diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index 17cbe1bb7..bc722e90c 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -195,6 +195,15 @@ def load_network(name, network_on_disk): return net +def purge_networks_from_memory(): + while len(networks_in_memory) > shared.opts.lora_in_memory_limit and len(networks_in_memory) > 0: + name = next(iter(networks_in_memory)) + networks_in_memory.pop(name, None) + + devices.torch_gc() + + + def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=None): already_loaded = {} @@ -212,15 +221,19 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No failed_to_load_networks = [] - for i, name in enumerate(names): + for i, (network_on_disk, name) in enumerate(zip(networks_on_disk, names)): net = already_loaded.get(name, None) - network_on_disk = networks_on_disk[i] - if network_on_disk is not None: + if net is None: + net = networks_in_memory.get(name) + if net is None or os.path.getmtime(network_on_disk.filename) > net.mtime: try: net = load_network(name, network_on_disk) + + networks_in_memory.pop(name, None) + networks_in_memory[name] = net except Exception as e: errors.display(e, f"loading network {network_on_disk.filename}") continue @@ -242,6 +255,8 @@ def load_networks(names, te_multipliers=None, unet_multipliers=None, dyn_dims=No if failed_to_load_networks: sd_hijack.model_hijack.comments.append("Failed to find networks: " + ", ".join(failed_to_load_networks)) + purge_networks_from_memory() + def network_restore_weights_from_backup(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn.MultiheadAttention]): weights_backup = getattr(self, "network_weights_backup", None) @@ -462,6 +477,7 @@ def infotext_pasted(infotext, params): available_networks = {} available_network_aliases = {} loaded_networks = [] +networks_in_memory = {} available_network_hash_lookup = {} forbidden_network_aliases = {} diff --git a/extensions-builtin/Lora/scripts/lora_script.py b/extensions-builtin/Lora/scripts/lora_script.py index cd28afc92..6ab8b6e7c 100644 --- a/extensions-builtin/Lora/scripts/lora_script.py +++ b/extensions-builtin/Lora/scripts/lora_script.py @@ -65,6 +65,7 @@ shared.options_templates.update(shared.options_section(('extra_networks', "Extra "lora_add_hashes_to_infotext": shared.OptionInfo(True, "Add Lora hashes to infotext"), "lora_show_all": shared.OptionInfo(False, "Always show all networks on the Lora page").info("otherwise, those detected as for incompatible version of Stable Diffusion will be hidden"), "lora_hide_unknown_for_versions": shared.OptionInfo([], "Hide networks of unknown versions for model versions", gr.CheckboxGroup, {"choices": ["SD1", "SD2", "SDXL"]}), + "lora_in_memory_limit": shared.OptionInfo(0, "Number of Lora networks to keep cached in memory", gr.Number, {"precision": 0}), })) @@ -121,3 +122,5 @@ def infotext_pasted(infotext, d): script_callbacks.on_infotext_pasted(infotext_pasted) + +shared.opts.onchange("lora_in_memory_limit", networks.purge_networks_from_memory) diff --git a/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js b/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js index 30199dcd6..e7616b981 100644 --- a/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js +++ b/extensions-builtin/canvas-zoom-and-pan/javascript/zoom.js @@ -42,6 +42,11 @@ onUiLoaded(async() => { } } + // Detect whether the element has a horizontal scroll bar + function hasHorizontalScrollbar(element) { + return element.scrollWidth > element.clientWidth; + } + // Function for defining the "Ctrl", "Shift" and "Alt" keys function isModifierKey(event, key) { switch (key) { @@ -201,7 +206,8 @@ onUiLoaded(async() => { canvas_hotkey_overlap: "KeyO", canvas_disabled_functions: [], canvas_show_tooltip: true, - canvas_blur_prompt: false + canvas_auto_expand: true, + canvas_blur_prompt: false, }; const functionMap = { @@ -648,8 +654,32 @@ onUiLoaded(async() => { mouseY = e.offsetY; } + // Simulation of the function to put a long image into the screen. + // We detect if an image has a scroll bar or not, make a fullscreen to reveal the image, then reduce it to fit into the element. + // We hide the image and show it to the user when it is ready. + function autoExpand(e) { + const canvas = document.querySelector(`${elemId} canvas[key="interface"]`); + const isMainTab = activeElement === elementIDs.inpaint || activeElement === elementIDs.inpaintSketch || activeElement === elementIDs.sketch; + + if (canvas && isMainTab) { + if (hasHorizontalScrollbar(targetElement)) { + targetElement.style.visibility = "hidden"; + setTimeout(() => { + fitToScreen(); + resetZoom(); + targetElement.style.visibility = "visible"; + }, 10); + } + } + } + targetElement.addEventListener("mousemove", getMousePosition); + // Apply auto expand if enabled + if (hotkeysConfig.canvas_auto_expand) { + targetElement.addEventListener("mousemove", autoExpand); + } + // Handle events only inside the targetElement let isKeyDownHandlerAttached = false; diff --git a/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py b/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py index 380176ce2..2d8d2d1c0 100644 --- a/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py +++ b/extensions-builtin/canvas-zoom-and-pan/scripts/hotkey_config.py @@ -9,6 +9,7 @@ shared.options_templates.update(shared.options_section(('canvas_hotkey', "Canvas "canvas_hotkey_reset": shared.OptionInfo("R", "Reset zoom and canvas positon"), "canvas_hotkey_overlap": shared.OptionInfo("O", "Toggle overlap").info("Technical button, neededs for testing"), "canvas_show_tooltip": shared.OptionInfo(True, "Enable tooltip on the canvas"), + "canvas_auto_expand": shared.OptionInfo(True, "Automatically expands an image that does not fit completely in the canvas area, similar to manually pressing the S and R buttons"), "canvas_blur_prompt": shared.OptionInfo(False, "Take the focus off the prompt when working with a canvas"), "canvas_disabled_functions": shared.OptionInfo(["Overlap"], "Disable function that you don't use", gr.CheckboxGroup, {"choices": ["Zoom","Adjust brush size", "Moving canvas","Fullscreen","Reset Zoom","Overlap"]}), })) diff --git a/javascript/inputAccordion.js b/javascript/inputAccordion.js new file mode 100644 index 000000000..f2839852e --- /dev/null +++ b/javascript/inputAccordion.js @@ -0,0 +1,37 @@ +var observerAccordionOpen = new MutationObserver(function(mutations) { + mutations.forEach(function(mutationRecord) { + var elem = mutationRecord.target; + var open = elem.classList.contains('open'); + + var accordion = elem.parentNode; + accordion.classList.toggle('input-accordion-open', open); + + var checkbox = gradioApp().querySelector('#' + accordion.id + "-checkbox input"); + checkbox.checked = open; + updateInput(checkbox); + + var extra = gradioApp().querySelector('#' + accordion.id + "-extra"); + if (extra) { + extra.style.display = open ? "" : "none"; + } + }); +}); + +function inputAccordionChecked(id, checked) { + var label = gradioApp().querySelector('#' + id + " .label-wrap"); + if (label.classList.contains('open') != checked) { + label.click(); + } +} + +onUiLoaded(function() { + for (var accordion of gradioApp().querySelectorAll('.input-accordion')) { + var labelWrap = accordion.querySelector('.label-wrap'); + observerAccordionOpen.observe(labelWrap, {attributes: true, attributeFilter: ['class']}); + + var extra = gradioApp().querySelector('#' + accordion.id + "-extra"); + if (extra) { + labelWrap.insertBefore(extra, labelWrap.lastElementChild); + } + } +}); diff --git a/modules/cmd_args.py b/modules/cmd_args.py index 64f21e011..b0a11538b 100644 --- a/modules/cmd_args.py +++ b/modules/cmd_args.py @@ -16,6 +16,7 @@ parser.add_argument("--test-server", action='store_true', help="launch.py argume parser.add_argument("--log-startup", action='store_true', help="launch.py argument: print a detailed log of what's happening at startup") parser.add_argument("--skip-prepare-environment", action='store_true', help="launch.py argument: skip all environment preparation") parser.add_argument("--skip-install", action='store_true', help="launch.py argument: skip installation of packages") +parser.add_argument("--loglevel", type=str, help="log level; one of: CRITICAL, ERROR, WARNING, INFO, DEBUG", default=None) parser.add_argument("--do-not-download-clip", action='store_true', help="do not download CLIP model even if it's not included in the checkpoint") parser.add_argument("--data-dir", type=str, default=os.path.dirname(os.path.dirname(os.path.realpath(__file__))), help="base path where all user data is stored") parser.add_argument("--config", type=str, default=sd_default_config, help="path to config which constructs model",) diff --git a/modules/devices.py b/modules/devices.py index 00a00b18a..c01f06024 100644 --- a/modules/devices.py +++ b/modules/devices.py @@ -3,7 +3,7 @@ import contextlib from functools import lru_cache import torch -from modules import errors, rng_philox +from modules import errors, shared if sys.platform == "darwin": from modules import mac_specific @@ -17,8 +17,6 @@ def has_mps() -> bool: def get_cuda_device_string(): - from modules import shared - if shared.cmd_opts.device_id is not None: return f"cuda:{shared.cmd_opts.device_id}" @@ -40,8 +38,6 @@ def get_optimal_device(): def get_device_for(task): - from modules import shared - if task in shared.cmd_opts.use_cpu: return cpu @@ -96,87 +92,7 @@ def cond_cast_float(input): nv_rng = None -def randn(seed, shape): - """Generate a tensor with random numbers from a normal distribution using seed. - - Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed.""" - - from modules.shared import opts - - manual_seed(seed) - - if opts.randn_source == "NV": - return torch.asarray(nv_rng.randn(shape), device=device) - - if opts.randn_source == "CPU" or device.type == 'mps': - return torch.randn(shape, device=cpu).to(device) - - return torch.randn(shape, device=device) - - -def randn_local(seed, shape): - """Generate a tensor with random numbers from a normal distribution using seed. - - Does not change the global random number generator. You can only generate the seed's first tensor using this function.""" - - from modules.shared import opts - - if opts.randn_source == "NV": - rng = rng_philox.Generator(seed) - return torch.asarray(rng.randn(shape), device=device) - - local_device = cpu if opts.randn_source == "CPU" or device.type == 'mps' else device - local_generator = torch.Generator(local_device).manual_seed(int(seed)) - return torch.randn(shape, device=local_device, generator=local_generator).to(device) - - -def randn_like(x): - """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator. - - Use either randn() or manual_seed() to initialize the generator.""" - - from modules.shared import opts - - if opts.randn_source == "NV": - return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype) - - if opts.randn_source == "CPU" or x.device.type == 'mps': - return torch.randn_like(x, device=cpu).to(x.device) - - return torch.randn_like(x) - - -def randn_without_seed(shape): - """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator. - - Use either randn() or manual_seed() to initialize the generator.""" - - from modules.shared import opts - - if opts.randn_source == "NV": - return torch.asarray(nv_rng.randn(shape), device=device) - - if opts.randn_source == "CPU" or device.type == 'mps': - return torch.randn(shape, device=cpu).to(device) - - return torch.randn(shape, device=device) - - -def manual_seed(seed): - """Set up a global random number generator using the specified seed.""" - from modules.shared import opts - - if opts.randn_source == "NV": - global nv_rng - nv_rng = rng_philox.Generator(seed) - return - - torch.manual_seed(seed) - - def autocast(disable=False): - from modules import shared - if disable: return contextlib.nullcontext() @@ -195,8 +111,6 @@ class NansException(Exception): def test_for_nans(x, where): - from modules import shared - if shared.cmd_opts.disable_nan_check: return @@ -236,3 +150,4 @@ def first_time_calculation(): x = torch.zeros((1, 1, 3, 3)).to(device, dtype) conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype) conv2d(x) + diff --git a/modules/extensions.py b/modules/extensions.py index e4633af40..bf9a1878f 100644 --- a/modules/extensions.py +++ b/modules/extensions.py @@ -1,7 +1,7 @@ import os import threading -from modules import shared, errors, cache +from modules import shared, errors, cache, scripts from modules.gitpython_hack import Repo from modules.paths_internal import extensions_dir, extensions_builtin_dir, script_path # noqa: F401 @@ -90,8 +90,6 @@ class Extension: self.have_info_from_repo = True def list_files(self, subdir, extension): - from modules import scripts - dirpath = os.path.join(self.path, subdir) if not os.path.isdir(dirpath): return [] diff --git a/modules/generation_parameters_copypaste.py b/modules/generation_parameters_copypaste.py index 20e30b53b..386517aca 100644 --- a/modules/generation_parameters_copypaste.py +++ b/modules/generation_parameters_copypaste.py @@ -6,7 +6,7 @@ import re import gradio as gr from modules.paths import data_path -from modules import shared, ui_tempdir, script_callbacks +from modules import shared, ui_tempdir, script_callbacks, processing from PIL import Image re_param_code = r'\s*([\w ]+):\s*("(?:\\"[^,]|\\"|\\|[^\"])+"|[^,]*)(?:,|$)' @@ -198,7 +198,6 @@ def restore_old_hires_fix_params(res): height = int(res.get("Size-2", 512)) if firstpass_width == 0 or firstpass_height == 0: - from modules import processing firstpass_width, firstpass_height = processing.old_hires_fix_first_pass_dimensions(width, height) res['Size-1'] = firstpass_width @@ -317,36 +316,18 @@ Steps: 20, Sampler: Euler a, CFG scale: 7, Seed: 965400086, Size: 512x512, Model infotext_to_setting_name_mapping = [ - ('Clip skip', 'CLIP_stop_at_last_layers', ), + +] +"""Mapping of infotext labels to setting names. Only left for backwards compatibility - use OptionInfo(..., infotext='...') instead. +Example content: + +infotext_to_setting_name_mapping = [ ('Conditional mask weight', 'inpainting_mask_weight'), ('Model hash', 'sd_model_checkpoint'), ('ENSD', 'eta_noise_seed_delta'), ('Schedule type', 'k_sched_type'), - ('Schedule max sigma', 'sigma_max'), - ('Schedule min sigma', 'sigma_min'), - ('Schedule rho', 'rho'), - ('Noise multiplier', 'initial_noise_multiplier'), - ('Eta', 'eta_ancestral'), - ('Eta DDIM', 'eta_ddim'), - ('Sigma churn', 's_churn'), - ('Sigma tmin', 's_tmin'), - ('Sigma tmax', 's_tmax'), - ('Sigma noise', 's_noise'), - ('Discard penultimate sigma', 'always_discard_next_to_last_sigma'), - ('UniPC variant', 'uni_pc_variant'), - ('UniPC skip type', 'uni_pc_skip_type'), - ('UniPC order', 'uni_pc_order'), - ('UniPC lower order final', 'uni_pc_lower_order_final'), - ('Token merging ratio', 'token_merging_ratio'), - ('Token merging ratio hr', 'token_merging_ratio_hr'), - ('RNG', 'randn_source'), - ('NGMS', 's_min_uncond'), - ('Pad conds', 'pad_cond_uncond'), - ('VAE Encoder', 'sd_vae_encode_method'), - ('VAE Decoder', 'sd_vae_decode_method'), - ('Refiner', 'sd_refiner_checkpoint'), - ('Refiner switch at', 'sd_refiner_switch_at'), ] +""" def create_override_settings_dict(text_pairs): @@ -367,7 +348,8 @@ def create_override_settings_dict(text_pairs): params[k] = v.strip() - for param_name, setting_name in infotext_to_setting_name_mapping: + mapping = [(info.infotext, k) for k, info in shared.opts.data_labels.items() if info.infotext] + for param_name, setting_name in mapping + infotext_to_setting_name_mapping: value = params.get(param_name, None) if value is None: @@ -421,7 +403,8 @@ def connect_paste(button, paste_fields, input_comp, override_settings_component, def paste_settings(params): vals = {} - for param_name, setting_name in infotext_to_setting_name_mapping: + mapping = [(info.infotext, k) for k, info in shared.opts.data_labels.items() if info.infotext] + for param_name, setting_name in mapping + infotext_to_setting_name_mapping: if param_name in already_handled_fields: continue diff --git a/modules/gradio_extensons.py b/modules/gradio_extensons.py index 5af7fd8ec..77c34c8ba 100644 --- a/modules/gradio_extensons.py +++ b/modules/gradio_extensons.py @@ -1,6 +1,6 @@ import gradio as gr -from modules import scripts +from modules import scripts, ui_tempdir def add_classes_to_gradio_component(comp): """ @@ -58,3 +58,5 @@ original_BlockContext_init = gr.blocks.BlockContext.__init__ gr.components.IOComponent.__init__ = IOComponent_init gr.blocks.Block.get_config = Block_get_config gr.blocks.BlockContext.__init__ = BlockContext_init + +ui_tempdir.install_ui_tempdir_override() diff --git a/modules/images.py b/modules/images.py index ba3c43a45..019c1d600 100644 --- a/modules/images.py +++ b/modules/images.py @@ -21,8 +21,6 @@ from modules import sd_samplers, shared, script_callbacks, errors from modules.paths_internal import roboto_ttf_file from modules.shared import opts -import modules.sd_vae as sd_vae - LANCZOS = (Image.Resampling.LANCZOS if hasattr(Image, 'Resampling') else Image.LANCZOS) @@ -342,16 +340,6 @@ def sanitize_filename_part(text, replace_spaces=True): class FilenameGenerator: - def get_vae_filename(self): #get the name of the VAE file. - if sd_vae.loaded_vae_file is None: - return "NoneType" - file_name = os.path.basename(sd_vae.loaded_vae_file) - split_file_name = file_name.split('.') - if len(split_file_name) > 1 and split_file_name[0] == '': - return split_file_name[1] # if the first character of the filename is "." then [1] is obtained. - else: - return split_file_name[0] - replacements = { 'seed': lambda self: self.seed if self.seed is not None else '', 'seed_first': lambda self: self.seed if self.p.batch_size == 1 else self.p.all_seeds[0], @@ -391,6 +379,22 @@ class FilenameGenerator: self.image = image self.zip = zip + def get_vae_filename(self): + """Get the name of the VAE file.""" + + import modules.sd_vae as sd_vae + + if sd_vae.loaded_vae_file is None: + return "NoneType" + + file_name = os.path.basename(sd_vae.loaded_vae_file) + split_file_name = file_name.split('.') + if len(split_file_name) > 1 and split_file_name[0] == '': + return split_file_name[1] # if the first character of the filename is "." then [1] is obtained. + else: + return split_file_name[0] + + def hasprompt(self, *args): lower = self.prompt.lower() if self.p is None or self.prompt is None: diff --git a/modules/img2img.py b/modules/img2img.py index e06ac1d6e..c7bbbac8f 100644 --- a/modules/img2img.py +++ b/modules/img2img.py @@ -116,7 +116,7 @@ def process_batch(p, input_dir, output_dir, inpaint_mask_dir, args, to_scale=Fal process_images(p) -def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_name: str, mask_blur: int, mask_alpha: float, inpainting_fill: int, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args): +def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_styles, init_img, sketch, init_img_with_mask, inpaint_color_sketch, inpaint_color_sketch_orig, init_img_inpaint, init_mask_inpaint, steps: int, sampler_name: str, mask_blur: int, mask_alpha: float, inpainting_fill: int, n_iter: int, batch_size: int, cfg_scale: float, image_cfg_scale: float, denoising_strength: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, selected_scale_tab: int, height: int, width: int, scale_by: float, resize_mode: int, inpaint_full_res: bool, inpaint_full_res_padding: int, inpainting_mask_invert: int, img2img_batch_input_dir: str, img2img_batch_output_dir: str, img2img_batch_inpaint_mask_dir: str, override_settings_texts, img2img_batch_use_png_info: bool, img2img_batch_png_info_props: list, img2img_batch_png_info_dir: str, request: gr.Request, *args): override_settings = create_override_settings_dict(override_settings_texts) is_batch = mode == 5 @@ -179,8 +179,6 @@ def img2img(id_task: str, mode: int, prompt: str, negative_prompt: str, prompt_s cfg_scale=cfg_scale, width=width, height=height, - restore_faces=restore_faces, - tiling=tiling, init_images=[image], mask=mask, mask_blur=mask_blur, diff --git a/modules/initialize.py b/modules/initialize.py new file mode 100644 index 000000000..f24f76375 --- /dev/null +++ b/modules/initialize.py @@ -0,0 +1,168 @@ +import importlib +import logging +import sys +import warnings +from threading import Thread + +from modules.timer import startup_timer + + +def imports(): + logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh... + logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) + + import torch # noqa: F401 + startup_timer.record("import torch") + import pytorch_lightning # noqa: F401 + startup_timer.record("import torch") + warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning") + warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision") + + import gradio # noqa: F401 + startup_timer.record("import gradio") + + from modules import paths, timer, import_hook, errors # noqa: F401 + startup_timer.record("setup paths") + + import ldm.modules.encoders.modules # noqa: F401 + startup_timer.record("import ldm") + + import sgm.modules.encoders.modules # noqa: F401 + startup_timer.record("import sgm") + + from modules import shared_init + shared_init.initialize() + startup_timer.record("initialize shared") + + from modules import processing, gradio_extensons, ui # noqa: F401 + startup_timer.record("other imports") + + +def check_versions(): + from modules.shared_cmd_options import cmd_opts + + if not cmd_opts.skip_version_check: + from modules import errors + errors.check_versions() + + +def initialize(): + from modules import initialize_util + initialize_util.fix_torch_version() + initialize_util.fix_asyncio_event_loop_policy() + initialize_util.validate_tls_options() + initialize_util.configure_sigint_handler() + initialize_util.configure_opts_onchange() + + from modules import modelloader + modelloader.cleanup_models() + + from modules import sd_models + sd_models.setup_model() + startup_timer.record("setup SD model") + + from modules.shared_cmd_options import cmd_opts + + from modules import codeformer_model + warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision.transforms.functional_tensor") + codeformer_model.setup_model(cmd_opts.codeformer_models_path) + startup_timer.record("setup codeformer") + + from modules import gfpgan_model + gfpgan_model.setup_model(cmd_opts.gfpgan_models_path) + startup_timer.record("setup gfpgan") + + initialize_rest(reload_script_modules=False) + + +def initialize_rest(*, reload_script_modules=False): + """ + Called both from initialize() and when reloading the webui. + """ + from modules.shared_cmd_options import cmd_opts + + from modules import sd_samplers + sd_samplers.set_samplers() + startup_timer.record("set samplers") + + from modules import extensions + extensions.list_extensions() + startup_timer.record("list extensions") + + from modules import initialize_util + initialize_util.restore_config_state_file() + startup_timer.record("restore config state file") + + from modules import shared, upscaler, scripts + if cmd_opts.ui_debug_mode: + shared.sd_upscalers = upscaler.UpscalerLanczos().scalers + scripts.load_scripts() + return + + from modules import sd_models + sd_models.list_models() + startup_timer.record("list SD models") + + from modules import localization + localization.list_localizations(cmd_opts.localizations_dir) + startup_timer.record("list localizations") + + with startup_timer.subcategory("load scripts"): + scripts.load_scripts() + + if reload_script_modules: + for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]: + importlib.reload(module) + startup_timer.record("reload script modules") + + from modules import modelloader + modelloader.load_upscalers() + startup_timer.record("load upscalers") + + from modules import sd_vae + sd_vae.refresh_vae_list() + startup_timer.record("refresh VAE") + + from modules import textual_inversion + textual_inversion.textual_inversion.list_textual_inversion_templates() + startup_timer.record("refresh textual inversion templates") + + from modules import script_callbacks, sd_hijack_optimizations, sd_hijack + script_callbacks.on_list_optimizers(sd_hijack_optimizations.list_optimizers) + sd_hijack.list_optimizers() + startup_timer.record("scripts list_optimizers") + + from modules import sd_unet + sd_unet.list_unets() + startup_timer.record("scripts list_unets") + + def load_model(): + """ + Accesses shared.sd_model property to load model. + After it's available, if it has been loaded before this access by some extension, + its optimization may be None because the list of optimizaers has neet been filled + by that time, so we apply optimization again. + """ + + shared.sd_model # noqa: B018 + + if sd_hijack.current_optimizer is None: + sd_hijack.apply_optimizations() + + from modules import devices + devices.first_time_calculation() + + Thread(target=load_model).start() + + from modules import shared_items + shared_items.reload_hypernetworks() + startup_timer.record("reload hypernetworks") + + from modules import ui_extra_networks + ui_extra_networks.initialize() + ui_extra_networks.register_default_pages() + + from modules import extra_networks + extra_networks.initialize() + extra_networks.register_default_extra_networks() + startup_timer.record("initialize extra networks") diff --git a/modules/initialize_util.py b/modules/initialize_util.py new file mode 100644 index 000000000..d83705768 --- /dev/null +++ b/modules/initialize_util.py @@ -0,0 +1,183 @@ +import json +import os +import signal +import sys +import re + +from modules.timer import startup_timer + + +def gradio_server_name(): + from modules.shared_cmd_options import cmd_opts + + if cmd_opts.server_name: + return cmd_opts.server_name + else: + return "0.0.0.0" if cmd_opts.listen else None + + +def fix_torch_version(): + import torch + + # Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors + if ".dev" in torch.__version__ or "+git" in torch.__version__: + torch.__long_version__ = torch.__version__ + torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0) + + +def fix_asyncio_event_loop_policy(): + """ + The default `asyncio` event loop policy only automatically creates + event loops in the main threads. Other threads must create event + loops explicitly or `asyncio.get_event_loop` (and therefore + `.IOLoop.current`) will fail. Installing this policy allows event + loops to be created automatically on any thread, matching the + behavior of Tornado versions prior to 5.0 (or 5.0 on Python 2). + """ + + import asyncio + + if sys.platform == "win32" and hasattr(asyncio, "WindowsSelectorEventLoopPolicy"): + # "Any thread" and "selector" should be orthogonal, but there's not a clean + # interface for composing policies so pick the right base. + _BasePolicy = asyncio.WindowsSelectorEventLoopPolicy # type: ignore + else: + _BasePolicy = asyncio.DefaultEventLoopPolicy + + class AnyThreadEventLoopPolicy(_BasePolicy): # type: ignore + """Event loop policy that allows loop creation on any thread. + Usage:: + + asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy()) + """ + + def get_event_loop(self) -> asyncio.AbstractEventLoop: + try: + return super().get_event_loop() + except (RuntimeError, AssertionError): + # This was an AssertionError in python 3.4.2 (which ships with debian jessie) + # and changed to a RuntimeError in 3.4.3. + # "There is no current event loop in thread %r" + loop = self.new_event_loop() + self.set_event_loop(loop) + return loop + + asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy()) + + +def restore_config_state_file(): + from modules import shared, config_states + + config_state_file = shared.opts.restore_config_state_file + if config_state_file == "": + return + + shared.opts.restore_config_state_file = "" + shared.opts.save(shared.config_filename) + + if os.path.isfile(config_state_file): + print(f"*** About to restore extension state from file: {config_state_file}") + with open(config_state_file, "r", encoding="utf-8") as f: + config_state = json.load(f) + config_states.restore_extension_config(config_state) + startup_timer.record("restore extension config") + elif config_state_file: + print(f"!!! Config state backup not found: {config_state_file}") + + +def validate_tls_options(): + from modules.shared_cmd_options import cmd_opts + + if not (cmd_opts.tls_keyfile and cmd_opts.tls_certfile): + return + + try: + if not os.path.exists(cmd_opts.tls_keyfile): + print("Invalid path to TLS keyfile given") + if not os.path.exists(cmd_opts.tls_certfile): + print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'") + except TypeError: + cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None + print("TLS setup invalid, running webui without TLS") + else: + print("Running with TLS") + startup_timer.record("TLS") + + +def get_gradio_auth_creds(): + """ + Convert the gradio_auth and gradio_auth_path commandline arguments into + an iterable of (username, password) tuples. + """ + from modules.shared_cmd_options import cmd_opts + + def process_credential_line(s): + s = s.strip() + if not s: + return None + return tuple(s.split(':', 1)) + + if cmd_opts.gradio_auth: + for cred in cmd_opts.gradio_auth.split(','): + cred = process_credential_line(cred) + if cred: + yield cred + + if cmd_opts.gradio_auth_path: + with open(cmd_opts.gradio_auth_path, 'r', encoding="utf8") as file: + for line in file.readlines(): + for cred in line.strip().split(','): + cred = process_credential_line(cred) + if cred: + yield cred + + +def configure_sigint_handler(): + # make the program just exit at ctrl+c without waiting for anything + def sigint_handler(sig, frame): + print(f'Interrupted with signal {sig} in {frame}') + os._exit(0) + + if not os.environ.get("COVERAGE_RUN"): + # Don't install the immediate-quit handler when running under coverage, + # as then the coverage report won't be generated. + signal.signal(signal.SIGINT, sigint_handler) + + +def configure_opts_onchange(): + from modules import shared, sd_models, sd_vae, ui_tempdir, sd_hijack + from modules.call_queue import wrap_queued_call + + shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: sd_models.reload_model_weights()), call=False) + shared.opts.onchange("sd_vae", wrap_queued_call(lambda: sd_vae.reload_vae_weights()), call=False) + shared.opts.onchange("sd_vae_overrides_per_model_preferences", wrap_queued_call(lambda: sd_vae.reload_vae_weights()), call=False) + shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed) + shared.opts.onchange("gradio_theme", shared.reload_gradio_theme) + shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False) + startup_timer.record("opts onchange") + + +def setup_middleware(app): + from starlette.middleware.gzip import GZipMiddleware + + app.middleware_stack = None # reset current middleware to allow modifying user provided list + app.add_middleware(GZipMiddleware, minimum_size=1000) + configure_cors_middleware(app) + app.build_middleware_stack() # rebuild middleware stack on-the-fly + + +def configure_cors_middleware(app): + from starlette.middleware.cors import CORSMiddleware + from modules.shared_cmd_options import cmd_opts + + cors_options = { + "allow_methods": ["*"], + "allow_headers": ["*"], + "allow_credentials": True, + } + if cmd_opts.cors_allow_origins: + cors_options["allow_origins"] = cmd_opts.cors_allow_origins.split(',') + if cmd_opts.cors_allow_origins_regex: + cors_options["allow_origin_regex"] = cmd_opts.cors_allow_origins_regex + app.add_middleware(CORSMiddleware, **cors_options) + diff --git a/modules/launch_utils.py b/modules/launch_utils.py index 5be30a183..90c00dd2d 100644 --- a/modules/launch_utils.py +++ b/modules/launch_utils.py @@ -1,4 +1,5 @@ # this scripts installs necessary requirements and launches main program in webui.py +import logging import re import subprocess import os @@ -11,8 +12,10 @@ from functools import lru_cache from modules import cmd_args, errors from modules.paths_internal import script_path, extensions_dir from modules.timer import startup_timer +from modules import logging_config args, _ = cmd_args.parser.parse_known_args() +logging_config.setup_logging(args.loglevel) python = sys.executable git = os.environ.get('GIT', "git") @@ -249,6 +252,8 @@ def run_extensions_installers(settings_file): with startup_timer.subcategory("run extensions installers"): for dirname_extension in list_extensions(settings_file): + logging.debug(f"Installing {dirname_extension}") + path = os.path.join(extensions_dir, dirname_extension) if os.path.isdir(path): diff --git a/modules/localization.py b/modules/localization.py index e8f585dab..c13202885 100644 --- a/modules/localization.py +++ b/modules/localization.py @@ -1,7 +1,7 @@ import json import os -from modules import errors +from modules import errors, scripts localizations = {} @@ -16,7 +16,6 @@ def list_localizations(dirname): localizations[fn] = os.path.join(dirname, file) - from modules import scripts for file in scripts.list_scripts("localizations", ".json"): fn, ext = os.path.splitext(file.filename) localizations[fn] = file.path diff --git a/modules/logging_config.py b/modules/logging_config.py new file mode 100644 index 000000000..7db23d4b6 --- /dev/null +++ b/modules/logging_config.py @@ -0,0 +1,16 @@ +import os +import logging + + +def setup_logging(loglevel): + if loglevel is None: + loglevel = os.environ.get("SD_WEBUI_LOG_LEVEL") + + if loglevel: + log_level = getattr(logging, loglevel.upper(), None) or logging.INFO + logging.basicConfig( + level=log_level, + format='%(asctime)s %(levelname)s [%(name)s] %(message)s', + datefmt='%Y-%m-%d %H:%M:%S', + ) + diff --git a/modules/mac_specific.py b/modules/mac_specific.py index 9ceb43bae..bce527ccc 100644 --- a/modules/mac_specific.py +++ b/modules/mac_specific.py @@ -4,6 +4,7 @@ import torch import platform from modules.sd_hijack_utils import CondFunc from packaging import version +from modules import shared log = logging.getLogger(__name__) @@ -30,8 +31,7 @@ has_mps = check_for_mps() def torch_mps_gc() -> None: try: - from modules.shared import state - if state.current_latent is not None: + if shared.state.current_latent is not None: log.debug("`current_latent` is set, skipping MPS garbage collection") return from torch.mps import empty_cache diff --git a/modules/options.py b/modules/options.py new file mode 100644 index 000000000..db1fb157e --- /dev/null +++ b/modules/options.py @@ -0,0 +1,238 @@ +import json +import sys + +import gradio as gr + +from modules import errors +from modules.shared_cmd_options import cmd_opts + + +class OptionInfo: + def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after='', infotext=None): + self.default = default + self.label = label + self.component = component + self.component_args = component_args + self.onchange = onchange + self.section = section + self.refresh = refresh + self.do_not_save = False + + self.comment_before = comment_before + """HTML text that will be added after label in UI""" + + self.comment_after = comment_after + """HTML text that will be added before label in UI""" + + self.infotext = infotext + + def link(self, label, url): + self.comment_before += f"[{label}]" + return self + + def js(self, label, js_func): + self.comment_before += f"[{label}]" + return self + + def info(self, info): + self.comment_after += f"({info})" + return self + + def html(self, html): + self.comment_after += html + return self + + def needs_restart(self): + self.comment_after += " (requires restart)" + return self + + def needs_reload_ui(self): + self.comment_after += " (requires Reload UI)" + return self + + +class OptionHTML(OptionInfo): + def __init__(self, text): + super().__init__(str(text).strip(), label='', component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs)) + + self.do_not_save = True + + +def options_section(section_identifier, options_dict): + for v in options_dict.values(): + v.section = section_identifier + + return options_dict + + +options_builtin_fields = {"data_labels", "data", "restricted_opts", "typemap"} + + +class Options: + typemap = {int: float} + + def __init__(self, data_labels, restricted_opts): + self.data_labels = data_labels + self.data = {k: v.default for k, v in self.data_labels.items()} + self.restricted_opts = restricted_opts + + def __setattr__(self, key, value): + if key in options_builtin_fields: + return super(Options, self).__setattr__(key, value) + + if self.data is not None: + if key in self.data or key in self.data_labels: + assert not cmd_opts.freeze_settings, "changing settings is disabled" + + info = self.data_labels.get(key, None) + if info.do_not_save: + return + + comp_args = info.component_args if info else None + if isinstance(comp_args, dict) and comp_args.get('visible', True) is False: + raise RuntimeError(f"not possible to set {key} because it is restricted") + + if cmd_opts.hide_ui_dir_config and key in self.restricted_opts: + raise RuntimeError(f"not possible to set {key} because it is restricted") + + self.data[key] = value + return + + return super(Options, self).__setattr__(key, value) + + def __getattr__(self, item): + if item in options_builtin_fields: + return super(Options, self).__getattribute__(item) + + if self.data is not None: + if item in self.data: + return self.data[item] + + if item in self.data_labels: + return self.data_labels[item].default + + return super(Options, self).__getattribute__(item) + + def set(self, key, value): + """sets an option and calls its onchange callback, returning True if the option changed and False otherwise""" + + oldval = self.data.get(key, None) + if oldval == value: + return False + + if self.data_labels[key].do_not_save: + return False + + try: + setattr(self, key, value) + except RuntimeError: + return False + + if self.data_labels[key].onchange is not None: + try: + self.data_labels[key].onchange() + except Exception as e: + errors.display(e, f"changing setting {key} to {value}") + setattr(self, key, oldval) + return False + + return True + + def get_default(self, key): + """returns the default value for the key""" + + data_label = self.data_labels.get(key) + if data_label is None: + return None + + return data_label.default + + def save(self, filename): + assert not cmd_opts.freeze_settings, "saving settings is disabled" + + with open(filename, "w", encoding="utf8") as file: + json.dump(self.data, file, indent=4) + + def same_type(self, x, y): + if x is None or y is None: + return True + + type_x = self.typemap.get(type(x), type(x)) + type_y = self.typemap.get(type(y), type(y)) + + return type_x == type_y + + def load(self, filename): + with open(filename, "r", encoding="utf8") as file: + self.data = json.load(file) + + # 1.6.0 VAE defaults + if self.data.get('sd_vae_as_default') is not None and self.data.get('sd_vae_overrides_per_model_preferences') is None: + self.data['sd_vae_overrides_per_model_preferences'] = not self.data.get('sd_vae_as_default') + + # 1.1.1 quicksettings list migration + if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None: + self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')] + + # 1.4.0 ui_reorder + if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data: + self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')] + + bad_settings = 0 + for k, v in self.data.items(): + info = self.data_labels.get(k, None) + if info is not None and not self.same_type(info.default, v): + print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr) + bad_settings += 1 + + if bad_settings > 0: + print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr) + + def onchange(self, key, func, call=True): + item = self.data_labels.get(key) + item.onchange = func + + if call: + func() + + def dumpjson(self): + d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()} + d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None} + d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None} + return json.dumps(d) + + def add_option(self, key, info): + self.data_labels[key] = info + + def reorder(self): + """reorder settings so that all items related to section always go together""" + + section_ids = {} + settings_items = self.data_labels.items() + for _, item in settings_items: + if item.section not in section_ids: + section_ids[item.section] = len(section_ids) + + self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section])) + + def cast_value(self, key, value): + """casts an arbitrary to the same type as this setting's value with key + Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str) + """ + + if value is None: + return None + + default_value = self.data_labels[key].default + if default_value is None: + default_value = getattr(self, key, None) + if default_value is None: + return None + + expected_type = type(default_value) + if expected_type == bool and value == "False": + value = False + else: + value = expected_type(value) + + return value diff --git a/modules/processing.py b/modules/processing.py index cf62cdd33..efa6eafa8 100644 --- a/modules/processing.py +++ b/modules/processing.py @@ -14,7 +14,8 @@ from skimage import exposure from typing import Any, Dict, List import modules.sd_hijack -from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors +from modules import devices, prompt_parser, masking, sd_samplers, lowvram, generation_parameters_copypaste, extra_networks, sd_vae_approx, scripts, sd_samplers_common, sd_unet, errors, rng +from modules.rng import slerp # noqa: F401 from modules.sd_hijack import model_hijack from modules.sd_samplers_common import images_tensor_to_samples, decode_first_stage, approximation_indexes from modules.shared import opts, cmd_opts, state @@ -110,7 +111,7 @@ class StableDiffusionProcessing: cached_uc = [None, None] cached_c = [None, None] - def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = False, tiling: bool = False, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): + def __init__(self, sd_model=None, outpath_samples=None, outpath_grids=None, prompt: str = "", styles: List[str] = None, seed: int = -1, subseed: int = -1, subseed_strength: float = 0, seed_resize_from_h: int = -1, seed_resize_from_w: int = -1, seed_enable_extras: bool = True, sampler_name: str = None, batch_size: int = 1, n_iter: int = 1, steps: int = 50, cfg_scale: float = 7.0, width: int = 512, height: int = 512, restore_faces: bool = None, tiling: bool = None, do_not_save_samples: bool = False, do_not_save_grid: bool = False, extra_generation_params: Dict[Any, Any] = None, overlay_images: Any = None, negative_prompt: str = None, eta: float = None, do_not_reload_embeddings: bool = False, denoising_strength: float = 0, ddim_discretize: str = None, s_min_uncond: float = 0.0, s_churn: float = 0.0, s_tmax: float = None, s_tmin: float = 0.0, s_noise: float = None, override_settings: Dict[str, Any] = None, override_settings_restore_afterwards: bool = True, sampler_index: int = None, script_args: list = None): if sampler_index is not None: print("sampler_index argument for StableDiffusionProcessing does not do anything; use sampler_name", file=sys.stderr) @@ -172,6 +173,8 @@ class StableDiffusionProcessing: self.iteration = 0 self.is_hr_pass = False self.sampler = None + self.main_prompt = None + self.main_negative_prompt = None self.prompts = None self.negative_prompts = None @@ -184,6 +187,7 @@ class StableDiffusionProcessing: self.cached_c = StableDiffusionProcessing.cached_c self.uc = None self.c = None + self.rng: rng.ImageRNG = None self.user = None @@ -319,6 +323,9 @@ class StableDiffusionProcessing: self.all_prompts = [shared.prompt_styles.apply_styles_to_prompt(x, self.styles) for x in self.all_prompts] self.all_negative_prompts = [shared.prompt_styles.apply_negative_styles_to_prompt(x, self.styles) for x in self.all_negative_prompts] + self.main_prompt = self.all_prompts[0] + self.main_negative_prompt = self.all_negative_prompts[0] + def cached_params(self, required_prompts, steps, extra_network_data): """Returns parameters that invalidate the cond cache if changed""" @@ -473,82 +480,9 @@ class Processed: return self.token_merging_ratio_hr if for_hr else self.token_merging_ratio -# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3 -def slerp(val, low, high): - low_norm = low/torch.norm(low, dim=1, keepdim=True) - high_norm = high/torch.norm(high, dim=1, keepdim=True) - dot = (low_norm*high_norm).sum(1) - - if dot.mean() > 0.9995: - return low * val + high * (1 - val) - - omega = torch.acos(dot) - so = torch.sin(omega) - res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high - return res - - def create_random_tensors(shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0, p=None): - eta_noise_seed_delta = opts.eta_noise_seed_delta or 0 - xs = [] - - # if we have multiple seeds, this means we are working with batch size>1; this then - # enables the generation of additional tensors with noise that the sampler will use during its processing. - # Using those pre-generated tensors instead of simple torch.randn allows a batch with seeds [100, 101] to - # produce the same images as with two batches [100], [101]. - if p is not None and p.sampler is not None and (len(seeds) > 1 and opts.enable_batch_seeds or eta_noise_seed_delta > 0): - sampler_noises = [[] for _ in range(p.sampler.number_of_needed_noises(p))] - else: - sampler_noises = None - - for i, seed in enumerate(seeds): - noise_shape = shape if seed_resize_from_h <= 0 or seed_resize_from_w <= 0 else (shape[0], seed_resize_from_h//8, seed_resize_from_w//8) - - subnoise = None - if subseeds is not None and subseed_strength != 0: - subseed = 0 if i >= len(subseeds) else subseeds[i] - - subnoise = devices.randn(subseed, noise_shape) - - # randn results depend on device; gpu and cpu get different results for same seed; - # the way I see it, it's better to do this on CPU, so that everyone gets same result; - # but the original script had it like this, so I do not dare change it for now because - # it will break everyone's seeds. - noise = devices.randn(seed, noise_shape) - - if subnoise is not None: - noise = slerp(subseed_strength, noise, subnoise) - - if noise_shape != shape: - x = devices.randn(seed, shape) - dx = (shape[2] - noise_shape[2]) // 2 - dy = (shape[1] - noise_shape[1]) // 2 - w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx - h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy - tx = 0 if dx < 0 else dx - ty = 0 if dy < 0 else dy - dx = max(-dx, 0) - dy = max(-dy, 0) - - x[:, ty:ty+h, tx:tx+w] = noise[:, dy:dy+h, dx:dx+w] - noise = x - - if sampler_noises is not None: - cnt = p.sampler.number_of_needed_noises(p) - - if eta_noise_seed_delta > 0: - devices.manual_seed(seed + eta_noise_seed_delta) - - for j in range(cnt): - sampler_noises[j].append(devices.randn_without_seed(tuple(noise_shape))) - - xs.append(noise) - - if sampler_noises is not None: - p.sampler.sampler_noises = [torch.stack(n).to(shared.device) for n in sampler_noises] - - x = torch.stack(xs).to(shared.device) - return x + g = rng.ImageRNG(shape, seeds, subseeds=subseeds, subseed_strength=subseed_strength, seed_resize_from_h=seed_resize_from_h, seed_resize_from_w=seed_resize_from_w) + return g.next() class DecodedSamples(list): @@ -571,7 +505,7 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False): errors.print_error_explanation( "A tensor with all NaNs was produced in VAE.\n" "Web UI will now convert VAE into 32-bit float and retry.\n" - "To disable this behavior, disable the 'Automaticlly revert VAE to 32-bit floats' setting.\n" + "To disable this behavior, disable the 'Automatically revert VAE to 32-bit floats' setting.\n" "To always start with 32-bit VAE, use --no-half-vae commandline flag." ) @@ -590,7 +524,15 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False): def get_fixed_seed(seed): - if seed is None or seed == '' or seed == -1: + if seed == '' or seed is None: + seed = -1 + elif isinstance(seed, str): + try: + seed = int(seed) + except Exception: + seed = -1 + + if seed == -1: return int(random.randrange(4294967294)) return seed @@ -633,10 +575,12 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "CFG scale": p.cfg_scale, "Image CFG scale": getattr(p, 'image_cfg_scale', None), "Seed": p.all_seeds[0] if use_main_prompt else all_seeds[index], - "Face restoration": (opts.face_restoration_model if p.restore_faces else None), + "Face restoration": opts.face_restoration_model if p.restore_faces else None, "Size": f"{p.width}x{p.height}", "Model hash": getattr(p, 'sd_model_hash', None if not opts.add_model_hash_to_info or not shared.sd_model.sd_model_hash else shared.sd_model.sd_model_hash), "Model": (None if not opts.add_model_name_to_info else shared.sd_model.sd_checkpoint_info.name_for_extra), + "VAE hash": sd_vae.get_loaded_vae_hash() if opts.add_model_hash_to_info else None, + "VAE": sd_vae.get_loaded_vae_name() if opts.add_model_name_to_info else None, "Variation seed": (None if p.subseed_strength == 0 else (p.all_subseeds[0] if use_main_prompt else all_subseeds[index])), "Variation seed strength": (None if p.subseed_strength == 0 else p.subseed_strength), "Seed resize from": (None if p.seed_resize_from_w <= 0 or p.seed_resize_from_h <= 0 else f"{p.seed_resize_from_w}x{p.seed_resize_from_h}"), @@ -649,6 +593,7 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter "Init image hash": getattr(p, 'init_img_hash', None), "RNG": opts.randn_source if opts.randn_source != "GPU" and opts.randn_source != "NV" else None, "NGMS": None if p.s_min_uncond == 0 else p.s_min_uncond, + "Tiling": "True" if p.tiling else None, **p.extra_generation_params, "Version": program_version() if opts.add_version_to_infotext else None, "User": p.user if opts.add_user_name_to_info else None, @@ -656,8 +601,8 @@ def create_infotext(p, all_prompts, all_seeds, all_subseeds, comments=None, iter generation_params_text = ", ".join([k if k == v else f'{k}: {generation_parameters_copypaste.quote(v)}' for k, v in generation_params.items() if v is not None]) - prompt_text = p.prompt if use_main_prompt else all_prompts[index] - negative_prompt_text = f"\nNegative prompt: {all_negative_prompts[index]}" if all_negative_prompts[index] else "" + prompt_text = p.main_prompt if use_main_prompt else all_prompts[index] + negative_prompt_text = f"\nNegative prompt: {p.main_negative_prompt if use_main_prompt else all_negative_prompts[index]}" if all_negative_prompts[index] else "" return f"{prompt_text}{negative_prompt_text}\n{generation_params_text}".strip() @@ -718,6 +663,12 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: seed = get_fixed_seed(p.seed) subseed = get_fixed_seed(p.subseed) + if p.restore_faces is None: + p.restore_faces = opts.face_restoration + + if p.tiling is None: + p.tiling = opts.tiling + modules.sd_hijack.model_hijack.apply_circular(p.tiling) modules.sd_hijack.model_hijack.clear_comments() @@ -773,6 +724,8 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: p.seeds = p.all_seeds[n * p.batch_size:(n + 1) * p.batch_size] p.subseeds = p.all_subseeds[n * p.batch_size:(n + 1) * p.batch_size] + p.rng = rng.ImageRNG((opt_C, p.height // opt_f, p.width // opt_f), p.seeds, subseeds=p.subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w) + if p.scripts is not None: p.scripts.before_process_batch(p, batch_number=n, prompts=p.prompts, seeds=p.seeds, subseeds=p.subseeds) @@ -794,7 +747,7 @@ def process_images_inner(p: StableDiffusionProcessing) -> Processed: # strength, which is saved as "Model Strength: 1.0" in the infotext if n == 0: with open(os.path.join(paths.data_path, "params.txt"), "w", encoding="utf8") as file: - processed = Processed(p, [], p.seed, "") + processed = Processed(p, []) file.write(processed.infotext(p, 0)) p.setup_conds() @@ -997,6 +950,45 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): self.hr_c = None self.hr_uc = None + def calculate_target_resolution(self): + if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height): + self.hr_resize_x = self.width + self.hr_resize_y = self.height + self.hr_upscale_to_x = self.width + self.hr_upscale_to_y = self.height + + self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height) + self.applied_old_hires_behavior_to = (self.width, self.height) + + if self.hr_resize_x == 0 and self.hr_resize_y == 0: + self.extra_generation_params["Hires upscale"] = self.hr_scale + self.hr_upscale_to_x = int(self.width * self.hr_scale) + self.hr_upscale_to_y = int(self.height * self.hr_scale) + else: + self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}" + + if self.hr_resize_y == 0: + self.hr_upscale_to_x = self.hr_resize_x + self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width + elif self.hr_resize_x == 0: + self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height + self.hr_upscale_to_y = self.hr_resize_y + else: + target_w = self.hr_resize_x + target_h = self.hr_resize_y + src_ratio = self.width / self.height + dst_ratio = self.hr_resize_x / self.hr_resize_y + + if src_ratio < dst_ratio: + self.hr_upscale_to_x = self.hr_resize_x + self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width + else: + self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height + self.hr_upscale_to_y = self.hr_resize_y + + self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f + self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f + def init(self, all_prompts, all_seeds, all_subseeds): if self.enable_hr: if self.hr_checkpoint_name: @@ -1021,43 +1013,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): if not any(x.name == self.hr_upscaler for x in shared.sd_upscalers): raise Exception(f"could not find upscaler named {self.hr_upscaler}") - if opts.use_old_hires_fix_width_height and self.applied_old_hires_behavior_to != (self.width, self.height): - self.hr_resize_x = self.width - self.hr_resize_y = self.height - self.hr_upscale_to_x = self.width - self.hr_upscale_to_y = self.height - - self.width, self.height = old_hires_fix_first_pass_dimensions(self.width, self.height) - self.applied_old_hires_behavior_to = (self.width, self.height) - - if self.hr_resize_x == 0 and self.hr_resize_y == 0: - self.extra_generation_params["Hires upscale"] = self.hr_scale - self.hr_upscale_to_x = int(self.width * self.hr_scale) - self.hr_upscale_to_y = int(self.height * self.hr_scale) - else: - self.extra_generation_params["Hires resize"] = f"{self.hr_resize_x}x{self.hr_resize_y}" - - if self.hr_resize_y == 0: - self.hr_upscale_to_x = self.hr_resize_x - self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width - elif self.hr_resize_x == 0: - self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height - self.hr_upscale_to_y = self.hr_resize_y - else: - target_w = self.hr_resize_x - target_h = self.hr_resize_y - src_ratio = self.width / self.height - dst_ratio = self.hr_resize_x / self.hr_resize_y - - if src_ratio < dst_ratio: - self.hr_upscale_to_x = self.hr_resize_x - self.hr_upscale_to_y = self.hr_resize_x * self.height // self.width - else: - self.hr_upscale_to_x = self.hr_resize_y * self.width // self.height - self.hr_upscale_to_y = self.hr_resize_y - - self.truncate_x = (self.hr_upscale_to_x - target_w) // opt_f - self.truncate_y = (self.hr_upscale_to_y - target_h) // opt_f + self.calculate_target_resolution() if not state.processing_has_refined_job_count: if state.job_count == -1: @@ -1076,7 +1032,7 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): self.sampler = sd_samplers.create_sampler(self.sampler_name, self.sd_model) - x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) + x = self.rng.next() samples = self.sampler.sample(self, x, conditioning, unconditional_conditioning, image_conditioning=self.txt2img_image_conditioning(x)) del x @@ -1164,7 +1120,8 @@ class StableDiffusionProcessingTxt2Img(StableDiffusionProcessing): samples = samples[:, :, self.truncate_y//2:samples.shape[2]-(self.truncate_y+1)//2, self.truncate_x//2:samples.shape[3]-(self.truncate_x+1)//2] - noise = create_random_tensors(samples.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=subseed_strength, p=self) + self.rng = rng.ImageRNG(samples.shape[1:], self.seeds, subseeds=self.subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w) + noise = self.rng.next() # GC now before running the next img2img to prevent running out of memory devices.torch_gc() @@ -1429,7 +1386,7 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing): self.image_conditioning = self.img2img_image_conditioning(image, self.init_latent, image_mask) def sample(self, conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts): - x = create_random_tensors([opt_C, self.height // opt_f, self.width // opt_f], seeds=seeds, subseeds=subseeds, subseed_strength=self.subseed_strength, seed_resize_from_h=self.seed_resize_from_h, seed_resize_from_w=self.seed_resize_from_w, p=self) + x = self.rng.next() if self.initial_noise_multiplier != 1.0: self.extra_generation_params["Noise multiplier"] = self.initial_noise_multiplier diff --git a/modules/rng.py b/modules/rng.py new file mode 100644 index 000000000..f927a318c --- /dev/null +++ b/modules/rng.py @@ -0,0 +1,170 @@ +import torch + +from modules import devices, rng_philox, shared + + +def randn(seed, shape, generator=None): + """Generate a tensor with random numbers from a normal distribution using seed. + + Uses the seed parameter to set the global torch seed; to generate more with that seed, use randn_like/randn_without_seed.""" + + manual_seed(seed) + + if shared.opts.randn_source == "NV": + return torch.asarray((generator or nv_rng).randn(shape), device=devices.device) + + if shared.opts.randn_source == "CPU" or devices.device.type == 'mps': + return torch.randn(shape, device=devices.cpu, generator=generator).to(devices.device) + + return torch.randn(shape, device=devices.device, generator=generator) + + +def randn_local(seed, shape): + """Generate a tensor with random numbers from a normal distribution using seed. + + Does not change the global random number generator. You can only generate the seed's first tensor using this function.""" + + if shared.opts.randn_source == "NV": + rng = rng_philox.Generator(seed) + return torch.asarray(rng.randn(shape), device=devices.device) + + local_device = devices.cpu if shared.opts.randn_source == "CPU" or devices.device.type == 'mps' else devices.device + local_generator = torch.Generator(local_device).manual_seed(int(seed)) + return torch.randn(shape, device=local_device, generator=local_generator).to(devices.device) + + +def randn_like(x): + """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator. + + Use either randn() or manual_seed() to initialize the generator.""" + + if shared.opts.randn_source == "NV": + return torch.asarray(nv_rng.randn(x.shape), device=x.device, dtype=x.dtype) + + if shared.opts.randn_source == "CPU" or x.device.type == 'mps': + return torch.randn_like(x, device=devices.cpu).to(x.device) + + return torch.randn_like(x) + + +def randn_without_seed(shape, generator=None): + """Generate a tensor with random numbers from a normal distribution using the previously initialized genrator. + + Use either randn() or manual_seed() to initialize the generator.""" + + if shared.opts.randn_source == "NV": + return torch.asarray((generator or nv_rng).randn(shape), device=devices.device) + + if shared.opts.randn_source == "CPU" or devices.device.type == 'mps': + return torch.randn(shape, device=devices.cpu, generator=generator).to(devices.device) + + return torch.randn(shape, device=devices.device, generator=generator) + + +def manual_seed(seed): + """Set up a global random number generator using the specified seed.""" + + if shared.opts.randn_source == "NV": + global nv_rng + nv_rng = rng_philox.Generator(seed) + return + + torch.manual_seed(seed) + + +def create_generator(seed): + if shared.opts.randn_source == "NV": + return rng_philox.Generator(seed) + + device = devices.cpu if shared.opts.randn_source == "CPU" or devices.device.type == 'mps' else devices.device + generator = torch.Generator(device).manual_seed(int(seed)) + return generator + + +# from https://discuss.pytorch.org/t/help-regarding-slerp-function-for-generative-model-sampling/32475/3 +def slerp(val, low, high): + low_norm = low/torch.norm(low, dim=1, keepdim=True) + high_norm = high/torch.norm(high, dim=1, keepdim=True) + dot = (low_norm*high_norm).sum(1) + + if dot.mean() > 0.9995: + return low * val + high * (1 - val) + + omega = torch.acos(dot) + so = torch.sin(omega) + res = (torch.sin((1.0-val)*omega)/so).unsqueeze(1)*low + (torch.sin(val*omega)/so).unsqueeze(1) * high + return res + + +class ImageRNG: + def __init__(self, shape, seeds, subseeds=None, subseed_strength=0.0, seed_resize_from_h=0, seed_resize_from_w=0): + self.shape = shape + self.seeds = seeds + self.subseeds = subseeds + self.subseed_strength = subseed_strength + self.seed_resize_from_h = seed_resize_from_h + self.seed_resize_from_w = seed_resize_from_w + + self.generators = [create_generator(seed) for seed in seeds] + + self.is_first = True + + def first(self): + noise_shape = self.shape if self.seed_resize_from_h <= 0 or self.seed_resize_from_w <= 0 else (self.shape[0], self.seed_resize_from_h // 8, self.seed_resize_from_w // 8) + + xs = [] + + for i, (seed, generator) in enumerate(zip(self.seeds, self.generators)): + subnoise = None + if self.subseeds is not None and self.subseed_strength != 0: + subseed = 0 if i >= len(self.subseeds) else self.subseeds[i] + subnoise = randn(subseed, noise_shape) + + if noise_shape != self.shape: + noise = randn(seed, noise_shape) + else: + noise = randn(seed, self.shape, generator=generator) + + if subnoise is not None: + noise = slerp(self.subseed_strength, noise, subnoise) + + if noise_shape != self.shape: + x = randn(seed, self.shape, generator=generator) + dx = (self.shape[2] - noise_shape[2]) // 2 + dy = (self.shape[1] - noise_shape[1]) // 2 + w = noise_shape[2] if dx >= 0 else noise_shape[2] + 2 * dx + h = noise_shape[1] if dy >= 0 else noise_shape[1] + 2 * dy + tx = 0 if dx < 0 else dx + ty = 0 if dy < 0 else dy + dx = max(-dx, 0) + dy = max(-dy, 0) + + x[:, ty:ty + h, tx:tx + w] = noise[:, dy:dy + h, dx:dx + w] + noise = x + + xs.append(noise) + + eta_noise_seed_delta = shared.opts.eta_noise_seed_delta or 0 + if eta_noise_seed_delta: + self.generators = [create_generator(seed + eta_noise_seed_delta) for seed in self.seeds] + + return torch.stack(xs).to(shared.device) + + def next(self): + if self.is_first: + self.is_first = False + return self.first() + + xs = [] + for generator in self.generators: + x = randn_without_seed(self.shape, generator=generator) + xs.append(x) + + return torch.stack(xs).to(shared.device) + + +devices.randn = randn +devices.randn_local = randn_local +devices.randn_like = randn_like +devices.randn_without_seed = randn_without_seed +devices.manual_seed = manual_seed diff --git a/modules/sd_models.py b/modules/sd_models.py index a97af215c..f6cb2f347 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -14,7 +14,7 @@ import ldm.modules.midas as midas from ldm.util import instantiate_from_config -from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache +from modules import paths, shared, modelloader, devices, script_callbacks, sd_vae, sd_disable_initialization, errors, hashes, sd_models_config, sd_unet, sd_models_xl, cache, extra_networks, processing, lowvram, sd_hijack from modules.timer import Timer import tomesd @@ -68,7 +68,9 @@ class CheckpointInfo: self.title = name if self.shorthash is None else f'{name} [{self.shorthash}]' self.short_title = self.name_for_extra if self.shorthash is None else f'{self.name_for_extra} [{self.shorthash}]' - self.ids = [self.hash, self.model_name, self.title, name, self.name_for_extra, f'{name} [{self.hash}]'] + ([self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] if self.shorthash else []) + self.ids = [self.hash, self.model_name, self.title, name, self.name_for_extra, f'{name} [{self.hash}]'] + if self.shorthash: + self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]'] def register(self): checkpoints_list[self.title] = self @@ -80,10 +82,14 @@ class CheckpointInfo: if self.sha256 is None: return - self.shorthash = self.sha256[0:10] + shorthash = self.sha256[0:10] + if self.shorthash == self.sha256[0:10]: + return self.shorthash + + self.shorthash = shorthash if self.shorthash not in self.ids: - self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]'] + self.ids += [self.shorthash, self.sha256, f'{self.name} [{self.shorthash}]', f'{self.name_for_extra} [{self.shorthash}]'] checkpoints_list.pop(self.title, None) self.title = f'{self.name} [{self.shorthash}]' @@ -489,7 +495,6 @@ model_data = SdModelData() def get_empty_cond(sd_model): - from modules import extra_networks, processing p = processing.StableDiffusionProcessingTxt2Img() extra_networks.activate(p, {}) @@ -502,8 +507,6 @@ def get_empty_cond(sd_model): def send_model_to_cpu(m): - from modules import lowvram - if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.send_everything_to_cpu() else: @@ -513,8 +516,6 @@ def send_model_to_cpu(m): def send_model_to_device(m): - from modules import lowvram - if shared.cmd_opts.lowvram or shared.cmd_opts.medvram: lowvram.setup_for_low_vram(m, shared.cmd_opts.medvram) else: @@ -639,6 +640,8 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer): timer.record("send model to device") model_data.set_sd_model(already_loaded) + shared.opts.data["sd_model_checkpoint"] = already_loaded.sd_checkpoint_info.title + shared.opts.data["sd_checkpoint_hash"] = already_loaded.sd_checkpoint_info.sha256 print(f"Using already loaded model {already_loaded.sd_checkpoint_info.title}: done in {timer.summary()}") return model_data.sd_model elif shared.opts.sd_checkpoints_limit > 1 and len(model_data.loaded_sd_models) < shared.opts.sd_checkpoints_limit: @@ -658,7 +661,6 @@ def reuse_model_from_already_loaded(sd_model, checkpoint_info, timer): def reload_model_weights(sd_model=None, info=None): - from modules import devices, sd_hijack checkpoint_info = info or select_checkpoint() timer = Timer() @@ -721,7 +723,6 @@ def reload_model_weights(sd_model=None, info=None): def unload_model_weights(sd_model=None, info=None): - from modules import devices, sd_hijack timer = Timer() if model_data.sd_model: diff --git a/modules/sd_models_config.py b/modules/sd_models_config.py index 8266fa397..08dd03f19 100644 --- a/modules/sd_models_config.py +++ b/modules/sd_models_config.py @@ -2,7 +2,7 @@ import os import torch -from modules import shared, paths, sd_disable_initialization +from modules import shared, paths, sd_disable_initialization, devices sd_configs_path = shared.sd_configs_path sd_repo_configs_path = os.path.join(paths.paths['Stable Diffusion'], "configs", "stable-diffusion") @@ -29,7 +29,6 @@ def is_using_v_parameterization_for_sd2(state_dict): """ import ldm.modules.diffusionmodules.openaimodel - from modules import devices device = devices.cpu diff --git a/modules/sd_samplers_common.py b/modules/sd_samplers_common.py index b6ad68307..35c4d657f 100644 --- a/modules/sd_samplers_common.py +++ b/modules/sd_samplers_common.py @@ -1,5 +1,5 @@ import inspect -from collections import namedtuple, deque +from collections import namedtuple import numpy as np import torch from PIL import Image @@ -161,10 +161,15 @@ def apply_refiner(sampler): class TorchHijack: - def __init__(self, sampler_noises): - # Using a deque to efficiently receive the sampler_noises in the same order as the previous index-based - # implementation. - self.sampler_noises = deque(sampler_noises) + """This is here to replace torch.randn_like of k-diffusion. + + k-diffusion has random_sampler argument for most samplers, but not for all, so + this is needed to properly replace every use of torch.randn_like. + + We need to replace to make images generated in batches to be same as images generated individually.""" + + def __init__(self, p): + self.rng = p.rng def __getattr__(self, item): if item == 'randn_like': @@ -176,12 +181,7 @@ class TorchHijack: raise AttributeError(f"'{type(self).__name__}' object has no attribute '{item}'") def randn_like(self, x): - if self.sampler_noises: - noise = self.sampler_noises.popleft() - if noise.shape == x.shape: - return noise - - return devices.randn_like(x) + return self.rng.next() class Sampler: @@ -248,7 +248,7 @@ class Sampler: self.eta = p.eta if p.eta is not None else getattr(opts, self.eta_option_field, 0.0) self.s_min_uncond = getattr(p, 's_min_uncond', 0.0) - k_diffusion.sampling.torch = TorchHijack(self.sampler_noises if self.sampler_noises is not None else []) + k_diffusion.sampling.torch = TorchHijack(p) extra_params_kwargs = {} for param_name in self.extra_params: diff --git a/modules/sd_samplers_kdiffusion.py b/modules/sd_samplers_kdiffusion.py index 95a43ceff..e18549805 100644 --- a/modules/sd_samplers_kdiffusion.py +++ b/modules/sd_samplers_kdiffusion.py @@ -1,7 +1,8 @@ import torch import inspect import k_diffusion.sampling -from modules import sd_samplers_common, sd_samplers_extra, sd_samplers_cfg_denoiser +from modules import sd_samplers_common, sd_samplers_extra +from modules.sd_samplers_cfg_denoiser import CFGDenoiser from modules.shared import opts import modules.shared as shared diff --git a/modules/sd_samplers_timesteps.py b/modules/sd_samplers_timesteps.py index 965e61c67..16572c7e0 100644 --- a/modules/sd_samplers_timesteps.py +++ b/modules/sd_samplers_timesteps.py @@ -1,5 +1,6 @@ import torch import inspect +import sys from modules import devices, sd_samplers_common, sd_samplers_timesteps_impl from modules.sd_samplers_cfg_denoiser import CFGDenoiser @@ -152,3 +153,6 @@ class CompVisSampler(sd_samplers_common.Sampler): return samples + +sys.modules['modules.sd_samplers_compvis'] = sys.modules[__name__] +VanillaStableDiffusionSampler = CompVisSampler # temp. compatibility with older extensions diff --git a/modules/sd_vae.py b/modules/sd_vae.py index 38bcb8402..1db01992d 100644 --- a/modules/sd_vae.py +++ b/modules/sd_vae.py @@ -2,7 +2,8 @@ import os import collections from dataclasses import dataclass -from modules import paths, shared, devices, script_callbacks, sd_models, extra_networks +from modules import paths, shared, devices, script_callbacks, sd_models, extra_networks, lowvram, sd_hijack, hashes + import glob from copy import deepcopy @@ -19,6 +20,20 @@ checkpoint_info = None checkpoints_loaded = collections.OrderedDict() +def get_loaded_vae_name(): + if loaded_vae_file is None: + return None + + return os.path.basename(loaded_vae_file) + + +def get_loaded_vae_hash(): + if loaded_vae_file is None: + return None + + return hashes.sha256(loaded_vae_file, 'vae')[0:10] + + def get_base_vae(model): if base_vae is not None and checkpoint_info == model.sd_checkpoint_info and model: return base_vae @@ -231,8 +246,6 @@ unspecified = object() def reload_vae_weights(sd_model=None, vae_file=unspecified): - from modules import lowvram, devices, sd_hijack - if not sd_model: sd_model = shared.sd_model diff --git a/modules/shared.py b/modules/shared.py index 9935d2a7c..d9d014845 100644 --- a/modules/shared.py +++ b/modules/shared.py @@ -1,845 +1,52 @@ -import datetime -import json -import os -import re import sys -import threading -import time -import logging import gradio as gr -import torch -import tqdm -import launch -import modules.interrogate -import modules.memmon -import modules.styles -import modules.devices as devices -from modules import localization, script_loading, errors, ui_components, shared_items, cmd_args +from modules import shared_cmd_options, shared_gradio_themes, options, shared_items from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401 from ldm.models.diffusion.ddpm import LatentDiffusion -from typing import Optional +from modules import util -log = logging.getLogger(__name__) - -demo = None - -parser = cmd_args.parser - -script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file)) -script_loading.preload_extensions(extensions_builtin_dir, parser) - -if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None: - cmd_opts = parser.parse_args() -else: - cmd_opts, _ = parser.parse_known_args() - - -restricted_opts = { - "samples_filename_pattern", - "directories_filename_pattern", - "outdir_samples", - "outdir_txt2img_samples", - "outdir_img2img_samples", - "outdir_extras_samples", - "outdir_grids", - "outdir_txt2img_grids", - "outdir_save", - "outdir_init_images" -} - -# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json -gradio_hf_hub_themes = [ - "gradio/base", - "gradio/glass", - "gradio/monochrome", - "gradio/seafoam", - "gradio/soft", - "gradio/dracula_test", - "abidlabs/dracula_test", - "abidlabs/Lime", - "abidlabs/pakistan", - "Ama434/neutral-barlow", - "dawood/microsoft_windows", - "finlaymacklon/smooth_slate", - "Franklisi/darkmode", - "freddyaboulton/dracula_revamped", - "freddyaboulton/test-blue", - "gstaff/xkcd", - "Insuz/Mocha", - "Insuz/SimpleIndigo", - "JohnSmith9982/small_and_pretty", - "nota-ai/theme", - "nuttea/Softblue", - "ParityError/Anime", - "reilnuud/polite", - "remilia/Ghostly", - "rottenlittlecreature/Moon_Goblin", - "step-3-profit/Midnight-Deep", - "Taithrah/Minimal", - "ysharma/huggingface", - "ysharma/steampunk" -] - - -cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access - -devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \ - (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer']) - -devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16 -devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16 - -device = devices.device -weight_load_location = None if cmd_opts.lowram else "cpu" +cmd_opts = shared_cmd_options.cmd_opts +parser = shared_cmd_options.parser batch_cond_uncond = cmd_opts.always_batch_cond_uncond or not (cmd_opts.lowvram or cmd_opts.medvram) parallel_processing_allowed = not cmd_opts.lowvram and not cmd_opts.medvram -xformers_available = False +styles_filename = cmd_opts.styles_file config_filename = cmd_opts.ui_settings_file +hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config} + +demo = None + +device = None + +weight_load_location = None + +xformers_available = False -os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) hypernetworks = {} + loaded_hypernetworks = [] +state = None -def reload_hypernetworks(): - from modules.hypernetworks import hypernetwork - global hypernetworks +prompt_styles = None - hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) - - -class State: - skipped = False - interrupted = False - job = "" - job_no = 0 - job_count = 0 - processing_has_refined_job_count = False - job_timestamp = '0' - sampling_step = 0 - sampling_steps = 0 - current_latent = None - current_image = None - current_image_sampling_step = 0 - id_live_preview = 0 - textinfo = None - time_start = None - server_start = None - _server_command_signal = threading.Event() - _server_command: Optional[str] = None - - @property - def need_restart(self) -> bool: - # Compatibility getter for need_restart. - return self.server_command == "restart" - - @need_restart.setter - def need_restart(self, value: bool) -> None: - # Compatibility setter for need_restart. - if value: - self.server_command = "restart" - - @property - def server_command(self): - return self._server_command - - @server_command.setter - def server_command(self, value: Optional[str]) -> None: - """ - Set the server command to `value` and signal that it's been set. - """ - self._server_command = value - self._server_command_signal.set() - - def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]: - """ - Wait for server command to get set; return and clear the value and signal. - """ - if self._server_command_signal.wait(timeout): - self._server_command_signal.clear() - req = self._server_command - self._server_command = None - return req - return None - - def request_restart(self) -> None: - self.interrupt() - self.server_command = "restart" - log.info("Received restart request") - - def skip(self): - self.skipped = True - log.info("Received skip request") - - def interrupt(self): - self.interrupted = True - log.info("Received interrupt request") - - def nextjob(self): - if opts.live_previews_enable and opts.show_progress_every_n_steps == -1: - self.do_set_current_image() - - self.job_no += 1 - self.sampling_step = 0 - self.current_image_sampling_step = 0 - - def dict(self): - obj = { - "skipped": self.skipped, - "interrupted": self.interrupted, - "job": self.job, - "job_count": self.job_count, - "job_timestamp": self.job_timestamp, - "job_no": self.job_no, - "sampling_step": self.sampling_step, - "sampling_steps": self.sampling_steps, - } - - return obj - - def begin(self, job: str = "(unknown)"): - self.sampling_step = 0 - self.job_count = -1 - self.processing_has_refined_job_count = False - self.job_no = 0 - self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") - self.current_latent = None - self.current_image = None - self.current_image_sampling_step = 0 - self.id_live_preview = 0 - self.skipped = False - self.interrupted = False - self.textinfo = None - self.time_start = time.time() - self.job = job - devices.torch_gc() - log.info("Starting job %s", job) - - def end(self): - duration = time.time() - self.time_start - log.info("Ending job %s (%.2f seconds)", self.job, duration) - self.job = "" - self.job_count = 0 - - devices.torch_gc() - - def set_current_image(self): - """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this""" - if not parallel_processing_allowed: - return - - if self.sampling_step - self.current_image_sampling_step >= opts.show_progress_every_n_steps and opts.live_previews_enable and opts.show_progress_every_n_steps != -1: - self.do_set_current_image() - - def do_set_current_image(self): - if self.current_latent is None: - return - - import modules.sd_samplers - - try: - if opts.show_progress_grid: - self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent)) - else: - self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent)) - - self.current_image_sampling_step = self.sampling_step - - except Exception: - # when switching models during genration, VAE would be on CPU, so creating an image will fail. - # we silently ignore this error - errors.record_exception() - - def assign_current_image(self, image): - self.current_image = image - self.id_live_preview += 1 - - -state = State() -state.server_start = time.time() - -styles_filename = cmd_opts.styles_file -prompt_styles = modules.styles.StyleDatabase(styles_filename) - -interrogator = modules.interrogate.InterrogateModels("interrogate") +interrogator = None face_restorers = [] +options_templates = None +opts = None +restricted_opts = None -class OptionInfo: - def __init__(self, default=None, label="", component=None, component_args=None, onchange=None, section=None, refresh=None, comment_before='', comment_after=''): - self.default = default - self.label = label - self.component = component - self.component_args = component_args - self.onchange = onchange - self.section = section - self.refresh = refresh - self.do_not_save = False - - self.comment_before = comment_before - """HTML text that will be added after label in UI""" - - self.comment_after = comment_after - """HTML text that will be added before label in UI""" - - def link(self, label, url): - self.comment_before += f"[{label}]" - return self - - def js(self, label, js_func): - self.comment_before += f"[{label}]" - return self - - def info(self, info): - self.comment_after += f"({info})" - return self - - def html(self, html): - self.comment_after += html - return self - - def needs_restart(self): - self.comment_after += " (requires restart)" - return self - - def needs_reload_ui(self): - self.comment_after += " (requires Reload UI)" - return self - - -class OptionHTML(OptionInfo): - def __init__(self, text): - super().__init__(str(text).strip(), label='', component=lambda **kwargs: gr.HTML(elem_classes="settings-info", **kwargs)) - - self.do_not_save = True - - -def options_section(section_identifier, options_dict): - for v in options_dict.values(): - v.section = section_identifier - - return options_dict - - -def list_checkpoint_tiles(): - import modules.sd_models - return modules.sd_models.checkpoint_tiles() - - -def refresh_checkpoints(): - import modules.sd_models - return modules.sd_models.list_models() - - -def list_samplers(): - import modules.sd_samplers - return modules.sd_samplers.all_samplers - - -hide_dirs = {"visible": not cmd_opts.hide_ui_dir_config} -tab_names = [] - -options_templates = {} - -options_templates.update(options_section(('saving-images', "Saving images/grids"), { - "samples_save": OptionInfo(True, "Always save all generated images"), - "samples_format": OptionInfo('png', 'File format for images'), - "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), - "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs), - - "grid_save": OptionInfo(True, "Always save all generated image grids"), - "grid_format": OptionInfo('png', 'File format for grids'), - "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"), - "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"), - "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"), - "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), - "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}), - "font": OptionInfo("", "Font for image grids that have text"), - "grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}), - "grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}), - "grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}), - - "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"), - "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), - "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."), - "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."), - "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), - "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"), - "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"), - "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), - "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"), - "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"), - "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number), - "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number), - "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"), - - "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"), - "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"), - "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"), - "save_init_img": OptionInfo(False, "Save init images when using img2img"), - - "temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"), - "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"), - - "save_incomplete_images": OptionInfo(False, "Save incomplete images").info("save images that has been interrupted in mid-generation; even if not saved, they will still show up in webui output."), -})) - -options_templates.update(options_section(('saving-paths', "Paths for saving"), { - "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs), - "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs), - "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs), - "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs), - "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs), - "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs), - "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs), - "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs), - "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs), -})) - -options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), { - "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"), - "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"), - "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"), - "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), - "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}), -})) - -options_templates.update(options_section(('upscaling', "Upscaling"), { - "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"), - "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"), - "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), - "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in sd_upscalers]}), -})) - -options_templates.update(options_section(('face-restoration', "Face restoration"), { - "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in face_restorers]}), - "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"), - "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"), -})) - -options_templates.update(options_section(('system', "System"), { - "auto_launch_browser": OptionInfo("Local", "Automatically open webui in browser on startup", gr.Radio, lambda: {"choices": ["Disable", "Local", "Remote"]}), - "show_warnings": OptionInfo(False, "Show warnings in console.").needs_reload_ui(), - "show_gradio_deprecation_warnings": OptionInfo(True, "Show gradio deprecation warnings in console.").needs_reload_ui(), - "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"), - "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"), - "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), - "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), - "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""), - "disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"), - "hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."), -})) - -options_templates.update(options_section(('training', "Training"), { - "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."), - "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."), - "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."), - "save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."), - "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), - "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), - "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), - "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"), - "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"), - "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."), - "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."), - "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."), -})) - -options_templates.update(options_section(('sd', "Stable Diffusion"), { - "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": list_checkpoint_tiles()}, refresh=refresh_checkpoints), - "sd_checkpoints_limit": OptionInfo(1, "Maximum number of checkpoints loaded at the same time", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}), - "sd_checkpoints_keep_in_cpu": OptionInfo(True, "Only keep one model on device").info("will keep models other than the currently used one in RAM rather than VRAM"), - "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}).info("obsolete; set to 0 and use the two settings above instead"), - "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"), - "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds").needs_reload_ui(), - "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"), - "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), - "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"), - "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"), - "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), - "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"), - "sd_refiner_checkpoint": OptionInfo("None", "Refiner checkpoint", gr.Dropdown, lambda: {"choices": ["None"] + list_checkpoint_tiles()}, refresh=refresh_checkpoints).info("switch to another model in the middle of generation"), - "sd_refiner_switch_at": OptionInfo(1.0, "Refiner switch at", gr.Slider, {"minimum": 0.01, "maximum": 1.0, "step": 0.01}).info("fraction of sampling steps when the swtch to refiner model should happen; 1=never, 0.5=switch in the middle of generation"), -})) - -options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), { - "sdxl_crop_top": OptionInfo(0, "crop top coordinate"), - "sdxl_crop_left": OptionInfo(0, "crop left coordinate"), - "sdxl_refiner_low_aesthetic_score": OptionInfo(2.5, "SDXL low aesthetic score", gr.Number).info("used for refiner model negative prompt"), - "sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"), -})) - -options_templates.update(options_section(('vae', "VAE"), { - "sd_vae_explanation": OptionHTML(""" -VAE is a neural network that transforms a standard RGB -image into latent space representation and back. Latent space representation is what stable diffusion is working on during sampling -(i.e. when the progress bar is between empty and full). For txt2img, VAE is used to create a resulting image after the sampling is finished. -For img2img, VAE is used to process user's input image before the sampling, and to create an image after sampling. -"""), - "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), - "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list).info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"), - "sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"), - "auto_vae_precision": OptionInfo(True, "Automaticlly revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"), - "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"), - "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to decode latent to image"), -})) - -options_templates.update(options_section(('img2img', "img2img"), { - "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}), - "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}), - "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), - "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"), - "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}), - "img2img_editor_height": OptionInfo(720, "Height of the image editor", gr.Slider, {"minimum": 80, "maximum": 1600, "step": 1}).info("in pixels").needs_reload_ui(), - "img2img_sketch_default_brush_color": OptionInfo("#ffffff", "Sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img sketch").needs_reload_ui(), - "img2img_inpaint_mask_brush_color": OptionInfo("#ffffff", "Inpaint mask brush color", ui_components.FormColorPicker, {}).info("brush color of inpaint mask").needs_reload_ui(), - "img2img_inpaint_sketch_default_brush_color": OptionInfo("#ffffff", "Inpaint sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img inpaint sketch").needs_reload_ui(), - "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"), - "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"), -})) - -options_templates.update(options_section(('optimizations', "Optimizations"), { - "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}), - "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"), - "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"), - "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), - "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), - "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length").info("improves performance when prompt and negative prompt have different lengths; changes seeds"), - "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("Do not recalculate conds from prompts if prompts have not changed since previous calculation"), -})) - -options_templates.update(options_section(('compatibility', "Compatibility"), { - "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), - "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."), - "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."), - "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."), - "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."), - "hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."), -})) - -options_templates.update(options_section(('interrogate', "Interrogate"), { - "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"), - "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"), - "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), - "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), - "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), - "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"), - "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": modules.interrogate.category_types()}, refresh=modules.interrogate.category_types), - "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), - "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"), - "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"), - "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"), - "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"), -})) - -options_templates.update(options_section(('extra_networks', "Extra Networks"), { - "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."), - "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'), - "extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}), - "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"), - "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"), - "extra_networks_card_text_scale": OptionInfo(1.0, "Card text scale", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}).info("1 = original size"), - "extra_networks_card_show_desc": OptionInfo(True, "Show description on card"), - "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"), - "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_reload_ui(), - "textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"), - "textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"), - "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *hypernetworks]}, refresh=reload_hypernetworks), -})) - -options_templates.update(options_section(('ui', "User interface"), { - "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(), - "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(), - "gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"), - "return_grid": OptionInfo(True, "Show grid in results for web"), - "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), - "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), - "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), - "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), - "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), - "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"), - "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"), - "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."), - "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_reload_ui(), - "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(), - "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), - "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), - "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"), - "keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"), - "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(), - "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(), - "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(tab_names)}).needs_reload_ui(), - "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(), - "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires checkpoint and sampler selection").needs_reload_ui(), - "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(), - "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(), -})) - - -options_templates.update(options_section(('infotext', "Infotext"), { - "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), - "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), - "add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"), - "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"), - "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"), - "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html(""""""), - -})) - -options_templates.update(options_section(('ui', "Live previews"), { - "show_progressbar": OptionInfo(True, "Show progressbar"), - "live_previews_enable": OptionInfo(True, "Show live previews of the created image"), - "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}), - "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"), - "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"), - "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"), - "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}), - "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"), -})) - -options_templates.update(options_section(('sampler-params', "Sampler parameters"), { - "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in list_samplers()]}).needs_reload_ui(), - "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; higher = more unperdictable results"), - "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}).info("noise multiplier; applies to Euler a and other samplers that have a in them"), - "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}), - 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}).info('amount of stochasticity; only applies to Euler, Heun, and DPM2'), - 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}).info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'), - 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}).info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"), - 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}).info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'), - 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}).info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"), - 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number).info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"), - 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number).info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"), - 'rho': OptionInfo(0.0, "rho", gr.Number).info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"), - 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}).info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"), - 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma").link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"), - 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}), - 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}), - 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}).info("must be < sampling steps"), - 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final"), -})) - -options_templates.update(options_section(('postprocessing', "Postprocessing"), { - 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), - 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), - 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), -})) - -options_templates.update(options_section((None, "Hidden options"), { - "disabled_extensions": OptionInfo([], "Disable these extensions"), - "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}), - "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"), - "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"), -})) - - -options_templates.update() - - -class Options: - data = None - data_labels = options_templates - typemap = {int: float} - - def __init__(self): - self.data = {k: v.default for k, v in self.data_labels.items()} - - def __setattr__(self, key, value): - if self.data is not None: - if key in self.data or key in self.data_labels: - assert not cmd_opts.freeze_settings, "changing settings is disabled" - - info = opts.data_labels.get(key, None) - if info.do_not_save: - return - - comp_args = info.component_args if info else None - if isinstance(comp_args, dict) and comp_args.get('visible', True) is False: - raise RuntimeError(f"not possible to set {key} because it is restricted") - - if cmd_opts.hide_ui_dir_config and key in restricted_opts: - raise RuntimeError(f"not possible to set {key} because it is restricted") - - self.data[key] = value - return - - return super(Options, self).__setattr__(key, value) - - def __getattr__(self, item): - if self.data is not None: - if item in self.data: - return self.data[item] - - if item in self.data_labels: - return self.data_labels[item].default - - return super(Options, self).__getattribute__(item) - - def set(self, key, value): - """sets an option and calls its onchange callback, returning True if the option changed and False otherwise""" - - oldval = self.data.get(key, None) - if oldval == value: - return False - - if self.data_labels[key].do_not_save: - return False - - try: - setattr(self, key, value) - except RuntimeError: - return False - - if self.data_labels[key].onchange is not None: - try: - self.data_labels[key].onchange() - except Exception as e: - errors.display(e, f"changing setting {key} to {value}") - setattr(self, key, oldval) - return False - - return True - - def get_default(self, key): - """returns the default value for the key""" - - data_label = self.data_labels.get(key) - if data_label is None: - return None - - return data_label.default - - def save(self, filename): - assert not cmd_opts.freeze_settings, "saving settings is disabled" - - with open(filename, "w", encoding="utf8") as file: - json.dump(self.data, file, indent=4) - - def same_type(self, x, y): - if x is None or y is None: - return True - - type_x = self.typemap.get(type(x), type(x)) - type_y = self.typemap.get(type(y), type(y)) - - return type_x == type_y - - def load(self, filename): - with open(filename, "r", encoding="utf8") as file: - self.data = json.load(file) - - # 1.6.0 VAE defaults - if self.data.get('sd_vae_as_default') is not None and self.data.get('sd_vae_overrides_per_model_preferences') is None: - self.data['sd_vae_overrides_per_model_preferences'] = not self.data.get('sd_vae_as_default') - - # 1.1.1 quicksettings list migration - if self.data.get('quicksettings') is not None and self.data.get('quicksettings_list') is None: - self.data['quicksettings_list'] = [i.strip() for i in self.data.get('quicksettings').split(',')] - - # 1.4.0 ui_reorder - if isinstance(self.data.get('ui_reorder'), str) and self.data.get('ui_reorder') and "ui_reorder_list" not in self.data: - self.data['ui_reorder_list'] = [i.strip() for i in self.data.get('ui_reorder').split(',')] - - bad_settings = 0 - for k, v in self.data.items(): - info = self.data_labels.get(k, None) - if info is not None and not self.same_type(info.default, v): - print(f"Warning: bad setting value: {k}: {v} ({type(v).__name__}; expected {type(info.default).__name__})", file=sys.stderr) - bad_settings += 1 - - if bad_settings > 0: - print(f"The program is likely to not work with bad settings.\nSettings file: {filename}\nEither fix the file, or delete it and restart.", file=sys.stderr) - - def onchange(self, key, func, call=True): - item = self.data_labels.get(key) - item.onchange = func - - if call: - func() - - def dumpjson(self): - d = {k: self.data.get(k, v.default) for k, v in self.data_labels.items()} - d["_comments_before"] = {k: v.comment_before for k, v in self.data_labels.items() if v.comment_before is not None} - d["_comments_after"] = {k: v.comment_after for k, v in self.data_labels.items() if v.comment_after is not None} - return json.dumps(d) - - def add_option(self, key, info): - self.data_labels[key] = info - - def reorder(self): - """reorder settings so that all items related to section always go together""" - - section_ids = {} - settings_items = self.data_labels.items() - for _, item in settings_items: - if item.section not in section_ids: - section_ids[item.section] = len(section_ids) - - self.data_labels = dict(sorted(settings_items, key=lambda x: section_ids[x[1].section])) - - def cast_value(self, key, value): - """casts an arbitrary to the same type as this setting's value with key - Example: cast_value("eta_noise_seed_delta", "12") -> returns 12 (an int rather than str) - """ - - if value is None: - return None - - default_value = self.data_labels[key].default - if default_value is None: - default_value = getattr(self, key, None) - if default_value is None: - return None - - expected_type = type(default_value) - if expected_type == bool and value == "False": - value = False - else: - value = expected_type(value) - - return value - - -opts = Options() -if os.path.exists(config_filename): - opts.load(config_filename) - - -class Shared(sys.modules[__name__].__class__): - """ - this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than - at program startup. - """ - - sd_model_val = None - - @property - def sd_model(self): - import modules.sd_models - - return modules.sd_models.model_data.get_sd_model() - - @sd_model.setter - def sd_model(self, value): - import modules.sd_models - - modules.sd_models.model_data.set_sd_model(value) - - -sd_model: LatentDiffusion = None # this var is here just for IDE's type checking; it cannot be accessed because the class field above will be accessed instead -sys.modules[__name__].__class__ = Shared +sd_model: LatentDiffusion = None settings_components = None """assinged from ui.py, a mapping on setting names to gradio components repsponsible for those settings""" +tab_names = [] + latent_upscale_default_mode = "Latent" latent_upscale_modes = { "Latent": {"mode": "bilinear", "antialias": False}, @@ -858,121 +65,24 @@ progress_print_out = sys.stdout gradio_theme = gr.themes.Base() +total_tqdm = None -def reload_gradio_theme(theme_name=None): - global gradio_theme - if not theme_name: - theme_name = opts.gradio_theme +mem_mon = None - default_theme_args = dict( - font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'], - font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'], - ) +options_section = options.options_section +OptionInfo = options.OptionInfo +OptionHTML = options.OptionHTML - if theme_name == "Default": - gradio_theme = gr.themes.Default(**default_theme_args) - else: - try: - theme_cache_dir = os.path.join(script_path, 'tmp', 'gradio_themes') - theme_cache_path = os.path.join(theme_cache_dir, f'{theme_name.replace("/", "_")}.json') - if opts.gradio_themes_cache and os.path.exists(theme_cache_path): - gradio_theme = gr.themes.ThemeClass.load(theme_cache_path) - else: - os.makedirs(theme_cache_dir, exist_ok=True) - gradio_theme = gr.themes.ThemeClass.from_hub(theme_name) - gradio_theme.dump(theme_cache_path) - except Exception as e: - errors.display(e, "changing gradio theme") - gradio_theme = gr.themes.Default(**default_theme_args) +natural_sort_key = util.natural_sort_key +listfiles = util.listfiles +html_path = util.html_path +html = util.html +walk_files = util.walk_files +ldm_print = util.ldm_print +reload_gradio_theme = shared_gradio_themes.reload_gradio_theme -class TotalTQDM: - def __init__(self): - self._tqdm = None - - def reset(self): - self._tqdm = tqdm.tqdm( - desc="Total progress", - total=state.job_count * state.sampling_steps, - position=1, - file=progress_print_out - ) - - def update(self): - if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars: - return - if self._tqdm is None: - self.reset() - self._tqdm.update() - - def updateTotal(self, new_total): - if not opts.multiple_tqdm or cmd_opts.disable_console_progressbars: - return - if self._tqdm is None: - self.reset() - self._tqdm.total = new_total - - def clear(self): - if self._tqdm is not None: - self._tqdm.refresh() - self._tqdm.close() - self._tqdm = None - - -total_tqdm = TotalTQDM() - -mem_mon = modules.memmon.MemUsageMonitor("MemMon", device, opts) -mem_mon.start() - - -def natural_sort_key(s, regex=re.compile('([0-9]+)')): - return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)] - - -def listfiles(dirname): - filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")] - return [file for file in filenames if os.path.isfile(file)] - - -def html_path(filename): - return os.path.join(script_path, "html", filename) - - -def html(filename): - path = html_path(filename) - - if os.path.exists(path): - with open(path, encoding="utf8") as file: - return file.read() - - return "" - - -def walk_files(path, allowed_extensions=None): - if not os.path.exists(path): - return - - if allowed_extensions is not None: - allowed_extensions = set(allowed_extensions) - - items = list(os.walk(path, followlinks=True)) - items = sorted(items, key=lambda x: natural_sort_key(x[0])) - - for root, _, files in items: - for filename in sorted(files, key=natural_sort_key): - if allowed_extensions is not None: - _, ext = os.path.splitext(filename) - if ext not in allowed_extensions: - continue - - if not opts.list_hidden_files and ("/." in root or "\\." in root): - continue - - yield os.path.join(root, filename) - - -def ldm_print(*args, **kwargs): - if opts.hide_ldm_prints: - return - - print(*args, **kwargs) +list_checkpoint_tiles = shared_items.list_checkpoint_tiles +refresh_checkpoints = shared_items.refresh_checkpoints +list_samplers = shared_items.list_samplers +reload_hypernetworks = shared_items.reload_hypernetworks diff --git a/modules/shared_cmd_options.py b/modules/shared_cmd_options.py new file mode 100644 index 000000000..af24938b0 --- /dev/null +++ b/modules/shared_cmd_options.py @@ -0,0 +1,18 @@ +import os + +import launch +from modules import cmd_args, script_loading +from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401 + +parser = cmd_args.parser + +script_loading.preload_extensions(extensions_dir, parser, extension_list=launch.list_extensions(launch.args.ui_settings_file)) +script_loading.preload_extensions(extensions_builtin_dir, parser) + +if os.environ.get('IGNORE_CMD_ARGS_ERRORS', None) is None: + cmd_opts = parser.parse_args() +else: + cmd_opts, _ = parser.parse_known_args() + + +cmd_opts.disable_extension_access = (cmd_opts.share or cmd_opts.listen or cmd_opts.server_name) and not cmd_opts.enable_insecure_extension_access diff --git a/modules/shared_gradio_themes.py b/modules/shared_gradio_themes.py new file mode 100644 index 000000000..485e89d5e --- /dev/null +++ b/modules/shared_gradio_themes.py @@ -0,0 +1,66 @@ +import os + +import gradio as gr + +from modules import errors, shared +from modules.paths_internal import script_path + + +# https://huggingface.co/datasets/freddyaboulton/gradio-theme-subdomains/resolve/main/subdomains.json +gradio_hf_hub_themes = [ + "gradio/base", + "gradio/glass", + "gradio/monochrome", + "gradio/seafoam", + "gradio/soft", + "gradio/dracula_test", + "abidlabs/dracula_test", + "abidlabs/Lime", + "abidlabs/pakistan", + "Ama434/neutral-barlow", + "dawood/microsoft_windows", + "finlaymacklon/smooth_slate", + "Franklisi/darkmode", + "freddyaboulton/dracula_revamped", + "freddyaboulton/test-blue", + "gstaff/xkcd", + "Insuz/Mocha", + "Insuz/SimpleIndigo", + "JohnSmith9982/small_and_pretty", + "nota-ai/theme", + "nuttea/Softblue", + "ParityError/Anime", + "reilnuud/polite", + "remilia/Ghostly", + "rottenlittlecreature/Moon_Goblin", + "step-3-profit/Midnight-Deep", + "Taithrah/Minimal", + "ysharma/huggingface", + "ysharma/steampunk" +] + + +def reload_gradio_theme(theme_name=None): + if not theme_name: + theme_name = shared.opts.gradio_theme + + default_theme_args = dict( + font=["Source Sans Pro", 'ui-sans-serif', 'system-ui', 'sans-serif'], + font_mono=['IBM Plex Mono', 'ui-monospace', 'Consolas', 'monospace'], + ) + + if theme_name == "Default": + shared.gradio_theme = gr.themes.Default(**default_theme_args) + else: + try: + theme_cache_dir = os.path.join(script_path, 'tmp', 'gradio_themes') + theme_cache_path = os.path.join(theme_cache_dir, f'{theme_name.replace("/", "_")}.json') + if shared.opts.gradio_themes_cache and os.path.exists(theme_cache_path): + shared.gradio_theme = gr.themes.ThemeClass.load(theme_cache_path) + else: + os.makedirs(theme_cache_dir, exist_ok=True) + shared.gradio_theme = gr.themes.ThemeClass.from_hub(theme_name) + shared.gradio_theme.dump(theme_cache_path) + except Exception as e: + errors.display(e, "changing gradio theme") + shared.gradio_theme = gr.themes.Default(**default_theme_args) diff --git a/modules/shared_init.py b/modules/shared_init.py new file mode 100644 index 000000000..d3fb687e0 --- /dev/null +++ b/modules/shared_init.py @@ -0,0 +1,49 @@ +import os + +import torch + +from modules import shared +from modules.shared import cmd_opts + + +def initialize(): + """Initializes fields inside the shared module in a controlled manner. + + Should be called early because some other modules you can import mingt need these fields to be already set. + """ + + os.makedirs(cmd_opts.hypernetwork_dir, exist_ok=True) + + from modules import options, shared_options + shared.options_templates = shared_options.options_templates + shared.opts = options.Options(shared_options.options_templates, shared_options.restricted_opts) + shared.restricted_opts = shared_options.restricted_opts + if os.path.exists(shared.config_filename): + shared.opts.load(shared.config_filename) + + from modules import devices + devices.device, devices.device_interrogate, devices.device_gfpgan, devices.device_esrgan, devices.device_codeformer = \ + (devices.cpu if any(y in cmd_opts.use_cpu for y in [x, 'all']) else devices.get_optimal_device() for x in ['sd', 'interrogate', 'gfpgan', 'esrgan', 'codeformer']) + + devices.dtype = torch.float32 if cmd_opts.no_half else torch.float16 + devices.dtype_vae = torch.float32 if cmd_opts.no_half or cmd_opts.no_half_vae else torch.float16 + + shared.device = devices.device + shared.weight_load_location = None if cmd_opts.lowram else "cpu" + + from modules import shared_state + shared.state = shared_state.State() + + from modules import styles + shared.prompt_styles = styles.StyleDatabase(shared.styles_filename) + + from modules import interrogate + shared.interrogator = interrogate.InterrogateModels("interrogate") + + from modules import shared_total_tqdm + shared.total_tqdm = shared_total_tqdm.TotalTQDM() + + from modules import memmon, devices + shared.mem_mon = memmon.MemUsageMonitor("MemMon", devices.device, shared.opts) + shared.mem_mon.start() + diff --git a/modules/shared_items.py b/modules/shared_items.py index 89792e88a..e4ec40a8b 100644 --- a/modules/shared_items.py +++ b/modules/shared_items.py @@ -1,3 +1,6 @@ +import sys + +from modules.shared_cmd_options import cmd_opts def realesrgan_models_names(): @@ -41,6 +44,28 @@ def refresh_unet_list(): modules.sd_unet.list_unets() +def list_checkpoint_tiles(): + import modules.sd_models + return modules.sd_models.checkpoint_tiles() + + +def refresh_checkpoints(): + import modules.sd_models + return modules.sd_models.list_models() + + +def list_samplers(): + import modules.sd_samplers + return modules.sd_samplers.all_samplers + + +def reload_hypernetworks(): + from modules.hypernetworks import hypernetwork + from modules import shared + + shared.hypernetworks = hypernetwork.list_hypernetworks(cmd_opts.hypernetwork_dir) + + ui_reorder_categories_builtin_items = [ "inpaint", "sampler", @@ -67,3 +92,27 @@ def ui_reorder_categories(): yield from sections yield "scripts" + + +class Shared(sys.modules[__name__].__class__): + """ + this class is here to provide sd_model field as a property, so that it can be created and loaded on demand rather than + at program startup. + """ + + sd_model_val = None + + @property + def sd_model(self): + import modules.sd_models + + return modules.sd_models.model_data.get_sd_model() + + @sd_model.setter + def sd_model(self, value): + import modules.sd_models + + modules.sd_models.model_data.set_sd_model(value) + + +sys.modules['modules.shared'].__class__ = Shared diff --git a/modules/shared_options.py b/modules/shared_options.py new file mode 100644 index 000000000..9ae51f186 --- /dev/null +++ b/modules/shared_options.py @@ -0,0 +1,318 @@ +import gradio as gr + +from modules import localization, ui_components, shared_items, shared, interrogate, shared_gradio_themes +from modules.paths_internal import models_path, script_path, data_path, sd_configs_path, sd_default_config, sd_model_file, default_sd_model_file, extensions_dir, extensions_builtin_dir # noqa: F401 +from modules.shared_cmd_options import cmd_opts +from modules.options import options_section, OptionInfo, OptionHTML + +options_templates = {} +hide_dirs = shared.hide_dirs + +restricted_opts = { + "samples_filename_pattern", + "directories_filename_pattern", + "outdir_samples", + "outdir_txt2img_samples", + "outdir_img2img_samples", + "outdir_extras_samples", + "outdir_grids", + "outdir_txt2img_grids", + "outdir_save", + "outdir_init_images" +} + +options_templates.update(options_section(('saving-images', "Saving images/grids"), { + "samples_save": OptionInfo(True, "Always save all generated images"), + "samples_format": OptionInfo('png', 'File format for images'), + "samples_filename_pattern": OptionInfo("", "Images filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), + "save_images_add_number": OptionInfo(True, "Add number to filename when saving", component_args=hide_dirs), + + "grid_save": OptionInfo(True, "Always save all generated image grids"), + "grid_format": OptionInfo('png', 'File format for grids'), + "grid_extended_filename": OptionInfo(False, "Add extended info (seed, prompt) to filename when saving grid"), + "grid_only_if_multiple": OptionInfo(True, "Do not save grids consisting of one picture"), + "grid_prevent_empty_spots": OptionInfo(False, "Prevent empty spots in grid (when set to autodetect)"), + "grid_zip_filename_pattern": OptionInfo("", "Archive filename pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), + "n_rows": OptionInfo(-1, "Grid row count; use -1 for autodetect and 0 for it to be same as batch size", gr.Slider, {"minimum": -1, "maximum": 16, "step": 1}), + "font": OptionInfo("", "Font for image grids that have text"), + "grid_text_active_color": OptionInfo("#000000", "Text color for image grids", ui_components.FormColorPicker, {}), + "grid_text_inactive_color": OptionInfo("#999999", "Inactive text color for image grids", ui_components.FormColorPicker, {}), + "grid_background_color": OptionInfo("#ffffff", "Background color for image grids", ui_components.FormColorPicker, {}), + + "enable_pnginfo": OptionInfo(True, "Save text information about generation parameters as chunks to png files"), + "save_txt": OptionInfo(False, "Create a text file next to every image with generation parameters."), + "save_images_before_face_restoration": OptionInfo(False, "Save a copy of image before doing face restoration."), + "save_images_before_highres_fix": OptionInfo(False, "Save a copy of image before applying highres fix."), + "save_images_before_color_correction": OptionInfo(False, "Save a copy of image before applying color correction to img2img results"), + "save_mask": OptionInfo(False, "For inpainting, save a copy of the greyscale mask"), + "save_mask_composite": OptionInfo(False, "For inpainting, save a masked composite"), + "jpeg_quality": OptionInfo(80, "Quality for saved jpeg images", gr.Slider, {"minimum": 1, "maximum": 100, "step": 1}), + "webp_lossless": OptionInfo(False, "Use lossless compression for webp images"), + "export_for_4chan": OptionInfo(True, "Save copy of large images as JPG").info("if the file size is above the limit, or either width or height are above the limit"), + "img_downscale_threshold": OptionInfo(4.0, "File size limit for the above option, MB", gr.Number), + "target_side_length": OptionInfo(4000, "Width/height limit for the above option, in pixels", gr.Number), + "img_max_size_mp": OptionInfo(200, "Maximum image size", gr.Number).info("in megapixels"), + + "use_original_name_batch": OptionInfo(True, "Use original name for output filename during batch process in extras tab"), + "use_upscaler_name_as_suffix": OptionInfo(False, "Use upscaler name as filename suffix in the extras tab"), + "save_selected_only": OptionInfo(True, "When using 'Save' button, only save a single selected image"), + "save_init_img": OptionInfo(False, "Save init images when using img2img"), + + "temp_dir": OptionInfo("", "Directory for temporary images; leave empty for default"), + "clean_temp_dir_at_start": OptionInfo(False, "Cleanup non-default temporary directory when starting webui"), + + "save_incomplete_images": OptionInfo(False, "Save incomplete images").info("save images that has been interrupted in mid-generation; even if not saved, they will still show up in webui output."), +})) + +options_templates.update(options_section(('saving-paths', "Paths for saving"), { + "outdir_samples": OptionInfo("", "Output directory for images; if empty, defaults to three directories below", component_args=hide_dirs), + "outdir_txt2img_samples": OptionInfo("outputs/txt2img-images", 'Output directory for txt2img images', component_args=hide_dirs), + "outdir_img2img_samples": OptionInfo("outputs/img2img-images", 'Output directory for img2img images', component_args=hide_dirs), + "outdir_extras_samples": OptionInfo("outputs/extras-images", 'Output directory for images from extras tab', component_args=hide_dirs), + "outdir_grids": OptionInfo("", "Output directory for grids; if empty, defaults to two directories below", component_args=hide_dirs), + "outdir_txt2img_grids": OptionInfo("outputs/txt2img-grids", 'Output directory for txt2img grids', component_args=hide_dirs), + "outdir_img2img_grids": OptionInfo("outputs/img2img-grids", 'Output directory for img2img grids', component_args=hide_dirs), + "outdir_save": OptionInfo("log/images", "Directory for saving images using the Save button", component_args=hide_dirs), + "outdir_init_images": OptionInfo("outputs/init-images", "Directory for saving init images when using img2img", component_args=hide_dirs), +})) + +options_templates.update(options_section(('saving-to-dirs', "Saving to a directory"), { + "save_to_dirs": OptionInfo(True, "Save images to a subdirectory"), + "grid_save_to_dirs": OptionInfo(True, "Save grids to a subdirectory"), + "use_save_to_dirs_for_ui": OptionInfo(False, "When using \"Save\" button, save images to a subdirectory"), + "directories_filename_pattern": OptionInfo("[date]", "Directory name pattern", component_args=hide_dirs).link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Custom-Images-Filename-Name-and-Subdirectory"), + "directories_max_prompt_words": OptionInfo(8, "Max prompt words for [prompt_words] pattern", gr.Slider, {"minimum": 1, "maximum": 20, "step": 1, **hide_dirs}), +})) + +options_templates.update(options_section(('upscaling', "Upscaling"), { + "ESRGAN_tile": OptionInfo(192, "Tile size for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 512, "step": 16}).info("0 = no tiling"), + "ESRGAN_tile_overlap": OptionInfo(8, "Tile overlap for ESRGAN upscalers.", gr.Slider, {"minimum": 0, "maximum": 48, "step": 1}).info("Low values = visible seam"), + "realesrgan_enabled_models": OptionInfo(["R-ESRGAN 4x+", "R-ESRGAN 4x+ Anime6B"], "Select which Real-ESRGAN models to show in the web UI.", gr.CheckboxGroup, lambda: {"choices": shared_items.realesrgan_models_names()}), + "upscaler_for_img2img": OptionInfo(None, "Upscaler for img2img", gr.Dropdown, lambda: {"choices": [x.name for x in shared.sd_upscalers]}), +})) + +options_templates.update(options_section(('face-restoration', "Face restoration"), { + "face_restoration": OptionInfo(False, "Restore faces", infotext='Face restoration').info("will use a third-party model on generation result to reconstruct faces"), + "face_restoration_model": OptionInfo("CodeFormer", "Face restoration model", gr.Radio, lambda: {"choices": [x.name() for x in shared.face_restorers]}), + "code_former_weight": OptionInfo(0.5, "CodeFormer weight", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}).info("0 = maximum effect; 1 = minimum effect"), + "face_restoration_unload": OptionInfo(False, "Move face restoration model from VRAM into RAM after processing"), +})) + +options_templates.update(options_section(('system', "System"), { + "auto_launch_browser": OptionInfo("Local", "Automatically open webui in browser on startup", gr.Radio, lambda: {"choices": ["Disable", "Local", "Remote"]}), + "show_warnings": OptionInfo(False, "Show warnings in console.").needs_reload_ui(), + "show_gradio_deprecation_warnings": OptionInfo(True, "Show gradio deprecation warnings in console.").needs_reload_ui(), + "memmon_poll_rate": OptionInfo(8, "VRAM usage polls per second during generation.", gr.Slider, {"minimum": 0, "maximum": 40, "step": 1}).info("0 = disable"), + "samples_log_stdout": OptionInfo(False, "Always print all generation info to standard output"), + "multiple_tqdm": OptionInfo(True, "Add a second progress bar to the console that shows progress for an entire job."), + "print_hypernet_extra": OptionInfo(False, "Print extra hypernetwork information to console."), + "list_hidden_files": OptionInfo(True, "Load models/files in hidden directories").info("directory is hidden if its name starts with \".\""), + "disable_mmap_load_safetensors": OptionInfo(False, "Disable memmapping for loading .safetensors files.").info("fixes very slow loading speed in some cases"), + "hide_ldm_prints": OptionInfo(True, "Prevent Stability-AI's ldm/sgm modules from printing noise to console."), +})) + +options_templates.update(options_section(('training', "Training"), { + "unload_models_when_training": OptionInfo(False, "Move VAE and CLIP to RAM when training if possible. Saves VRAM."), + "pin_memory": OptionInfo(False, "Turn on pin_memory for DataLoader. Makes training slightly faster but can increase memory usage."), + "save_optimizer_state": OptionInfo(False, "Saves Optimizer state as separate *.optim file. Training of embedding or HN can be resumed with the matching optim file."), + "save_training_settings_to_txt": OptionInfo(True, "Save textual inversion and hypernet settings to a text file whenever training starts."), + "dataset_filename_word_regex": OptionInfo("", "Filename word regex"), + "dataset_filename_join_string": OptionInfo(" ", "Filename join string"), + "training_image_repeats_per_epoch": OptionInfo(1, "Number of repeats for a single input image per epoch; used only for displaying epoch number", gr.Number, {"precision": 0}), + "training_write_csv_every": OptionInfo(500, "Save an csv containing the loss to log directory every N steps, 0 to disable"), + "training_xattention_optimizations": OptionInfo(False, "Use cross attention optimizations while training"), + "training_enable_tensorboard": OptionInfo(False, "Enable tensorboard logging."), + "training_tensorboard_save_images": OptionInfo(False, "Save generated images within tensorboard."), + "training_tensorboard_flush_every": OptionInfo(120, "How often, in seconds, to flush the pending tensorboard events and summaries to disk."), +})) + +options_templates.update(options_section(('sd', "Stable Diffusion"), { + "sd_model_checkpoint": OptionInfo(None, "Stable Diffusion checkpoint", gr.Dropdown, lambda: {"choices": shared_items.list_checkpoint_tiles()}, refresh=shared_items.refresh_checkpoints, infotext='Model hash'), + "sd_checkpoints_limit": OptionInfo(1, "Maximum number of checkpoints loaded at the same time", gr.Slider, {"minimum": 1, "maximum": 10, "step": 1}), + "sd_checkpoints_keep_in_cpu": OptionInfo(True, "Only keep one model on device").info("will keep models other than the currently used one in RAM rather than VRAM"), + "sd_checkpoint_cache": OptionInfo(0, "Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}).info("obsolete; set to 0 and use the two settings above instead"), + "sd_unet": OptionInfo("Automatic", "SD Unet", gr.Dropdown, lambda: {"choices": shared_items.sd_unet_items()}, refresh=shared_items.refresh_unet_list).info("choose Unet model: Automatic = use one with same filename as checkpoint; None = use Unet from checkpoint"), + "enable_quantization": OptionInfo(False, "Enable quantization in K samplers for sharper and cleaner results. This may change existing seeds").needs_reload_ui(), + "enable_emphasis": OptionInfo(True, "Enable emphasis").info("use (text) to make model pay more attention to text and [text] to make it pay less attention"), + "enable_batch_seeds": OptionInfo(True, "Make K-diffusion samplers produce same images in a batch as when making a single image"), + "comma_padding_backtrack": OptionInfo(20, "Prompt word wrap length limit", gr.Slider, {"minimum": 0, "maximum": 74, "step": 1}).info("in tokens - for texts shorter than specified, if they don't fit into 75 token limit, move them to the next 75 token chunk"), + "CLIP_stop_at_last_layers": OptionInfo(1, "Clip skip", gr.Slider, {"minimum": 1, "maximum": 12, "step": 1}, infotext="Clip skip").link("wiki", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/wiki/Features#clip-skip").info("ignore last layers of CLIP network; 1 ignores none, 2 ignores one layer"), + "upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"), + "randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"), + "tiling": OptionInfo(False, "Tiling", infotext='Tiling').info("produce a tileable picture"), +})) + +options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), { + "sdxl_crop_top": OptionInfo(0, "crop top coordinate"), + "sdxl_crop_left": OptionInfo(0, "crop left coordinate"), + "sdxl_refiner_low_aesthetic_score": OptionInfo(2.5, "SDXL low aesthetic score", gr.Number).info("used for refiner model negative prompt"), + "sdxl_refiner_high_aesthetic_score": OptionInfo(6.0, "SDXL high aesthetic score", gr.Number).info("used for refiner model prompt"), +})) + +options_templates.update(options_section(('vae', "VAE"), { + "sd_vae_explanation": OptionHTML(""" +VAE is a neural network that transforms a standard RGB +image into latent space representation and back. Latent space representation is what stable diffusion is working on during sampling +(i.e. when the progress bar is between empty and full). For txt2img, VAE is used to create a resulting image after the sampling is finished. +For img2img, VAE is used to process user's input image before the sampling, and to create an image after sampling. +"""), + "sd_vae_checkpoint_cache": OptionInfo(0, "VAE Checkpoints to cache in RAM", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), + "sd_vae": OptionInfo("Automatic", "SD VAE", gr.Dropdown, lambda: {"choices": shared_items.sd_vae_items()}, refresh=shared_items.refresh_vae_list, infotext='VAE').info("choose VAE model: Automatic = use one with same filename as checkpoint; None = use VAE from checkpoint"), + "sd_vae_overrides_per_model_preferences": OptionInfo(True, "Selected VAE overrides per-model preferences").info("you can set per-model VAE either by editing user metadata for checkpoints, or by making the VAE have same name as checkpoint"), + "auto_vae_precision": OptionInfo(True, "Automatically revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"), + "sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Encoder').info("method to encode image to latent (use in img2img, hires-fix or inpaint mask)"), + "sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}, infotext='VAE Decoder').info("method to decode latent to image"), +})) + +options_templates.update(options_section(('img2img', "img2img"), { + "inpainting_mask_weight": OptionInfo(1.0, "Inpainting conditioning mask strength", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Conditional mask weight'), + "initial_noise_multiplier": OptionInfo(1.0, "Noise multiplier for img2img", gr.Slider, {"minimum": 0.5, "maximum": 1.5, "step": 0.01}, infotext='Noise multiplier'), + "img2img_color_correction": OptionInfo(False, "Apply color correction to img2img results to match original colors."), + "img2img_fix_steps": OptionInfo(False, "With img2img, do exactly the amount of steps the slider specifies.").info("normally you'd do less with less denoising"), + "img2img_background_color": OptionInfo("#ffffff", "With img2img, fill transparent parts of the input image with this color.", ui_components.FormColorPicker, {}), + "img2img_editor_height": OptionInfo(720, "Height of the image editor", gr.Slider, {"minimum": 80, "maximum": 1600, "step": 1}).info("in pixels").needs_reload_ui(), + "img2img_sketch_default_brush_color": OptionInfo("#ffffff", "Sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img sketch").needs_reload_ui(), + "img2img_inpaint_mask_brush_color": OptionInfo("#ffffff", "Inpaint mask brush color", ui_components.FormColorPicker, {}).info("brush color of inpaint mask").needs_reload_ui(), + "img2img_inpaint_sketch_default_brush_color": OptionInfo("#ffffff", "Inpaint sketch initial brush color", ui_components.FormColorPicker, {}).info("default brush color of img2img inpaint sketch").needs_reload_ui(), + "return_mask": OptionInfo(False, "For inpainting, include the greyscale mask in results for web"), + "return_mask_composite": OptionInfo(False, "For inpainting, include masked composite in results for web"), +})) + +options_templates.update(options_section(('optimizations', "Optimizations"), { + "cross_attention_optimization": OptionInfo("Automatic", "Cross attention optimization", gr.Dropdown, lambda: {"choices": shared_items.cross_attention_optimizations()}), + "s_min_uncond": OptionInfo(0.0, "Negative Guidance minimum sigma", gr.Slider, {"minimum": 0.0, "maximum": 15.0, "step": 0.01}).link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9177").info("skip negative prompt for some steps when the image is almost ready; 0=disable, higher=faster"), + "token_merging_ratio": OptionInfo(0.0, "Token merging ratio", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/9256").info("0=disable, higher=faster"), + "token_merging_ratio_img2img": OptionInfo(0.0, "Token merging ratio for img2img", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}).info("only applies if non-zero and overrides above"), + "token_merging_ratio_hr": OptionInfo(0.0, "Token merging ratio for high-res pass", gr.Slider, {"minimum": 0.0, "maximum": 0.9, "step": 0.1}, infotext='Token merging ratio hr').info("only applies if non-zero and overrides above"), + "pad_cond_uncond": OptionInfo(False, "Pad prompt/negative prompt to be same length", infotext='Pad conds').info("improves performance when prompt and negative prompt have different lengths; changes seeds"), + "persistent_cond_cache": OptionInfo(True, "Persistent cond cache").info("Do not recalculate conds from prompts if prompts have not changed since previous calculation"), +})) + +options_templates.update(options_section(('compatibility', "Compatibility"), { + "use_old_emphasis_implementation": OptionInfo(False, "Use old emphasis implementation. Can be useful to reproduce old seeds."), + "use_old_karras_scheduler_sigmas": OptionInfo(False, "Use old karras scheduler sigmas (0.1 to 10)."), + "no_dpmpp_sde_batch_determinism": OptionInfo(False, "Do not make DPM++ SDE deterministic across different batch sizes."), + "use_old_hires_fix_width_height": OptionInfo(False, "For hires fix, use width/height sliders to set final resolution rather than first pass (disables Upscale by, Resize width/height to)."), + "dont_fix_second_order_samplers_schedule": OptionInfo(False, "Do not fix prompt schedule for second order samplers."), + "hires_fix_use_firstpass_conds": OptionInfo(False, "For hires fix, calculate conds of second pass using extra networks of first pass."), +})) + +options_templates.update(options_section(('interrogate', "Interrogate"), { + "interrogate_keep_models_in_memory": OptionInfo(False, "Keep models in VRAM"), + "interrogate_return_ranks": OptionInfo(False, "Include ranks of model tags matches in results.").info("booru only"), + "interrogate_clip_num_beams": OptionInfo(1, "BLIP: num_beams", gr.Slider, {"minimum": 1, "maximum": 16, "step": 1}), + "interrogate_clip_min_length": OptionInfo(24, "BLIP: minimum description length", gr.Slider, {"minimum": 1, "maximum": 128, "step": 1}), + "interrogate_clip_max_length": OptionInfo(48, "BLIP: maximum description length", gr.Slider, {"minimum": 1, "maximum": 256, "step": 1}), + "interrogate_clip_dict_limit": OptionInfo(1500, "CLIP: maximum number of lines in text file").info("0 = No limit"), + "interrogate_clip_skip_categories": OptionInfo([], "CLIP: skip inquire categories", gr.CheckboxGroup, lambda: {"choices": interrogate.category_types()}, refresh=interrogate.category_types), + "interrogate_deepbooru_score_threshold": OptionInfo(0.5, "deepbooru: score threshold", gr.Slider, {"minimum": 0, "maximum": 1, "step": 0.01}), + "deepbooru_sort_alpha": OptionInfo(True, "deepbooru: sort tags alphabetically").info("if not: sort by score"), + "deepbooru_use_spaces": OptionInfo(True, "deepbooru: use spaces in tags").info("if not: use underscores"), + "deepbooru_escape": OptionInfo(True, "deepbooru: escape (\\) brackets").info("so they are used as literal brackets and not for emphasis"), + "deepbooru_filter_tags": OptionInfo("", "deepbooru: filter out those tags").info("separate by comma"), +})) + +options_templates.update(options_section(('extra_networks', "Extra Networks"), { + "extra_networks_show_hidden_directories": OptionInfo(True, "Show hidden directories").info("directory is hidden if its name starts with \".\"."), + "extra_networks_hidden_models": OptionInfo("When searched", "Show cards for models in hidden directories", gr.Radio, {"choices": ["Always", "When searched", "Never"]}).info('"When searched" option will only show the item when the search string has 4 characters or more'), + "extra_networks_default_multiplier": OptionInfo(1.0, "Default multiplier for extra networks", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}), + "extra_networks_card_width": OptionInfo(0, "Card width for Extra Networks").info("in pixels"), + "extra_networks_card_height": OptionInfo(0, "Card height for Extra Networks").info("in pixels"), + "extra_networks_card_text_scale": OptionInfo(1.0, "Card text scale", gr.Slider, {"minimum": 0.0, "maximum": 2.0, "step": 0.01}).info("1 = original size"), + "extra_networks_card_show_desc": OptionInfo(True, "Show description on card"), + "extra_networks_add_text_separator": OptionInfo(" ", "Extra networks separator").info("extra text to add before <...> when adding extra network to prompt"), + "ui_extra_networks_tab_reorder": OptionInfo("", "Extra networks tab order").needs_reload_ui(), + "textual_inversion_print_at_load": OptionInfo(False, "Print a list of Textual Inversion embeddings when loading model"), + "textual_inversion_add_hashes_to_infotext": OptionInfo(True, "Add Textual Inversion hashes to infotext"), + "sd_hypernetwork": OptionInfo("None", "Add hypernetwork to prompt", gr.Dropdown, lambda: {"choices": ["None", *shared.hypernetworks]}, refresh=shared_items.reload_hypernetworks), +})) + +options_templates.update(options_section(('ui', "User interface"), { + "localization": OptionInfo("None", "Localization", gr.Dropdown, lambda: {"choices": ["None"] + list(localization.localizations.keys())}, refresh=lambda: localization.list_localizations(cmd_opts.localizations_dir)).needs_reload_ui(), + "gradio_theme": OptionInfo("Default", "Gradio theme", ui_components.DropdownEditable, lambda: {"choices": ["Default"] + shared_gradio_themes.gradio_hf_hub_themes}).info("you can also manually enter any of themes from the gallery.").needs_reload_ui(), + "gradio_themes_cache": OptionInfo(True, "Cache gradio themes locally").info("disable to update the selected Gradio theme"), + "return_grid": OptionInfo(True, "Show grid in results for web"), + "do_not_show_images": OptionInfo(False, "Do not show any images in results for web"), + "send_seed": OptionInfo(True, "Send seed when sending prompt or image to other interface"), + "send_size": OptionInfo(True, "Send size when sending prompt or image to another interface"), + "js_modal_lightbox": OptionInfo(True, "Enable full page image viewer"), + "js_modal_lightbox_initially_zoomed": OptionInfo(True, "Show images zoomed in by default in full page image viewer"), + "js_modal_lightbox_gamepad": OptionInfo(False, "Navigate image viewer with gamepad"), + "js_modal_lightbox_gamepad_repeat": OptionInfo(250, "Gamepad repeat period, in milliseconds"), + "show_progress_in_title": OptionInfo(True, "Show generation progress in window title."), + "samplers_in_dropdown": OptionInfo(True, "Use dropdown for sampler selection instead of radio group").needs_reload_ui(), + "dimensions_and_batch_together": OptionInfo(True, "Show Width/Height and Batch sliders in same row").needs_reload_ui(), + "keyedit_precision_attention": OptionInfo(0.1, "Ctrl+up/down precision when editing (attention:1.1)", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), + "keyedit_precision_extra": OptionInfo(0.05, "Ctrl+up/down precision when editing ", gr.Slider, {"minimum": 0.01, "maximum": 0.2, "step": 0.001}), + "keyedit_delimiters": OptionInfo(".,\\/!?%^*;:{}=`~()", "Ctrl+up/down word delimiters"), + "keyedit_move": OptionInfo(True, "Alt+left/right moves prompt elements"), + "quicksettings_list": OptionInfo(["sd_model_checkpoint"], "Quicksettings list", ui_components.DropdownMulti, lambda: {"choices": list(shared.opts.data_labels.keys())}).js("info", "settingsHintsShowQuicksettings").info("setting entries that appear at the top of page rather than in settings tab").needs_reload_ui(), + "ui_tab_order": OptionInfo([], "UI tab order", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(), + "hidden_tabs": OptionInfo([], "Hidden UI tabs", ui_components.DropdownMulti, lambda: {"choices": list(shared.tab_names)}).needs_reload_ui(), + "ui_reorder_list": OptionInfo([], "txt2img/img2img UI item order", ui_components.DropdownMulti, lambda: {"choices": list(shared_items.ui_reorder_categories())}).info("selected items appear first").needs_reload_ui(), + "hires_fix_show_sampler": OptionInfo(False, "Hires fix: show hires checkpoint and sampler selection").needs_reload_ui(), + "hires_fix_show_prompts": OptionInfo(False, "Hires fix: show hires prompt and negative prompt").needs_reload_ui(), + "disable_token_counters": OptionInfo(False, "Disable prompt token counters").needs_reload_ui(), +})) + + +options_templates.update(options_section(('infotext', "Infotext"), { + "add_model_hash_to_info": OptionInfo(True, "Add model hash to generation information"), + "add_model_name_to_info": OptionInfo(True, "Add model name to generation information"), + "add_user_name_to_info": OptionInfo(False, "Add user name to generation information when authenticated"), + "add_version_to_infotext": OptionInfo(True, "Add program version to generation information"), + "disable_weights_auto_swap": OptionInfo(True, "Disregard checkpoint information from pasted infotext").info("when reading generation parameters from text into UI"), + "infotext_styles": OptionInfo("Apply if any", "Infer styles from prompts of pasted infotext", gr.Radio, {"choices": ["Ignore", "Apply", "Discard", "Apply if any"]}).info("when reading generation parameters from text into UI)").html(""""""), + +})) + +options_templates.update(options_section(('ui', "Live previews"), { + "show_progressbar": OptionInfo(True, "Show progressbar"), + "live_previews_enable": OptionInfo(True, "Show live previews of the created image"), + "live_previews_image_format": OptionInfo("png", "Live preview file format", gr.Radio, {"choices": ["jpeg", "png", "webp"]}), + "show_progress_grid": OptionInfo(True, "Show previews of all images generated in a batch as a grid"), + "show_progress_every_n_steps": OptionInfo(10, "Live preview display period", gr.Slider, {"minimum": -1, "maximum": 32, "step": 1}).info("in sampling steps - show new live preview image every N sampling steps; -1 = only show after completion of batch"), + "show_progress_type": OptionInfo("Approx NN", "Live preview method", gr.Radio, {"choices": ["Full", "Approx NN", "Approx cheap", "TAESD"]}).info("Full = slow but pretty; Approx NN and TAESD = fast but low quality; Approx cheap = super fast but terrible otherwise"), + "live_preview_content": OptionInfo("Prompt", "Live preview subject", gr.Radio, {"choices": ["Combined", "Prompt", "Negative prompt"]}), + "live_preview_refresh_period": OptionInfo(1000, "Progressbar and preview update period").info("in milliseconds"), +})) + +options_templates.update(options_section(('sampler-params', "Sampler parameters"), { + "hide_samplers": OptionInfo([], "Hide samplers in user interface", gr.CheckboxGroup, lambda: {"choices": [x.name for x in shared_items.list_samplers()]}).needs_reload_ui(), + "eta_ddim": OptionInfo(0.0, "Eta for DDIM", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta DDIM').info("noise multiplier; higher = more unperdictable results"), + "eta_ancestral": OptionInfo(1.0, "Eta for ancestral samplers", gr.Slider, {"minimum": 0.0, "maximum": 1.0, "step": 0.01}, infotext='Eta').info("noise multiplier; applies to Euler a and other samplers that have a in them"), + "ddim_discretize": OptionInfo('uniform', "img2img DDIM discretize", gr.Radio, {"choices": ['uniform', 'quad']}), + 's_churn': OptionInfo(0.0, "sigma churn", gr.Slider, {"minimum": 0.0, "maximum": 100.0, "step": 0.01}, infotext='Sigma churn').info('amount of stochasticity; only applies to Euler, Heun, and DPM2'), + 's_tmin': OptionInfo(0.0, "sigma tmin", gr.Slider, {"minimum": 0.0, "maximum": 10.0, "step": 0.01}, infotext='Sigma tmin').info('enable stochasticity; start value of the sigma range; only applies to Euler, Heun, and DPM2'), + 's_tmax': OptionInfo(0.0, "sigma tmax", gr.Slider, {"minimum": 0.0, "maximum": 999.0, "step": 0.01}, infotext='Sigma tmax').info("0 = inf; end value of the sigma range; only applies to Euler, Heun, and DPM2"), + 's_noise': OptionInfo(1.0, "sigma noise", gr.Slider, {"minimum": 0.0, "maximum": 1.1, "step": 0.001}, infotext='Sigma noise').info('amount of additional noise to counteract loss of detail during sampling; only applies to Euler, Heun, and DPM2'), + 'k_sched_type': OptionInfo("Automatic", "Scheduler type", gr.Dropdown, {"choices": ["Automatic", "karras", "exponential", "polyexponential"]}, infotext='Schedule type').info("lets you override the noise schedule for k-diffusion samplers; choosing Automatic disables the three parameters below"), + 'sigma_min': OptionInfo(0.0, "sigma min", gr.Number, infotext='Schedule max sigma').info("0 = default (~0.03); minimum noise strength for k-diffusion noise scheduler"), + 'sigma_max': OptionInfo(0.0, "sigma max", gr.Number, infotext='Schedule min sigma').info("0 = default (~14.6); maximum noise strength for k-diffusion noise scheduler"), + 'rho': OptionInfo(0.0, "rho", gr.Number, infotext='Schedule rho').info("0 = default (7 for karras, 1 for polyexponential); higher values result in a steeper noise schedule (decreases faster)"), + 'eta_noise_seed_delta': OptionInfo(0, "Eta noise seed delta", gr.Number, {"precision": 0}, infotext='ENSD').info("ENSD; does not improve anything, just produces different results for ancestral samplers - only useful for reproducing images"), + 'always_discard_next_to_last_sigma': OptionInfo(False, "Always discard next-to-last sigma", infotext='Discard penultimate sigma').link("PR", "https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/6044"), + 'uni_pc_variant': OptionInfo("bh1", "UniPC variant", gr.Radio, {"choices": ["bh1", "bh2", "vary_coeff"]}, infotext='UniPC variant'), + 'uni_pc_skip_type': OptionInfo("time_uniform", "UniPC skip type", gr.Radio, {"choices": ["time_uniform", "time_quadratic", "logSNR"]}, infotext='UniPC skip type'), + 'uni_pc_order': OptionInfo(3, "UniPC order", gr.Slider, {"minimum": 1, "maximum": 50, "step": 1}, infotext='UniPC order').info("must be < sampling steps"), + 'uni_pc_lower_order_final': OptionInfo(True, "UniPC lower order final", infotext='UniPC lower order final'), +})) + +options_templates.update(options_section(('postprocessing', "Postprocessing"), { + 'postprocessing_enable_in_main_ui': OptionInfo([], "Enable postprocessing operations in txt2img and img2img tabs", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), + 'postprocessing_operation_order': OptionInfo([], "Postprocessing operation order", ui_components.DropdownMulti, lambda: {"choices": [x.name for x in shared_items.postprocessing_scripts()]}), + 'upscaling_max_images_in_cache': OptionInfo(5, "Maximum number of images in upscaling cache", gr.Slider, {"minimum": 0, "maximum": 10, "step": 1}), +})) + +options_templates.update(options_section((None, "Hidden options"), { + "disabled_extensions": OptionInfo([], "Disable these extensions"), + "disable_all_extensions": OptionInfo("none", "Disable all extensions (preserves the list of disabled extensions)", gr.Radio, {"choices": ["none", "extra", "all"]}), + "restore_config_state_file": OptionInfo("", "Config state file to restore from, under 'config-states/' folder"), + "sd_checkpoint_hash": OptionInfo("", "SHA256 hash of the current checkpoint"), +})) + diff --git a/modules/shared_state.py b/modules/shared_state.py new file mode 100644 index 000000000..3dc9c7880 --- /dev/null +++ b/modules/shared_state.py @@ -0,0 +1,159 @@ +import datetime +import logging +import threading +import time + +from modules import errors, shared, devices +from typing import Optional + +log = logging.getLogger(__name__) + + +class State: + skipped = False + interrupted = False + job = "" + job_no = 0 + job_count = 0 + processing_has_refined_job_count = False + job_timestamp = '0' + sampling_step = 0 + sampling_steps = 0 + current_latent = None + current_image = None + current_image_sampling_step = 0 + id_live_preview = 0 + textinfo = None + time_start = None + server_start = None + _server_command_signal = threading.Event() + _server_command: Optional[str] = None + + def __init__(self): + self.server_start = time.time() + + @property + def need_restart(self) -> bool: + # Compatibility getter for need_restart. + return self.server_command == "restart" + + @need_restart.setter + def need_restart(self, value: bool) -> None: + # Compatibility setter for need_restart. + if value: + self.server_command = "restart" + + @property + def server_command(self): + return self._server_command + + @server_command.setter + def server_command(self, value: Optional[str]) -> None: + """ + Set the server command to `value` and signal that it's been set. + """ + self._server_command = value + self._server_command_signal.set() + + def wait_for_server_command(self, timeout: Optional[float] = None) -> Optional[str]: + """ + Wait for server command to get set; return and clear the value and signal. + """ + if self._server_command_signal.wait(timeout): + self._server_command_signal.clear() + req = self._server_command + self._server_command = None + return req + return None + + def request_restart(self) -> None: + self.interrupt() + self.server_command = "restart" + log.info("Received restart request") + + def skip(self): + self.skipped = True + log.info("Received skip request") + + def interrupt(self): + self.interrupted = True + log.info("Received interrupt request") + + def nextjob(self): + if shared.opts.live_previews_enable and shared.opts.show_progress_every_n_steps == -1: + self.do_set_current_image() + + self.job_no += 1 + self.sampling_step = 0 + self.current_image_sampling_step = 0 + + def dict(self): + obj = { + "skipped": self.skipped, + "interrupted": self.interrupted, + "job": self.job, + "job_count": self.job_count, + "job_timestamp": self.job_timestamp, + "job_no": self.job_no, + "sampling_step": self.sampling_step, + "sampling_steps": self.sampling_steps, + } + + return obj + + def begin(self, job: str = "(unknown)"): + self.sampling_step = 0 + self.job_count = -1 + self.processing_has_refined_job_count = False + self.job_no = 0 + self.job_timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S") + self.current_latent = None + self.current_image = None + self.current_image_sampling_step = 0 + self.id_live_preview = 0 + self.skipped = False + self.interrupted = False + self.textinfo = None + self.time_start = time.time() + self.job = job + devices.torch_gc() + log.info("Starting job %s", job) + + def end(self): + duration = time.time() - self.time_start + log.info("Ending job %s (%.2f seconds)", self.job, duration) + self.job = "" + self.job_count = 0 + + devices.torch_gc() + + def set_current_image(self): + """sets self.current_image from self.current_latent if enough sampling steps have been made after the last call to this""" + if not shared.parallel_processing_allowed: + return + + if self.sampling_step - self.current_image_sampling_step >= shared.opts.show_progress_every_n_steps and shared.opts.live_previews_enable and shared.opts.show_progress_every_n_steps != -1: + self.do_set_current_image() + + def do_set_current_image(self): + if self.current_latent is None: + return + + import modules.sd_samplers + + try: + if shared.opts.show_progress_grid: + self.assign_current_image(modules.sd_samplers.samples_to_image_grid(self.current_latent)) + else: + self.assign_current_image(modules.sd_samplers.sample_to_image(self.current_latent)) + + self.current_image_sampling_step = self.sampling_step + + except Exception: + # when switching models during genration, VAE would be on CPU, so creating an image will fail. + # we silently ignore this error + errors.record_exception() + + def assign_current_image(self, image): + self.current_image = image + self.id_live_preview += 1 diff --git a/modules/shared_total_tqdm.py b/modules/shared_total_tqdm.py new file mode 100644 index 000000000..cf82e1047 --- /dev/null +++ b/modules/shared_total_tqdm.py @@ -0,0 +1,37 @@ +import tqdm + +from modules import shared + + +class TotalTQDM: + def __init__(self): + self._tqdm = None + + def reset(self): + self._tqdm = tqdm.tqdm( + desc="Total progress", + total=shared.state.job_count * shared.state.sampling_steps, + position=1, + file=shared.progress_print_out + ) + + def update(self): + if not shared.opts.multiple_tqdm or shared.cmd_opts.disable_console_progressbars: + return + if self._tqdm is None: + self.reset() + self._tqdm.update() + + def updateTotal(self, new_total): + if not shared.opts.multiple_tqdm or shared.cmd_opts.disable_console_progressbars: + return + if self._tqdm is None: + self.reset() + self._tqdm.total = new_total + + def clear(self): + if self._tqdm is not None: + self._tqdm.refresh() + self._tqdm.close() + self._tqdm = None + diff --git a/modules/sysinfo.py b/modules/sysinfo.py index cf24c6dd4..7d906e1fe 100644 --- a/modules/sysinfo.py +++ b/modules/sysinfo.py @@ -10,7 +10,7 @@ import psutil import re import launch -from modules import paths_internal, timer +from modules import paths_internal, timer, shared, extensions, errors checksum_token = "DontStealMyGamePlz__WINNERS_DONT_USE_DRUGS__DONT_COPY_THAT_FLOPPY" environment_whitelist = { @@ -115,8 +115,6 @@ def format_exception(e, tb): def get_exceptions(): try: - from modules import errors - return list(reversed(errors.exception_records)) except Exception as e: return str(e) @@ -142,8 +140,6 @@ def get_torch_sysinfo(): def get_extensions(*, enabled): try: - from modules import extensions - def to_json(x: extensions.Extension): return { "name": x.name, @@ -160,7 +156,6 @@ def get_extensions(*, enabled): def get_config(): try: - from modules import shared return shared.opts.data except Exception as e: return str(e) diff --git a/modules/txt2img.py b/modules/txt2img.py index 8fa389b56..5ea96bbaf 100644 --- a/modules/txt2img.py +++ b/modules/txt2img.py @@ -9,7 +9,7 @@ from modules.ui import plaintext_to_html import gradio as gr -def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_name: str, restore_faces: bool, tiling: bool, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_checkpoint_name: str, hr_sampler_name: str, hr_prompt: str, hr_negative_prompt, override_settings_texts, request: gr.Request, *args): +def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, steps: int, sampler_name: str, n_iter: int, batch_size: int, cfg_scale: float, seed: int, subseed: int, subseed_strength: float, seed_resize_from_h: int, seed_resize_from_w: int, seed_enable_extras: bool, height: int, width: int, enable_hr: bool, denoising_strength: float, hr_scale: float, hr_upscaler: str, hr_second_pass_steps: int, hr_resize_x: int, hr_resize_y: int, hr_checkpoint_name: str, hr_sampler_name: str, hr_prompt: str, hr_negative_prompt, override_settings_texts, request: gr.Request, *args): override_settings = create_override_settings_dict(override_settings_texts) p = processing.StableDiffusionProcessingTxt2Img( @@ -32,8 +32,6 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step cfg_scale=cfg_scale, width=width, height=height, - restore_faces=restore_faces, - tiling=tiling, enable_hr=enable_hr, denoising_strength=denoising_strength if enable_hr else None, hr_scale=hr_scale, @@ -42,7 +40,7 @@ def txt2img(id_task: str, prompt: str, negative_prompt: str, prompt_styles, step hr_resize_x=hr_resize_x, hr_resize_y=hr_resize_y, hr_checkpoint_name=None if hr_checkpoint_name == 'Use same checkpoint' else hr_checkpoint_name, - hr_sampler_name=hr_sampler_name, + hr_sampler_name=None if hr_sampler_name == 'Use same sampler' else hr_sampler_name, hr_prompt=hr_prompt, hr_negative_prompt=hr_negative_prompt, override_settings=override_settings, diff --git a/modules/ui.py b/modules/ui.py index e3753e970..c08f412d8 100644 --- a/modules/ui.py +++ b/modules/ui.py @@ -13,8 +13,8 @@ from PIL import Image, PngImagePlugin # noqa: F401 from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, wrap_gradio_call from modules import gradio_extensons # noqa: F401 -from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo, ui_checkpoint_merger, ui_prompt_styles, scripts, sd_samplers -from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML +from modules import sd_hijack, sd_models, script_callbacks, ui_extensions, deepbooru, extra_networks, ui_common, ui_postprocessing, progress, ui_loadsave, errors, shared_items, ui_settings, timer, sysinfo, ui_checkpoint_merger, ui_prompt_styles, scripts, sd_samplers, processing, ui_extra_networks +from modules.ui_components import FormRow, FormGroup, ToolButton, FormHTML, InputAccordion from modules.paths import script_path from modules.ui_common import create_refresh_button from modules.ui_gradio_extensions import reload_javascript @@ -78,7 +78,6 @@ extra_networks_symbol = '\U0001F3B4' # 🎴 switch_values_symbol = '\U000021C5' # ⇅ restore_progress_symbol = '\U0001F300' # 🌀 detect_image_size_symbol = '\U0001F4D0' # 📐 -up_down_symbol = '\u2195\ufe0f' # ↕️ plaintext_to_html = ui_common.plaintext_to_html @@ -91,17 +90,13 @@ def send_gradio_gallery_to_image(x): def calc_resolution_hires(enable, width, height, hr_scale, hr_resize_x, hr_resize_y): - from modules import processing, devices - if not enable: return "" p = processing.StableDiffusionProcessingTxt2Img(width=width, height=height, enable_hr=True, hr_scale=hr_scale, hr_resize_x=hr_resize_x, hr_resize_y=hr_resize_y) + p.calculate_target_resolution() - with devices.autocast(): - p.init([""], [0], [0]) - - return f"resize: from {p.width}x{p.height} to {p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}" + return f"from {p.width}x{p.height} to {p.hr_resize_x or p.hr_upscale_to_x}x{p.hr_resize_y or p.hr_upscale_to_y}" def resize_from_to_html(width, height, scale_by): @@ -149,7 +144,11 @@ def interrogate_deepbooru(image): def create_seed_inputs(target_interface): with FormRow(elem_id=f"{target_interface}_seed_row", variant="compact"): - seed = (gr.Textbox if cmd_opts.use_textbox_seed else gr.Number)(label='Seed', value=-1, elem_id=f"{target_interface}_seed") + if cmd_opts.use_textbox_seed: + seed = gr.Textbox(label='Seed', value="", elem_id=f"{target_interface}_seed") + else: + seed = gr.Number(label='Seed', value=-1, elem_id=f"{target_interface}_seed", precision=0) + random_seed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_seed", label='Random seed') reuse_seed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_seed", label='Reuse seed') @@ -160,7 +159,7 @@ def create_seed_inputs(target_interface): with FormRow(visible=False, elem_id=f"{target_interface}_subseed_row") as seed_extra_row_1: seed_extras.append(seed_extra_row_1) - subseed = gr.Number(label='Variation seed', value=-1, elem_id=f"{target_interface}_subseed") + subseed = gr.Number(label='Variation seed', value=-1, elem_id=f"{target_interface}_subseed", precision=0) random_subseed = ToolButton(random_symbol, elem_id=f"{target_interface}_random_subseed") reuse_subseed = ToolButton(reuse_symbol, elem_id=f"{target_interface}_reuse_subseed") subseed_strength = gr.Slider(label='Variation strength', value=0.0, minimum=0, maximum=1, step=0.01, elem_id=f"{target_interface}_subseed_strength") @@ -437,13 +436,13 @@ def create_ui(): elif category == "checkboxes": with FormRow(elem_classes="checkboxes-row", variant="compact"): - restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="txt2img_restore_faces") - tiling = gr.Checkbox(label='Tiling', value=False, elem_id="txt2img_tiling") - enable_hr = gr.Checkbox(label='Hires. fix', value=False, elem_id="txt2img_enable_hr") - hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False) + pass elif category == "hires_fix": - with FormGroup(visible=False, elem_id="txt2img_hires_fix") as hr_options: + with InputAccordion(False, label="Hires. fix") as enable_hr: + with enable_hr.extra(): + hr_final_resolution = FormHTML(value="", elem_id="txtimg_hr_finalres", label="Upscaled resolution", interactive=False, min_width=0) + with FormRow(elem_id="txt2img_hires_fix_row1", variant="compact"): hr_upscaler = gr.Dropdown(label="Upscaler", elem_id="txt2img_hr_upscaler", choices=[*shared.latent_upscale_modes, *[x.name for x in shared.sd_upscalers]], value=shared.latent_upscale_default_mode) hr_second_pass_steps = gr.Slider(minimum=0, maximum=150, step=1, label='Hires steps', value=0, elem_id="txt2img_hires_steps") @@ -520,8 +519,6 @@ def create_ui(): toprow.ui_styles.dropdown, steps, sampler_name, - restore_faces, - tiling, batch_count, batch_size, cfg_scale, @@ -571,19 +568,11 @@ def create_ui(): show_progress=False, ) - enable_hr.change( - fn=lambda x: gr_show(x), - inputs=[enable_hr], - outputs=[hr_options], - show_progress = False, - ) - txt2img_paste_fields = [ (toprow.prompt, "Prompt"), (toprow.negative_prompt, "Negative prompt"), (steps, "Steps"), (sampler_name, "Sampler"), - (restore_faces, "Face restoration"), (cfg_scale, "CFG scale"), (seed, "Seed"), (width, "Size-1"), @@ -597,7 +586,6 @@ def create_ui(): (toprow.ui_styles.dropdown, lambda d: d["Styles array"] if isinstance(d.get("Styles array"), list) else gr.update()), (denoising_strength, "Denoising strength"), (enable_hr, lambda d: "Denoising strength" in d and ("Hires upscale" in d or "Hires upscaler" in d or "Hires resize-1" in d)), - (hr_options, lambda d: gr.Row.update(visible="Denoising strength" in d and ("Hires upscale" in d or "Hires upscaler" in d or "Hires resize-1" in d))), (hr_scale, "Hires upscale"), (hr_upscaler, "Hires upscaler"), (hr_second_pass_steps, "Hires steps"), @@ -630,7 +618,6 @@ def create_ui(): toprow.token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.prompt, steps], outputs=[toprow.token_counter]) toprow.negative_token_button.click(fn=wrap_queued_call(update_token_counter), inputs=[toprow.negative_prompt, steps], outputs=[toprow.negative_token_counter]) - from modules import ui_extra_networks extra_networks_ui = ui_extra_networks.create_ui(txt2img_interface, [txt2img_generation_tab], 'txt2img') ui_extra_networks.setup_ui(extra_networks_ui, txt2img_gallery) @@ -805,8 +792,7 @@ def create_ui(): elif category == "checkboxes": with FormRow(elem_classes="checkboxes-row", variant="compact"): - restore_faces = gr.Checkbox(label='Restore faces', value=False, visible=len(shared.face_restorers) > 1, elem_id="img2img_restore_faces") - tiling = gr.Checkbox(label='Tiling', value=False, elem_id="img2img_tiling") + pass elif category == "batch": if not opts.dimensions_and_batch_together: @@ -879,8 +865,6 @@ def create_ui(): mask_blur, mask_alpha, inpainting_fill, - restore_faces, - tiling, batch_count, batch_size, cfg_scale, @@ -972,7 +956,6 @@ def create_ui(): (toprow.negative_prompt, "Negative prompt"), (steps, "Steps"), (sampler_name, "Sampler"), - (restore_faces, "Face restoration"), (cfg_scale, "CFG scale"), (image_cfg_scale, "Image CFG scale"), (seed, "Seed"), @@ -995,7 +978,6 @@ def create_ui(): paste_button=toprow.paste, tabname="img2img", source_text_component=toprow.prompt, source_image_component=None, )) - from modules import ui_extra_networks extra_networks_ui_img2img = ui_extra_networks.create_ui(img2img_interface, [img2img_generation_tab], 'img2img') ui_extra_networks.setup_ui(extra_networks_ui_img2img, img2img_gallery) diff --git a/modules/ui_common.py b/modules/ui_common.py index 303af9cd7..99d19ff01 100644 --- a/modules/ui_common.py +++ b/modules/ui_common.py @@ -11,7 +11,7 @@ from modules import call_queue, shared from modules.generation_parameters_copypaste import image_from_url_text import modules.images from modules.ui_components import ToolButton - +import modules.generation_parameters_copypaste as parameters_copypaste folder_symbol = '\U0001f4c2' # 📂 refresh_symbol = '\U0001f504' # 🔄 @@ -105,8 +105,6 @@ def save_files(js_data, images, do_make_zip, index): def create_output_panel(tabname, outdir): - from modules import shared - import modules.generation_parameters_copypaste as parameters_copypaste def open_folder(f): if not os.path.exists(f): diff --git a/modules/ui_components.py b/modules/ui_components.py index 8f8a70885..bfe2fbd97 100644 --- a/modules/ui_components.py +++ b/modules/ui_components.py @@ -72,3 +72,52 @@ class DropdownEditable(FormComponent, gr.Dropdown): def get_block_name(self): return "dropdown" + +class InputAccordion(gr.Checkbox): + """A gr.Accordion that can be used as an input - returns True if open, False if closed. + + Actaully just a hidden checkbox, but creates an accordion that follows and is followed by the state of the checkbox. + """ + + global_index = 0 + + def __init__(self, value, **kwargs): + self.accordion_id = kwargs.get('elem_id') + if self.accordion_id is None: + self.accordion_id = f"input-accordion-{InputAccordion.global_index}" + InputAccordion.global_index += 1 + + kwargs['elem_id'] = self.accordion_id + "-checkbox" + kwargs['visible'] = False + super().__init__(value, **kwargs) + + self.change(fn=None, _js='function(checked){ inputAccordionChecked("' + self.accordion_id + '", checked); }', inputs=[self]) + + self.accordion = gr.Accordion(kwargs.get('label', 'Accordion'), open=value, elem_id=self.accordion_id, elem_classes=['input-accordion']) + + def extra(self): + """Allows you to put something into the label of the accordion. + + Use it like this: + + ``` + with InputAccordion(False, label="Accordion") as acc: + with acc.extra(): + FormHTML(value="hello", min_width=0) + + ... + ``` + """ + + return gr.Column(elem_id=self.accordion_id + '-extra', elem_classes='input-accordion-extra', min_width=0) + + def __enter__(self): + self.accordion.__enter__() + return self + + def __exit__(self, exc_type, exc_val, exc_tb): + self.accordion.__exit__(exc_type, exc_val, exc_tb) + + def get_block_name(self): + return "checkbox" + diff --git a/modules/ui_extra_networks.py b/modules/ui_extra_networks.py index e0b932b94..063bd7b80 100644 --- a/modules/ui_extra_networks.py +++ b/modules/ui_extra_networks.py @@ -4,7 +4,6 @@ from pathlib import Path from modules import shared, ui_extra_networks_user_metadata, errors, extra_networks from modules.images import read_info_from_image, save_image_with_geninfo -from modules.ui import up_down_symbol import gradio as gr import json import html @@ -348,6 +347,8 @@ def pages_in_preferred_order(pages): def create_ui(interface: gr.Blocks, unrelated_tabs, tabname): + from modules.ui import switch_values_symbol + ui = ExtraNetworksUi() ui.pages = [] ui.pages_contents = [] @@ -373,7 +374,7 @@ def create_ui(interface: gr.Blocks, unrelated_tabs, tabname): edit_search = gr.Textbox('', show_label=False, elem_id=tabname+"_extra_search", elem_classes="search", placeholder="Search...", visible=False, interactive=True) dropdown_sort = gr.Dropdown(choices=['Default Sort', 'Date Created', 'Date Modified', 'Name'], value='Default Sort', elem_id=tabname+"_extra_sort", elem_classes="sort", multiselect=False, visible=False, show_label=False, interactive=True, label=tabname+"_extra_sort_order") - button_sortorder = ToolButton(up_down_symbol, elem_id=tabname+"_extra_sortorder", elem_classes="sortorder", visible=False) + button_sortorder = ToolButton(switch_values_symbol, elem_id=tabname+"_extra_sortorder", elem_classes="sortorder", visible=False) button_refresh = gr.Button('Refresh', elem_id=tabname+"_extra_refresh", visible=False) checkbox_show_dirs = gr.Checkbox(True, label='Show dirs', elem_id=tabname+"_extra_show_dirs", elem_classes="show-dirs", visible=False) diff --git a/modules/ui_extra_networks_user_metadata.py b/modules/ui_extra_networks_user_metadata.py index 1cb9eb6fe..a5423fd85 100644 --- a/modules/ui_extra_networks_user_metadata.py +++ b/modules/ui_extra_networks_user_metadata.py @@ -36,8 +36,8 @@ class UserMetadataEditor: item = self.page.items.get(name, {}) user_metadata = item.get('user_metadata', None) - if user_metadata is None: - user_metadata = {} + if not user_metadata: + user_metadata = {'description': item.get('description', '')} item['user_metadata'] = user_metadata return user_metadata diff --git a/modules/ui_loadsave.py b/modules/ui_loadsave.py index 0052a5cce..ef6b0154e 100644 --- a/modules/ui_loadsave.py +++ b/modules/ui_loadsave.py @@ -8,7 +8,7 @@ from modules.ui_components import ToolButton class UiLoadsave: - """allows saving and restorig default values for gradio components""" + """allows saving and restoring default values for gradio components""" def __init__(self, filename): self.filename = filename @@ -48,6 +48,11 @@ class UiLoadsave: elif condition and not condition(saved_value): pass else: + if isinstance(x, gr.Textbox) and field == 'value': # due to an undersirable behavior of gr.Textbox, if you give it an int value instead of str, everything dies + saved_value = str(saved_value) + elif isinstance(x, gr.Number) and field == 'value': + saved_value = float(saved_value) + setattr(obj, field, saved_value) if init_field is not None: init_field(saved_value) diff --git a/modules/ui_tempdir.py b/modules/ui_tempdir.py index fb75137e6..506017e50 100644 --- a/modules/ui_tempdir.py +++ b/modules/ui_tempdir.py @@ -57,8 +57,9 @@ def save_pil_to_file(self, pil_image, dir=None, format="png"): return file_obj.name -# override save to file function so that it also writes PNG info -gradio.components.IOComponent.pil_to_temp_file = save_pil_to_file +def install_ui_tempdir_override(): + """override save to file function so that it also writes PNG info""" + gradio.components.IOComponent.pil_to_temp_file = save_pil_to_file def on_tmpdir_changed(): diff --git a/modules/util.py b/modules/util.py new file mode 100644 index 000000000..60afc0670 --- /dev/null +++ b/modules/util.py @@ -0,0 +1,58 @@ +import os +import re + +from modules import shared +from modules.paths_internal import script_path + + +def natural_sort_key(s, regex=re.compile('([0-9]+)')): + return [int(text) if text.isdigit() else text.lower() for text in regex.split(s)] + + +def listfiles(dirname): + filenames = [os.path.join(dirname, x) for x in sorted(os.listdir(dirname), key=natural_sort_key) if not x.startswith(".")] + return [file for file in filenames if os.path.isfile(file)] + + +def html_path(filename): + return os.path.join(script_path, "html", filename) + + +def html(filename): + path = html_path(filename) + + if os.path.exists(path): + with open(path, encoding="utf8") as file: + return file.read() + + return "" + + +def walk_files(path, allowed_extensions=None): + if not os.path.exists(path): + return + + if allowed_extensions is not None: + allowed_extensions = set(allowed_extensions) + + items = list(os.walk(path, followlinks=True)) + items = sorted(items, key=lambda x: natural_sort_key(x[0])) + + for root, _, files in items: + for filename in sorted(files, key=natural_sort_key): + if allowed_extensions is not None: + _, ext = os.path.splitext(filename) + if ext not in allowed_extensions: + continue + + if not shared.opts.list_hidden_files and ("/." in root or "\\." in root): + continue + + yield os.path.join(root, filename) + + +def ldm_print(*args, **kwargs): + if shared.opts.hide_ldm_prints: + return + + print(*args, **kwargs) diff --git a/requirements.txt b/requirements.txt index 9a47d6d0d..d83092f0a 100644 --- a/requirements.txt +++ b/requirements.txt @@ -6,6 +6,7 @@ basicsr blendmodes clean-fid einops +fastapi>=0.90.1 gfpgan gradio==3.39.0 inflection diff --git a/style.css b/style.css index 8c1f273c0..5163e53c2 100644 --- a/style.css +++ b/style.css @@ -43,13 +43,15 @@ div.form{ .block.gradio-radio, .block.gradio-checkboxgroup, .block.gradio-number, -.block.gradio-colorpicker, -div.gradio-group -{ +.block.gradio-colorpicker { border-width: 0 !important; box-shadow: none !important; } +div.gradio-group, div.styler{ + border-width: 0 !important; + background: none; +} .gap.compact{ padding: 0; gap: 0.2em 0; @@ -135,12 +137,8 @@ a{ cursor: pointer; } -div.styler{ - border: none; - background: var(--background-fill-primary); -} - -.block.gradio-textbox{ +/* gradio 3.39 puts a lot of overflow: hidden all over the place for an unknown reqasaon. */ +.block.gradio-textbox, div.gradio-group, div.gradio-group div, div.gradio-dropdown{ overflow: visible !important; } @@ -194,6 +192,13 @@ button.custom-button{ text-align: center; } +div.gradio-accordion { + border: 1px solid var(--block-border-color) !important; + border-radius: 8px !important; + margin: 2px 0; + padding: 8px 8px; +} + /* txt2img/img2img specific */ @@ -324,12 +329,6 @@ button.custom-button{ border-radius: 0 0.5rem 0.5rem 0; } -#txtimg_hr_finalres{ - min-height: 0 !important; - padding: .625rem .75rem; - margin-left: -0.75em -} - #img2img_scale_resolution_preview.block{ display: flex; align-items: end; @@ -1011,3 +1010,12 @@ div.block.gradio-box.popup-dialog, .popup-dialog { div.block.gradio-box.popup-dialog > div:last-child, .popup-dialog > div:last-child{ margin-top: 1em; } + +div.block.input-accordion{ + margin-bottom: 0.4em; +} + +.input-accordion-extra{ + flex: 0 0 auto !important; + margin: 0 0.5em 0 auto; +} diff --git a/test/conftest.py b/test/conftest.py index 0723f62a4..31a5d9eaf 100644 --- a/test/conftest.py +++ b/test/conftest.py @@ -1,17 +1,25 @@ import os import pytest -from PIL import Image -from gradio.processing_utils import encode_pil_to_base64 +import base64 + test_files_path = os.path.dirname(__file__) + "/test_files" +def file_to_base64(filename): + with open(filename, "rb") as file: + data = file.read() + + base64_str = str(base64.b64encode(data), "utf-8") + return "data:image/png;base64," + base64_str + + @pytest.fixture(scope="session") # session so we don't read this over and over def img2img_basic_image_base64() -> str: - return encode_pil_to_base64(Image.open(os.path.join(test_files_path, "img2img_basic.png"))) + return file_to_base64(os.path.join(test_files_path, "img2img_basic.png")) @pytest.fixture(scope="session") # session so we don't read this over and over def mask_basic_image_base64() -> str: - return encode_pil_to_base64(Image.open(os.path.join(test_files_path, "mask_basic.png"))) + return file_to_base64(os.path.join(test_files_path, "mask_basic.png")) diff --git a/webui.py b/webui.py index 6d36f8806..5c827dae8 100644 --- a/webui.py +++ b/webui.py @@ -1,348 +1,41 @@ from __future__ import annotations import os -import sys import time -import importlib -import signal -import re -import warnings -import json -from threading import Thread -from typing import Iterable - -from fastapi import FastAPI -from fastapi.middleware.cors import CORSMiddleware -from fastapi.middleware.gzip import GZipMiddleware - -import logging - -# We can't use cmd_opts for this because it will not have been initialized at this point. -log_level = os.environ.get("SD_WEBUI_LOG_LEVEL") -if log_level: - log_level = getattr(logging, log_level.upper(), None) or logging.INFO - logging.basicConfig( - level=log_level, - format='%(asctime)s %(levelname)s [%(name)s] %(message)s', - datefmt='%Y-%m-%d %H:%M:%S', - ) - -logging.getLogger("torch.distributed.nn").setLevel(logging.ERROR) # sshh... -logging.getLogger("xformers").addFilter(lambda record: 'A matching Triton is not available' not in record.getMessage()) from modules import timer +from modules import initialize_util +from modules import initialize + startup_timer = timer.startup_timer startup_timer.record("launcher") -import torch -import pytorch_lightning # noqa: F401 # pytorch_lightning should be imported after torch, but it re-enables warnings on import so import once to disable them -warnings.filterwarnings(action="ignore", category=DeprecationWarning, module="pytorch_lightning") -warnings.filterwarnings(action="ignore", category=UserWarning, module="torchvision") -startup_timer.record("import torch") +initialize.imports() -import gradio # noqa: F401 -startup_timer.record("import gradio") - -from modules import paths, timer, import_hook, errors, devices # noqa: F401 -startup_timer.record("setup paths") - -import ldm.modules.encoders.modules # noqa: F401 -startup_timer.record("import ldm") - - -from modules import extra_networks -from modules.call_queue import wrap_gradio_gpu_call, wrap_queued_call, queue_lock # noqa: F401 - -# Truncate version number of nightly/local build of PyTorch to not cause exceptions with CodeFormer or Safetensors -if ".dev" in torch.__version__ or "+git" in torch.__version__: - torch.__long_version__ = torch.__version__ - torch.__version__ = re.search(r'[\d.]+[\d]', torch.__version__).group(0) - -from modules import shared - -if not shared.cmd_opts.skip_version_check: - errors.check_versions() - -import modules.codeformer_model as codeformer -import modules.gfpgan_model as gfpgan -from modules import sd_samplers, upscaler, extensions, localization, ui_tempdir, ui_extra_networks, config_states -import modules.face_restoration -import modules.img2img - -import modules.lowvram -import modules.scripts -import modules.sd_hijack -import modules.sd_hijack_optimizations -import modules.sd_models -import modules.sd_vae -import modules.sd_unet -import modules.txt2img -import modules.script_callbacks -import modules.textual_inversion.textual_inversion -import modules.progress - -import modules.ui -from modules import modelloader -from modules.shared import cmd_opts -import modules.hypernetworks.hypernetwork - -startup_timer.record("other imports") - - -if cmd_opts.server_name: - server_name = cmd_opts.server_name -else: - server_name = "0.0.0.0" if cmd_opts.listen else None - - -def fix_asyncio_event_loop_policy(): - """ - The default `asyncio` event loop policy only automatically creates - event loops in the main threads. Other threads must create event - loops explicitly or `asyncio.get_event_loop` (and therefore - `.IOLoop.current`) will fail. Installing this policy allows event - loops to be created automatically on any thread, matching the - behavior of Tornado versions prior to 5.0 (or 5.0 on Python 2). - """ - - import asyncio - - if sys.platform == "win32" and hasattr(asyncio, "WindowsSelectorEventLoopPolicy"): - # "Any thread" and "selector" should be orthogonal, but there's not a clean - # interface for composing policies so pick the right base. - _BasePolicy = asyncio.WindowsSelectorEventLoopPolicy # type: ignore - else: - _BasePolicy = asyncio.DefaultEventLoopPolicy - - class AnyThreadEventLoopPolicy(_BasePolicy): # type: ignore - """Event loop policy that allows loop creation on any thread. - Usage:: - - asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy()) - """ - - def get_event_loop(self) -> asyncio.AbstractEventLoop: - try: - return super().get_event_loop() - except (RuntimeError, AssertionError): - # This was an AssertionError in python 3.4.2 (which ships with debian jessie) - # and changed to a RuntimeError in 3.4.3. - # "There is no current event loop in thread %r" - loop = self.new_event_loop() - self.set_event_loop(loop) - return loop - - asyncio.set_event_loop_policy(AnyThreadEventLoopPolicy()) - - -def restore_config_state_file(): - config_state_file = shared.opts.restore_config_state_file - if config_state_file == "": - return - - shared.opts.restore_config_state_file = "" - shared.opts.save(shared.config_filename) - - if os.path.isfile(config_state_file): - print(f"*** About to restore extension state from file: {config_state_file}") - with open(config_state_file, "r", encoding="utf-8") as f: - config_state = json.load(f) - config_states.restore_extension_config(config_state) - startup_timer.record("restore extension config") - elif config_state_file: - print(f"!!! Config state backup not found: {config_state_file}") - - -def validate_tls_options(): - if not (cmd_opts.tls_keyfile and cmd_opts.tls_certfile): - return - - try: - if not os.path.exists(cmd_opts.tls_keyfile): - print("Invalid path to TLS keyfile given") - if not os.path.exists(cmd_opts.tls_certfile): - print(f"Invalid path to TLS certfile: '{cmd_opts.tls_certfile}'") - except TypeError: - cmd_opts.tls_keyfile = cmd_opts.tls_certfile = None - print("TLS setup invalid, running webui without TLS") - else: - print("Running with TLS") - startup_timer.record("TLS") - - -def get_gradio_auth_creds() -> Iterable[tuple[str, ...]]: - """ - Convert the gradio_auth and gradio_auth_path commandline arguments into - an iterable of (username, password) tuples. - """ - def process_credential_line(s) -> tuple[str, ...] | None: - s = s.strip() - if not s: - return None - return tuple(s.split(':', 1)) - - if cmd_opts.gradio_auth: - for cred in cmd_opts.gradio_auth.split(','): - cred = process_credential_line(cred) - if cred: - yield cred - - if cmd_opts.gradio_auth_path: - with open(cmd_opts.gradio_auth_path, 'r', encoding="utf8") as file: - for line in file.readlines(): - for cred in line.strip().split(','): - cred = process_credential_line(cred) - if cred: - yield cred - - -def configure_sigint_handler(): - # make the program just exit at ctrl+c without waiting for anything - def sigint_handler(sig, frame): - print(f'Interrupted with signal {sig} in {frame}') - os._exit(0) - - if not os.environ.get("COVERAGE_RUN"): - # Don't install the immediate-quit handler when running under coverage, - # as then the coverage report won't be generated. - signal.signal(signal.SIGINT, sigint_handler) - - -def configure_opts_onchange(): - shared.opts.onchange("sd_model_checkpoint", wrap_queued_call(lambda: modules.sd_models.reload_model_weights()), call=False) - shared.opts.onchange("sd_vae", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) - shared.opts.onchange("sd_vae_overrides_per_model_preferences", wrap_queued_call(lambda: modules.sd_vae.reload_vae_weights()), call=False) - shared.opts.onchange("temp_dir", ui_tempdir.on_tmpdir_changed) - shared.opts.onchange("gradio_theme", shared.reload_gradio_theme) - shared.opts.onchange("cross_attention_optimization", wrap_queued_call(lambda: modules.sd_hijack.model_hijack.redo_hijack(shared.sd_model)), call=False) - startup_timer.record("opts onchange") - - -def initialize(): - fix_asyncio_event_loop_policy() - validate_tls_options() - configure_sigint_handler() - modelloader.cleanup_models() - configure_opts_onchange() - - modules.sd_models.setup_model() - startup_timer.record("setup SD model") - - codeformer.setup_model(cmd_opts.codeformer_models_path) - startup_timer.record("setup codeformer") - - gfpgan.setup_model(cmd_opts.gfpgan_models_path) - startup_timer.record("setup gfpgan") - - initialize_rest(reload_script_modules=False) - - -def initialize_rest(*, reload_script_modules=False): - """ - Called both from initialize() and when reloading the webui. - """ - sd_samplers.set_samplers() - extensions.list_extensions() - startup_timer.record("list extensions") - - restore_config_state_file() - - if cmd_opts.ui_debug_mode: - shared.sd_upscalers = upscaler.UpscalerLanczos().scalers - modules.scripts.load_scripts() - return - - modules.sd_models.list_models() - startup_timer.record("list SD models") - - localization.list_localizations(cmd_opts.localizations_dir) - - with startup_timer.subcategory("load scripts"): - modules.scripts.load_scripts() - - if reload_script_modules: - for module in [module for name, module in sys.modules.items() if name.startswith("modules.ui")]: - importlib.reload(module) - startup_timer.record("reload script modules") - - modelloader.load_upscalers() - startup_timer.record("load upscalers") - - modules.sd_vae.refresh_vae_list() - startup_timer.record("refresh VAE") - modules.textual_inversion.textual_inversion.list_textual_inversion_templates() - startup_timer.record("refresh textual inversion templates") - - modules.script_callbacks.on_list_optimizers(modules.sd_hijack_optimizations.list_optimizers) - modules.sd_hijack.list_optimizers() - startup_timer.record("scripts list_optimizers") - - modules.sd_unet.list_unets() - startup_timer.record("scripts list_unets") - - def load_model(): - """ - Accesses shared.sd_model property to load model. - After it's available, if it has been loaded before this access by some extension, - its optimization may be None because the list of optimizaers has neet been filled - by that time, so we apply optimization again. - """ - - shared.sd_model # noqa: B018 - - if modules.sd_hijack.current_optimizer is None: - modules.sd_hijack.apply_optimizations() - - devices.first_time_calculation() - - Thread(target=load_model).start() - - shared.reload_hypernetworks() - startup_timer.record("reload hypernetworks") - - ui_extra_networks.initialize() - ui_extra_networks.register_default_pages() - - extra_networks.initialize() - extra_networks.register_default_extra_networks() - startup_timer.record("initialize extra networks") - - -def setup_middleware(app): - app.middleware_stack = None # reset current middleware to allow modifying user provided list - app.add_middleware(GZipMiddleware, minimum_size=1000) - configure_cors_middleware(app) - app.build_middleware_stack() # rebuild middleware stack on-the-fly - - -def configure_cors_middleware(app): - cors_options = { - "allow_methods": ["*"], - "allow_headers": ["*"], - "allow_credentials": True, - } - if cmd_opts.cors_allow_origins: - cors_options["allow_origins"] = cmd_opts.cors_allow_origins.split(',') - if cmd_opts.cors_allow_origins_regex: - cors_options["allow_origin_regex"] = cmd_opts.cors_allow_origins_regex - app.add_middleware(CORSMiddleware, **cors_options) +initialize.check_versions() def create_api(app): from modules.api.api import Api + from modules.call_queue import queue_lock + api = Api(app, queue_lock) return api def api_only(): - initialize() + from fastapi import FastAPI + from modules.shared_cmd_options import cmd_opts + + initialize.initialize() app = FastAPI() - setup_middleware(app) + initialize_util.setup_middleware(app) api = create_api(app) - modules.script_callbacks.before_ui_callback() - modules.script_callbacks.app_started_callback(None, app) + from modules import script_callbacks + script_callbacks.before_ui_callback() + script_callbacks.app_started_callback(None, app) print(f"Startup time: {startup_timer.summary()}.") api.launch( @@ -353,24 +46,28 @@ def api_only(): def webui(): + from modules.shared_cmd_options import cmd_opts + launch_api = cmd_opts.api - initialize() + initialize.initialize() + + from modules import shared, ui_tempdir, script_callbacks, ui, progress, ui_extra_networks while 1: if shared.opts.clean_temp_dir_at_start: ui_tempdir.cleanup_tmpdr() startup_timer.record("cleanup temp dir") - modules.script_callbacks.before_ui_callback() + script_callbacks.before_ui_callback() startup_timer.record("scripts before_ui_callback") - shared.demo = modules.ui.create_ui() + shared.demo = ui.create_ui() startup_timer.record("create ui") if not cmd_opts.no_gradio_queue: shared.demo.queue(64) - gradio_auth_creds = list(get_gradio_auth_creds()) or None + gradio_auth_creds = list(initialize_util.get_gradio_auth_creds()) or None auto_launch_browser = False if os.getenv('SD_WEBUI_RESTARTING') != '1': @@ -381,7 +78,7 @@ def webui(): app, local_url, share_url = shared.demo.launch( share=cmd_opts.share, - server_name=server_name, + server_name=initialize_util.gradio_server_name(), server_port=cmd_opts.port, ssl_keyfile=cmd_opts.tls_keyfile, ssl_certfile=cmd_opts.tls_certfile, @@ -406,10 +103,10 @@ def webui(): # running its code. We disable this here. Suggested by RyotaK. app.user_middleware = [x for x in app.user_middleware if x.cls.__name__ != 'CORSMiddleware'] - setup_middleware(app) + initialize_util.setup_middleware(app) - modules.progress.setup_progress_api(app) - modules.ui.setup_ui_api(app) + progress.setup_progress_api(app) + ui.setup_ui_api(app) if launch_api: create_api(app) @@ -419,7 +116,7 @@ def webui(): startup_timer.record("add APIs") with startup_timer.subcategory("app_started_callback"): - modules.script_callbacks.app_started_callback(shared.demo, app) + script_callbacks.app_started_callback(shared.demo, app) timer.startup_record = startup_timer.dump() print(f"Startup time: {startup_timer.summary()}.") @@ -449,14 +146,16 @@ def webui(): shared.demo.close() time.sleep(0.5) startup_timer.reset() - modules.script_callbacks.app_reload_callback() + script_callbacks.app_reload_callback() startup_timer.record("app reload callback") - modules.script_callbacks.script_unloaded_callback() + script_callbacks.script_unloaded_callback() startup_timer.record("scripts unloaded callback") - initialize_rest(reload_script_modules=True) + initialize.initialize_rest(reload_script_modules=True) if __name__ == "__main__": + from modules.shared_cmd_options import cmd_opts + if cmd_opts.nowebui: api_only() else: