From 70714be4301d9873c7f90eab65c71aa06182ee5b Mon Sep 17 00:00:00 2001 From: batvbs Date: Thu, 3 Nov 2022 19:28:25 +0800 Subject: [PATCH] =?UTF-8?q?=E5=B0=86=E6=97=A0=E6=B3=95=E6=9C=AC=E5=9C=B0?= =?UTF-8?q?=E5=8C=96=E7=9A=84=E5=86=85=E5=AE=B9=E7=A7=BB=E5=88=B0=E5=BA=95?= =?UTF-8?q?=E9=83=A8?= MIME-Version: 1.0 Content-Type: text/plain; charset=UTF-8 Content-Transfer-Encoding: 8bit --- localizations/zh_CN.json | 70 ++++++++++++++++++++++------------------ 1 file changed, 38 insertions(+), 32 deletions(-) diff --git a/localizations/zh_CN.json b/localizations/zh_CN.json index cb70b0947..6d6720c96 100644 --- a/localizations/zh_CN.json +++ b/localizations/zh_CN.json @@ -70,7 +70,6 @@ "Resize seed from width": "自宽度缩放随机种子", "Resize seed from height": "自高度缩放随机种子", "Open for Clip Aesthetic!": "打开美术风格 Clip!", - "▼": "▼", "Aesthetic weight": "美术风格权重", "Aesthetic steps": "美术风格迭代步数", "Aesthetic learning rate": "美术风格学习率", @@ -468,10 +467,6 @@ "Install": "安装", "Prompt (press Ctrl+Enter or Alt+Enter to generate)": "提示词(按 Ctrl+Enter 或 Alt+Enter 生成)\nPrompt", "Negative prompt (press Ctrl+Enter or Alt+Enter to generate)": "反向提示词(按 Ctrl+Enter 或 Alt+Enter 生成)\nNegative prompt", - "Add a random artist to the prompt.": "随机添加一个艺术家到提示词中", - "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "从提示词中读取生成参数,如果提示词为空,则读取上一次的生成参数到用户界面", - "Save style": "储存为模版风格", - "Apply selected styles to current prompt": "将所选模板风格,应用于当前提示词", "Stop processing current image and continue processing.": "停止处理当前图像,并继续处理下一个", "Stop processing images and return any results accumulated so far.": "停止处理图像,并返回迄今为止累积的任何结果", "Style to apply; styles have components for both positive and negative prompts and apply to both": "要应用的模版风格; 模版风格包含正向和反向提示词,并应用于两者", @@ -533,14 +528,47 @@ "Roll three": "抽三位出来", "Generate forever": "无限生成", "Cancel generate forever": "停止无限生成", + "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "训练应该多快。低值将需要更长的时间来训练,高值可能无法收敛(无法产生准确的结果)以及/也许可能会破坏 embedding(如果你在训练信息文本框中看到 Loss: nan 就会发生这种情况。如果发生这种情况,你需要从较旧的未损坏的备份手动恢复 embedding)\n\n你可以使用以下语法设置单个数值或多个学习率:\n\n 率1:步限1, 率2:步限2, ...\n\n如: 0.005:100, 1e-3:1000, 1e-5\n\n即前 100 步将以 0.005 的速率训练,接着直到 1000 步为止以 1e-3 训练,然后剩余所有步以 1e-5 训练", + "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "训练时将 VAE 和 CLIP 从显存(VRAM)移放到内存(RAM),节省显存(VRAM)", + "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "迭代改进生成的图像多少次;更高的值需要更长的时间;非常低的值会产生不好的结果", + "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt": "在图像上画一个蒙版,脚本会根据提示重新生成蒙版区域的内容", + "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back": "正常放大图像,将结果分割成图块(tiles),用图生图改进每个图块(tiles),最后将整个图像合并回来", + "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "创建一个网格,图像将有不同的参数。使用下面的输入来指定哪些参数将由列和行共享", + "Run Python code. Advanced user only. Must run program with --allow-code for this to work": "运行 Python 代码。仅限老手使用。必须以 --allow-code 来开启程序,才能使其运行", + "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others": "以逗号分割的单词列表,第一个单词将被用作关键词:脚本将在提示词中搜索这个单词,并用其他单词替换它", + "Separate a list of words with commas, and the script will make a variation of prompt with those words for their every possible order": "以逗号分割的单词列表,脚本会排列出这些单词的所有排列方式,并加入提示词各生成一次", + "Reconstruct prompt from existing image and put it into the prompt field.": "从现有的图像中重构出提示词,并将其放入提示词的输入文本框", + "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle": "设置在[prompt_words]选项中要使用的最大字数;注意:如果字数太长,可能会超过系统可处理的文件路径的最大长度", + "Process an image, use it as an input, repeat.": "处理一张图像,将其作为输入,并重复", + "Insert selected styles into prompt fields": "在提示词中插入选定的模版风格", + "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.": "将当前的提示词保存为模版风格。如果你在文本中添加{prompt}标记,那么将来你使用该模版风格时,你现有的提示词会替换模版风格中的{prompt}", + "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.": "在生成图像之前从模型(ckpt)中加载权重。你可以使用哈希值或文件名的一部分(如设置中所示)作为模型(ckpt)名称。建议用在Y轴上以减少过程中模型的切换", + "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).": "Torch active: 在生成过程中,Torch使用的显存(VRAM)峰值,不包括缓存的数据。\nTorch reserved: Torch 分配的显存(VRAM)的峰值量,包括所有活动和缓存数据。\nSys VRAM: 所有应用程序分配的显存(VRAM)的峰值量 / GPU 的总显存(VRAM)(峰值利用率%)", + "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.": "放大潜空间中的图像。而另一种方法是,从潜变量表达中直接解码并生成完整的图像,接着放大它,然后再将其编码回潜空间", + "Upscaler": "放大算法", + "Start drawing": "开始绘制", + + + "----无效----": "----以下内容无法被翻译,Bug----", + "Add a random artist to the prompt.": "随机添加一个艺术家到提示词中", + "Read generation parameters from prompt or last generation if prompt is empty into user interface.": "从提示词中读取生成参数,如果提示词为空,则读取上一次的生成参数到用户界面", + "Save style": "储存为模版风格", + "Apply selected styles to current prompt": "将所选模板风格,应用于当前提示词", + "Upscaler 1": "放大算法 1", + "Upscaler 2": "放大算法 2", + "Separate prompts into parts using vertical pipe character (|) and the script will create a picture for every combination of them (except for the first part, which will be present in all combinations)": "用竖线分隔符(|)将提示词分成若干部分,脚本将为它们的每一个组合创建一幅图片(除了被分割的第一部分,所有的组合都会包含这部分)", + "Select which Real-ESRGAN models to show in the web UI. (Requires restart)": "选择哪些 Real-ESRGAN 模型显示在网页用户界面。(需要重新启动)", + "Allowed categories for random artists selection when using the Roll button": "使用抽选艺术家按钮时将会随机的艺术家类别", + "Face restoration model": "面部修复模型", + + + "----已移除----": "----以下内容在webui新版本已移除----", + "▼": "▼", "History": "历史记录", "Show Textbox": "显示文本框", "File with inputs": "含输入内容的文件", "Prompts": "提示词", "Disabled when launched with --hide-ui-dir-config.": "启动 --hide-ui-dir-config 时禁用", - "Upscaler": "放大算法", - "Upscaler 1": "放大算法 1", - "Upscaler 2": "放大算法 2", "Open output directory": "打开输出目录", "Create aesthetic images embedding": "生成美术风格图集 embedding", "Split oversized images into two": "将过大的图像分为两份", @@ -560,32 +588,10 @@ "Unload VAE and CLIP from VRAM when training": "训练时从显存(VRAM)中取消 VAE 和 CLIP 的加载", "Number of pictures displayed on each page": "每页显示的图像数量", "Number of grids in each row": "每行显示多少格", - - "Start drawing": "开始绘制", - "how fast should the training go. Low values will take longer to train, high values may fail to converge (not generate accurate results) and/or may break the embedding (This has happened if you see Loss: nan in the training info textbox. If this happens, you need to manually restore your embedding from an older not-broken backup).\n\nYou can set a single numeric value, or multiple learning rates using the syntax:\n\n rate_1:max_steps_1, rate_2:max_steps_2, ...\n\nEG: 0.005:100, 1e-3:1000, 1e-5\n\nWill train with rate of 0.005 for first 100 steps, then 1e-3 until 1000 steps, then 1e-5 for all remaining steps.": "训练应该多快。低值将需要更长的时间来训练,高值可能无法收敛(无法产生准确的结果)以及/也许可能会破坏 embedding(如果你在训练信息文本框中看到 Loss: nan 就会发生这种情况。如果发生这种情况,你需要从较旧的未损坏的备份手动恢复 embedding)\n\n你可以使用以下语法设置单个数值或多个学习率:\n\n 率1:步限1, 率2:步限2, ...\n\n如: 0.005:100, 1e-3:1000, 1e-5\n\n即前 100 步将以 0.005 的速率训练,接着直到 1000 步为止以 1e-3 训练,然后剩余所有步以 1e-5 训练", - "Separate prompts into parts using vertical pipe character (|) and the script will create a picture for every combination of them (except for the first part, which will be present in all combinations)": "用竖线分隔符(|)将提示词分成若干部分,脚本将为它们的每一个组合创建一幅图片(除了被分割的第一部分,所有的组合都会包含这部分)", - "Select which Real-ESRGAN models to show in the web UI. (Requires restart)": "选择哪些 Real-ESRGAN 模型显示在网页用户界面。(需要重新启动)", - "Face restoration model": "面部修复模型", - "Allowed categories for random artists selection when using the Roll button": "使用抽选艺术家按钮时将会随机的艺术家类别", "favorites": "收藏夹(已保存)", "others": "其他", "Collect": "收藏(保存)", - "Move VAE and CLIP to RAM when training hypernetwork. Saves VRAM.": "训练时将 VAE 和 CLIP 从显存(VRAM)移放到内存(RAM),节省显存(VRAM)", - "How many times to improve the generated image iteratively; higher values take longer; very low values can produce bad results": "迭代改进生成的图像多少次;更高的值需要更长的时间;非常低的值会产生不好的结果", - "Draw a mask over an image, and the script will regenerate the masked area with content according to prompt": "在图像上画一个蒙版,脚本会根据提示重新生成蒙版区域的内容", - "Upscale image normally, split result into tiles, improve each tile using img2img, merge whole image back": "正常放大图像,将结果分割成图块(tiles),用图生图改进每个图块(tiles),最后将整个图像合并回来", - "Create a grid where images will have different parameters. Use inputs below to specify which parameters will be shared by columns and rows": "创建一个网格,图像将有不同的参数。使用下面的输入来指定哪些参数将由列和行共享", - "Run Python code. Advanced user only. Must run program with --allow-code for this to work": "运行 Python 代码。仅限老手使用。必须以 --allow-code 来开启程序,才能使其运行", - "Separate a list of words with commas, and the first word will be used as a keyword: script will search for this word in the prompt, and replace it with others": "以逗号分割的单词列表,第一个单词将被用作关键词:脚本将在提示词中搜索这个单词,并用其他单词替换它", - "Separate a list of words with commas, and the script will make a variation of prompt with those words for their every possible order": "以逗号分割的单词列表,脚本会排列出这些单词的所有排列方式,并加入提示词各生成一次", - "Reconstruct prompt from existing image and put it into the prompt field.": "从现有的图像中重构出提示词,并将其放入提示词的输入文本框", - "Set the maximum number of words to be used in the [prompt_words] option; ATTENTION: If the words are too long, they may exceed the maximum length of the file path that the system can handle": "设置在[prompt_words]选项中要使用的最大字数;注意:如果字数太长,可能会超过系统可处理的文件路径的最大长度", - "Process an image, use it as an input, repeat.": "处理一张图像,将其作为输入,并重复", - "Insert selected styles into prompt fields": "在提示词中插入选定的模版风格", - "Save current prompts as a style. If you add the token {prompt} to the text, the style use that as placeholder for your prompt when you use the style in the future.": "将当前的提示词保存为模版风格。如果你在文本中添加{prompt}标记,那么将来你使用该模版风格时,你现有的提示词会替换模版风格中的{prompt}", - "Loads weights from checkpoint before making images. You can either use hash or a part of filename (as seen in settings) for checkpoint name. Recommended to use with Y axis for less switching.": "在生成图像之前从模型(ckpt)中加载权重。你可以使用哈希值或文件名的一部分(如设置中所示)作为模型(ckpt)名称。建议用在Y轴上以减少过程中模型的切换", - "Torch active: Peak amount of VRAM used by Torch during generation, excluding cached data.\nTorch reserved: Peak amount of VRAM allocated by Torch, including all active and cached data.\nSys VRAM: Peak amount of VRAM allocation across all applications / total GPU VRAM (peak utilization%).": "Torch active: 在生成过程中,Torch使用的显存(VRAM)峰值,不包括缓存的数据。\nTorch reserved: Torch 分配的显存(VRAM)的峰值量,包括所有活动和缓存数据。\nSys VRAM: 所有应用程序分配的显存(VRAM)的峰值量 / GPU 的总显存(VRAM)(峰值利用率%)", - "Uscale the image in latent space. Alternative is to produce the full image from latent representation, upscale that, and then move it back to latent space.": "放大潜空间中的图像。而另一种方法是,从潜变量表达中直接解码并生成完整的图像,接着放大它,然后再将其编码回潜空间", - "----": "----" + + "--------": "--------" }