampler.p_sample_ddim = self.p_sample_ddim_hook
self.mask = p.mask self.mask = p.mask if hasattr(p, 'mask') else None
self.nmask = p.nmask self.nmask = p.nmask if hasattr(p, 'nmask') else None
self.init_latent = p.init_latent self.init_latent = x
self.step = 0 self.step = 0
samples = self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning) samples = self.sampler.decode(x1, conditioning, t_enc, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning)
return samples return samples
def sample(self, p, x, conditioning, unconditional_conditioning): def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
for fieldname in ['p_sample_ddim', 'p_sample_plms']: for fieldname in ['p_sample_ddim', 'p_sample_plms']:
if hasattr(self.sampler, fieldname): if hasattr(self.sampler, fieldname):
setattr(self.sampler, fieldname, self.p_sample_ddim_hook) setattr(self.sampler, fieldname, self.p_sample_ddim_hook)
@ -145,11 +145,13 @@ class VanillaStableDiffusionSampler:
self.init_latent = None self.init_latent = None
self.step = 0 self.step = 0
steps = steps or p.steps
# existing code fails with cetin step counts, like 9 # existing code fails with cetin step counts, like 9
try: try:
samples_ddim, _ = self.sampler.sample(S=p.steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x) samples_ddim, _ = self.sampler.sample(S=steps, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
except Exception: except Exception:
samples_ddim, _ = self.sampler.sample(S=p.steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x) samples_ddim, _ = self.sampler.sample(S=steps+1, conditioning=conditioning, batch_size=int(x.shape[0]), shape=x[0].shape, verbose=False, unconditional_guidance_scale=p.cfg_scale, unconditional_conditioning=unconditional_conditioning, x_T=x)
return samples_ddim return samples_ddim
@ -186,7 +188,7 @@ class CFGDenoiser(torch.nn.Module):
return denoised return denoised
def extended_trange(count, *args, **kwargs): def extended_trange(sampler, count, *args, **kwargs):
state.sampling_steps = count state.sampling_steps = count
state.sampling_step = 0 state.sampling_step = 0
@ -194,6 +196,9 @@ def extended_trange(count, *args, **kwargs):
if state.interrupted: if state.interrupted:
break break
if sampler.stop_at is not None and x > sampler.stop_at:
break
yield x yield x
state.sampling_step += 1 state.sampling_step += 1
@ -222,6 +227,7 @@ class KDiffusionSampler:
self.model_wrap_cfg = CFGDenoiser(self.model_wrap) self.model_wrap_cfg = CFGDenoiser(self.model_wrap)
self.sampler_noises = None self.sampler_noises = None
self.sampler_noise_index = 0 self.sampler_noise_index = 0
self.stop_at = None
def callback_state(self, d): def callback_state(self, d):
store_latent(d["denoised"]) store_latent(d["denoised"])
@ -240,8 +246,8 @@ class KDiffusionSampler:
self.sampler_noise_index += 1 self.sampler_noise_index += 1
return res return res
def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning): def sample_img2img(self, p, x, noise, conditioning, unconditional_conditioning, steps=None):
steps, t_enc = setup_img2img_steps(p) steps, t_enc = setup_img2img_steps(p, steps)
sigmas = self.model_wrap.get_sigmas(steps) sigmas = self.model_wrap.get_sigmas(steps)
@ -251,33 +257,36 @@ class KDiffusionSampler:
sigma_sched = sigmas[steps - t_enc - 1:] sigma_sched = sigmas[steps - t_enc - 1:]
self.model_wrap_cfg.mask = p.mask self.model_wrap_cfg.mask = p.mask if hasattr(p, 'mask') else None
self.model_wrap_cfg.nmask = p.nmask self.model_wrap_cfg.nmask = p.nmask if hasattr(p, 'nmask') else None
self.model_wrap_cfg.init_latent = p.init_latent self.model_wrap_cfg.init_latent = x
self.model_wrap.step = 0 self.model_wrap.step = 0
self.sampler_noise_index = 0 self.sampler_noise_index = 0
if hasattr(k_diffusion.sampling, 'trange'): if hasattr(k_diffusion.sampling, 'trange'):
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs) k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs)
if self.sampler_noises is not None: if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self) k_diffusion.sampling.torch = TorchHijack(self)
return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state) return self.func(self.model_wrap_cfg, xi, sigma_sched, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
def sample(self, p, x, conditioning, unconditional_conditioning): def sample(self, p, x, conditioning, unconditional_conditioning, steps=None):
sigmas = self.model_wrap.get_sigmas(p.steps) steps = steps or p.steps
sigmas = self.model_wrap.get_sigmas(steps)
x = x * sigmas[0] x = x * sigmas[0]
self.model_wrap_cfg.step = 0 self.model_wrap_cfg.step = 0
self.sampler_noise_index = 0 self.sampler_noise_index = 0
if hasattr(k_diffusion.sampling, 'trange'): if hasattr(k_diffusion.sampling, 'trange'):
k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(*args, **kwargs) k_diffusion.sampling.trange = lambda *args, **kwargs: extended_trange(self, *args, **kwargs)
if self.sampler_noises is not None: if self.sampler_noises is not None:
k_diffusion.sampling.torch = TorchHijack(self) k_diffusion.sampling.torch = TorchHijack(self)
samples_ddim = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state) samples = self.func(self.model_wrap_cfg, x, sigmas, extra_args={'cond': conditioning, 'uncond': unconditional_conditioning, 'cond_scale': p.cfg_scale}, disable=False, callback=self.callback_state)
return samples_ddim
return samples

View File

@ -6,7 +6,7 @@ import modules.processing as processing
from modules.ui import plaintext_to_html from modules.ui import plaintext_to_html
def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, height: int, width: int, *args): def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2: str, steps: int, sampler_index: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, height: int, width: int, enable_hr: bool, scale_latent: bool, denoising_strength: float, *args):
p = StableDiffusionProcessingTxt2Img( p = StableDiffusionProcessingTxt2Img(
sd_model=shared.sd_model, sd_model=shared.sd_model,
outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples, outpath_samples=opts.outdir_samples or opts.outdir_txt2img_samples,
@ -28,6 +28,9 @@ def txt2img(prompt: str, negative_prompt: str, prompt_style: str, prompt_style2:
height=height, height=height,
restore_faces=restore_faces, restore_faces=restore_faces,
tiling=tiling, tiling=tiling,
enable_hr=enable_hr,
scale_latent=scale_latent,
denoising_strength=denoising_strength,
) )
print(f"\ntxt2img: {prompt}", file=shared.progress_print_out) print(f"\ntxt2img: {prompt}", file=shared.progress_print_out)

View File

@ -327,6 +327,7 @@ def connect_reuse_seed(seed: gr.Number, reuse_seed: gr.Button, generation_info:
outputs=[seed, dummy_component] outputs=[seed, dummy_component]
) )
def create_toprow(is_img2img): def create_toprow(is_img2img):
with gr.Row(elem_id="toprow"): with gr.Row(elem_id="toprow"):
with gr.Column(scale=4): with gr.Column(scale=4):
@ -392,6 +393,11 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
with gr.Row(): with gr.Row():
restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1) restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1)
tiling = gr.Checkbox(label='Tiling', value=False) tiling = gr.Checkbox(label='Tiling', value=False)
enable_hr = gr.Checkbox(label='Highres. fix', value=False)
with gr.Row(visible=False) as hr_options:
scale_latent = gr.Checkbox(label='Scale latent', value=True)
denoising_strength = gr.Slider(minimum=0.0, maximum=1.0, step=0.01, label='Denoising strength', value=0.7)
with gr.Row(): with gr.Row():
batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1) batch_count = gr.Slider(minimum=1, maximum=cmd_opts.max_batch_count, step=1, label='Batch count', value=1)
@ -451,6 +457,9 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w, subseed, subseed_strength, seed_resize_from_h, seed_resize_from_w,
height, height,
width, width,
enable_hr,
scale_latent,
denoising_strength,
] + custom_inputs, ] + custom_inputs,
outputs=[ outputs=[
txt2img_gallery, txt2img_gallery,
@ -463,6 +472,12 @@ def create_ui(txt2img, img2img, run_extras, run_pnginfo):
txt2img_prompt.submit(**txt2img_args) txt2img_prompt.submit(**txt2img_args)
submit.click(**txt2img_args) submit.click(**txt2img_args)
enable_hr.change(
fn=lambda x: gr_show(x),
inputs=[enable_hr],
outputs=[hr_options],
)
interrupt.click( interrupt.click(
fn=lambda: shared.state.interrupt(), fn=lambda: shared.state.interrupt(),
inputs=[], inputs=[],