mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2024-12-29 19:05:05 +08:00
Merge pull request #14300 from AUTOMATIC1111/oft_fixes
Fix wrong implementation in network_oft
This commit is contained in:
parent
120a84bd2f
commit
6ef0ff39f2
@ -21,6 +21,8 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
self.lin_module = None
|
||||
self.org_module: list[torch.Module] = [self.sd_module]
|
||||
|
||||
self.scale = 1.0
|
||||
|
||||
# kohya-ss
|
||||
if "oft_blocks" in weights.w.keys():
|
||||
self.is_kohya = True
|
||||
@ -53,12 +55,18 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
self.constraint = None
|
||||
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
||||
|
||||
def calc_updown_kb(self, orig_weight, multiplier):
|
||||
def calc_updown(self, orig_weight):
|
||||
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
oft_blocks = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
|
||||
eye = torch.eye(self.block_size, device=self.oft_blocks.device)
|
||||
|
||||
if self.is_kohya:
|
||||
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
|
||||
norm_Q = torch.norm(block_Q.flatten())
|
||||
new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
|
||||
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||
oft_blocks = torch.matmul(eye + block_Q, (eye - block_Q).float().inverse())
|
||||
|
||||
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device)
|
||||
|
||||
# This errors out for MultiheadAttention, might need to be handled up-stream
|
||||
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
||||
@ -72,26 +80,3 @@ class NetworkModuleOFT(network.NetworkModule):
|
||||
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||
output_shape = orig_weight.shape
|
||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||
|
||||
def calc_updown(self, orig_weight):
|
||||
# if alpha is a very small number as in coft, calc_scale() will return a almost zero number so we ignore it
|
||||
multiplier = self.multiplier()
|
||||
return self.calc_updown_kb(orig_weight, multiplier)
|
||||
|
||||
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
|
||||
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
|
||||
if self.bias is not None:
|
||||
updown = updown.reshape(self.bias.shape)
|
||||
updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||
updown = updown.reshape(output_shape)
|
||||
|
||||
if len(output_shape) == 4:
|
||||
updown = updown.reshape(output_shape)
|
||||
|
||||
if orig_weight.size().numel() == updown.size().numel():
|
||||
updown = updown.reshape(orig_weight.shape)
|
||||
|
||||
if ex_bias is not None:
|
||||
ex_bias = ex_bias * self.multiplier()
|
||||
|
||||
return updown, ex_bias
|
||||
|
Loading…
Reference in New Issue
Block a user