diff --git a/modules/processing.py b/modules/processing.py index f773a30ef..d814d5acd 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -123,6 +123,7 @@ class Processed: self.index_of_first_image = index_of_first_image self.styles = p.styles self.job_timestamp = state.job_timestamp + self.max_prompt_tokens = opts.max_prompt_tokens self.eta = p.eta self.ddim_discretize = p.ddim_discretize @@ -141,6 +142,7 @@ class Processed: self.all_subseeds = all_subseeds or [self.subseed] self.infotexts = infotexts or [info] + def js(self): obj = { "prompt": self.prompt, @@ -169,6 +171,7 @@ class Processed: "infotexts": self.infotexts, "styles": self.styles, "job_timestamp": self.job_timestamp, + "max_prompt_tokens": self.max_prompt_tokens, } return json.dumps(obj) @@ -266,6 +269,8 @@ def fix_seed(p): def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration=0, position_in_batch=0): index = position_in_batch + iteration * p.batch_size + max_tokens = getattr(p, 'max_prompt_tokens', opts.max_prompt_tokens) + generation_params = { "Steps": p.steps, "Sampler": sd_samplers.samplers[p.sampler_index].name, @@ -281,6 +286,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments, iteration "Seed resize from": (None if p.seed_resize_from_w == 0 or p.seed_resize_from_h == 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), "Denoising strength": getattr(p, 'denoising_strength', None), "Eta": (None if p.sampler is None or p.sampler.eta == p.sampler.default_eta else p.sampler.eta), + "Max tokens": (None if max_tokens == shared.vanilla_max_prompt_tokens else max_tokens) } generation_params.update(p.extra_generation_params) diff --git a/modules/sd_hijack.py b/modules/sd_hijack.py index d68f89cc2..340329c0b 100644 --- a/modules/sd_hijack.py +++ b/modules/sd_hijack.py @@ -18,7 +18,6 @@ attention_CrossAttention_forward = ldm.modules.attention.CrossAttention.forward diffusionmodules_model_nonlinearity = ldm.modules.diffusionmodules.model.nonlinearity diffusionmodules_model_AttnBlock_forward = ldm.modules.diffusionmodules.model.AttnBlock.forward - def apply_optimizations(): undo_optimizations() @@ -83,7 +82,7 @@ class StableDiffusionModelHijack: layer.padding_mode = 'circular' if enable else 'zeros' def tokenize(self, text): - max_length = self.clip.max_length - 2 + max_length = opts.max_prompt_tokens - 2 _, remade_batch_tokens, _, _, _, token_count = self.clip.process_text([text]) return remade_batch_tokens[0], token_count, max_length @@ -94,7 +93,6 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): self.wrapped = wrapped self.hijack: StableDiffusionModelHijack = hijack self.tokenizer = wrapped.tokenizer - self.max_length = wrapped.max_length self.token_mults = {} tokens_with_parens = [(k, v) for k, v in self.tokenizer.get_vocab().items() if '(' in k or ')' in k or '[' in k or ']' in k] @@ -116,7 +114,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): def tokenize_line(self, line, used_custom_terms, hijack_comments): id_start = self.wrapped.tokenizer.bos_token_id id_end = self.wrapped.tokenizer.eos_token_id - maxlen = self.wrapped.max_length + maxlen = opts.max_prompt_tokens if opts.enable_emphasis: parsed = prompt_parser.parse_prompt_attention(line) @@ -191,7 +189,7 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): def process_text_old(self, text): id_start = self.wrapped.tokenizer.bos_token_id id_end = self.wrapped.tokenizer.eos_token_id - maxlen = self.wrapped.max_length + maxlen = self.wrapped.max_length # you get to stay at 77 used_custom_terms = [] remade_batch_tokens = [] overflowing_words = [] @@ -268,8 +266,11 @@ class FrozenCLIPEmbedderWithCustomWords(torch.nn.Module): if len(used_custom_terms) > 0: self.hijack.comments.append("Used embeddings: " + ", ".join([f'{word} [{checksum}]' for word, checksum in used_custom_terms])) + position_ids_array = [min(x, 75) for x in range(len(remade_batch_tokens[0])-1)] + [76] + position_ids = torch.asarray(position_ids_array, device=devices.device).expand((1, -1)) + tokens = torch.asarray(remade_batch_tokens).to(device) - outputs = self.wrapped.transformer(input_ids=tokens) + outputs = self.wrapped.transformer(input_ids=tokens, position_ids=position_ids) z = outputs.last_hidden_state # restoring original mean is likely not correct, but it seems to work well to prevent artifacts that happen otherwise diff --git a/modules/shared.py b/modules/shared.py index 879d8424a..864e772cf 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -118,8 +118,8 @@ prompt_styles = modules.styles.StyleDatabase(styles_filename) interrogator = modules.interrogate.InterrogateModels("interrogate") face_restorers = [] -# This was moved to webui.py with the other model "setup" calls. -# modules.sd_models.list_models() + +vanilla_max_prompt_tokens = 77 def realesrgan_models_names(): @@ -221,6 +221,7 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), { "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), "filter_nsfw": OptionInfo(False, "Filter NSFW content"), + "max_prompt_tokens": OptionInfo(vanilla_max_prompt_tokens, f"Max prompt token count. Two tokens are reserved for for start and end. Default is {vanilla_max_prompt_tokens}. Setting this to a different value will result in different pictures for same seed.", gr.Number, {"precision": 0}), "random_artist_categories": OptionInfo([], "Allowed categories for random artists selection when using the Roll button", gr.CheckboxGroup, {"choices": artist_db.categories()}), }))