mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-21 13:50:12 +08:00
Merge branch 'dev' into efficient-vae-methods
This commit is contained in:
commit
70e66e81e5
@ -10,7 +10,7 @@ import torch
|
||||
import tqdm
|
||||
from einops import rearrange, repeat
|
||||
from ldm.util import default
|
||||
from modules import devices, processing, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
|
||||
from modules import devices, sd_models, shared, sd_samplers, hashes, sd_hijack_checkpoint, errors
|
||||
from modules.textual_inversion import textual_inversion, logging
|
||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||
from torch import einsum
|
||||
@ -469,8 +469,7 @@ def create_hypernetwork(name, enable_sizes, overwrite_old, layer_structure=None,
|
||||
|
||||
|
||||
def train_hypernetwork(id_task, hypernetwork_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_hypernetwork_every, template_filename, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
# images allows training previews to have infotext. Importing it at the top causes a circular import problem.
|
||||
from modules import images
|
||||
from modules import images, processing
|
||||
|
||||
save_hypernetwork_every = save_hypernetwork_every or 0
|
||||
create_image_every = create_image_every or 0
|
||||
|
@ -30,6 +30,7 @@ from ldm.models.diffusion.ddpm import LatentDepth2ImageDiffusion
|
||||
from einops import repeat, rearrange
|
||||
from blendmodes.blend import blendLayers, BlendType
|
||||
|
||||
decode_first_stage = sd_samplers_common.decode_first_stage
|
||||
|
||||
# some of those options should not be changed at all because they would break the model, so I removed them from options.
|
||||
opt_C = 4
|
||||
@ -572,13 +573,6 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
|
||||
return samples
|
||||
|
||||
|
||||
def decode_first_stage(model, x):
|
||||
from modules.sd_samplers_common import samples_to_images_tensor, approximation_indexes
|
||||
x = x.to(devices.dtype_vae)
|
||||
approx_index = approximation_indexes.get(opts.sd_vae_decode_method, 0)
|
||||
return samples_to_images_tensor(x, approx_index, model)
|
||||
|
||||
|
||||
def get_fixed_seed(seed):
|
||||
if seed is None or seed == '' or seed == -1:
|
||||
return int(random.randrange(4294967294))
|
||||
|
@ -2,7 +2,6 @@ import torch
|
||||
from torch.nn.functional import silu
|
||||
from types import MethodType
|
||||
|
||||
import modules.textual_inversion.textual_inversion
|
||||
from modules import devices, sd_hijack_optimizations, shared, script_callbacks, errors, sd_unet
|
||||
from modules.hypernetworks import hypernetwork
|
||||
from modules.shared import cmd_opts
|
||||
@ -164,12 +163,13 @@ class StableDiffusionModelHijack:
|
||||
clip = None
|
||||
optimization_method = None
|
||||
|
||||
embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
|
||||
|
||||
def __init__(self):
|
||||
import modules.textual_inversion.textual_inversion
|
||||
|
||||
self.extra_generation_params = {}
|
||||
self.comments = []
|
||||
|
||||
self.embedding_db = modules.textual_inversion.textual_inversion.EmbeddingDatabase()
|
||||
self.embedding_db.add_embedding_dir(cmd_opts.embeddings_dir)
|
||||
|
||||
def apply_optimizations(self, option=None):
|
||||
|
@ -54,6 +54,12 @@ def single_sample_to_image(sample, approximation=None):
|
||||
return Image.fromarray(x_sample)
|
||||
|
||||
|
||||
def decode_first_stage(model, x):
|
||||
x = model.decode_first_stage(x.to(devices.dtype_vae))
|
||||
|
||||
return x
|
||||
|
||||
|
||||
def sample_to_image(samples, index=0, approximation=None):
|
||||
return single_sample_to_image(samples[index], approximation)
|
||||
|
||||
|
@ -50,6 +50,7 @@ def get_filename(filepath):
|
||||
|
||||
|
||||
def refresh_vae_list():
|
||||
global vae_dict
|
||||
vae_dict.clear()
|
||||
|
||||
paths = [
|
||||
@ -83,6 +84,8 @@ def refresh_vae_list():
|
||||
name = get_filename(filepath)
|
||||
vae_dict[name] = filepath
|
||||
|
||||
vae_dict = dict(sorted(vae_dict.items(), key=lambda item: shared.natural_sort_key(item[0])))
|
||||
|
||||
|
||||
def find_vae_near_checkpoint(checkpoint_file):
|
||||
checkpoint_path = os.path.basename(checkpoint_file).rsplit('.', 1)[0]
|
||||
|
@ -13,7 +13,7 @@ import numpy as np
|
||||
from PIL import Image, PngImagePlugin
|
||||
from torch.utils.tensorboard import SummaryWriter
|
||||
|
||||
from modules import shared, devices, sd_hijack, processing, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
|
||||
from modules import shared, devices, sd_hijack, sd_models, images, sd_samplers, sd_hijack_checkpoint, errors, hashes
|
||||
import modules.textual_inversion.dataset
|
||||
from modules.textual_inversion.learn_schedule import LearnRateScheduler
|
||||
|
||||
@ -387,6 +387,8 @@ def validate_train_inputs(model_name, learn_rate, batch_size, gradient_step, dat
|
||||
|
||||
|
||||
def train_embedding(id_task, embedding_name, learn_rate, batch_size, gradient_step, data_root, log_directory, training_width, training_height, varsize, steps, clip_grad_mode, clip_grad_value, shuffle_tags, tag_drop_out, latent_sampling_method, use_weight, create_image_every, save_embedding_every, template_filename, save_image_with_stored_embedding, preview_from_txt2img, preview_prompt, preview_negative_prompt, preview_steps, preview_sampler_index, preview_cfg_scale, preview_seed, preview_width, preview_height):
|
||||
from modules import processing
|
||||
|
||||
save_embedding_every = save_embedding_every or 0
|
||||
create_image_every = create_image_every or 0
|
||||
template_file = textual_inversion_templates.get(template_filename, None)
|
||||
|
Loading…
Reference in New Issue
Block a user