mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-17 11:50:18 +08:00
Checkpoint cache by combination key of checkpoint and vae
This commit is contained in:
parent
b96d0c4e9e
commit
726769da35
@ -160,11 +160,15 @@ def get_state_dict_from_checkpoint(pl_sd):
|
||||
|
||||
vae_ignore_keys = {"model_ema.decay", "model_ema.num_updates"}
|
||||
|
||||
def load_model_weights(model, checkpoint_info, force=False):
|
||||
def load_model_weights(model, checkpoint_info, vae_file="auto"):
|
||||
checkpoint_file = checkpoint_info.filename
|
||||
sd_model_hash = checkpoint_info.hash
|
||||
|
||||
if force or checkpoint_info not in checkpoints_loaded:
|
||||
vae_file = sd_vae.resolve_vae(checkpoint_file, vae_file=vae_file)
|
||||
|
||||
checkpoint_key = (checkpoint_info, vae_file)
|
||||
|
||||
if checkpoint_key not in checkpoints_loaded:
|
||||
print(f"Loading weights [{sd_model_hash}] from {checkpoint_file}")
|
||||
|
||||
pl_sd = torch.load(checkpoint_file, map_location=shared.weight_load_location)
|
||||
@ -185,24 +189,25 @@ def load_model_weights(model, checkpoint_info, force=False):
|
||||
devices.dtype = torch.float32 if shared.cmd_opts.no_half else torch.float16
|
||||
devices.dtype_vae = torch.float32 if shared.cmd_opts.no_half or shared.cmd_opts.no_half_vae else torch.float16
|
||||
|
||||
sd_vae.load_vae(model, checkpoint_file)
|
||||
sd_vae.load_vae(model, vae_file)
|
||||
model.first_stage_model.to(devices.dtype_vae)
|
||||
|
||||
if shared.opts.sd_checkpoint_cache > 0:
|
||||
checkpoints_loaded[checkpoint_info] = model.state_dict().copy()
|
||||
checkpoints_loaded[checkpoint_key] = model.state_dict().copy()
|
||||
while len(checkpoints_loaded) > shared.opts.sd_checkpoint_cache:
|
||||
checkpoints_loaded.popitem(last=False) # LRU
|
||||
else:
|
||||
print(f"Loading weights [{sd_model_hash}] from cache")
|
||||
checkpoints_loaded.move_to_end(checkpoint_info)
|
||||
model.load_state_dict(checkpoints_loaded[checkpoint_info])
|
||||
vae_name = sd_vae.get_filename(vae_file)
|
||||
print(f"Loading weights [{sd_model_hash}] with {vae_name} VAE from cache")
|
||||
checkpoints_loaded.move_to_end(checkpoint_key)
|
||||
model.load_state_dict(checkpoints_loaded[checkpoint_key])
|
||||
|
||||
model.sd_model_hash = sd_model_hash
|
||||
model.sd_model_checkpoint = checkpoint_file
|
||||
model.sd_checkpoint_info = checkpoint_info
|
||||
|
||||
|
||||
def load_model(checkpoint_info=None, force=False):
|
||||
def load_model(checkpoint_info=None):
|
||||
from modules import lowvram, sd_hijack
|
||||
checkpoint_info = checkpoint_info or select_checkpoint()
|
||||
|
||||
@ -223,7 +228,7 @@ def load_model(checkpoint_info=None, force=False):
|
||||
|
||||
do_inpainting_hijack()
|
||||
sd_model = instantiate_from_config(sd_config.model)
|
||||
load_model_weights(sd_model, checkpoint_info, force=force)
|
||||
load_model_weights(sd_model, checkpoint_info)
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
lowvram.setup_for_low_vram(sd_model, shared.cmd_opts.medvram)
|
||||
@ -250,7 +255,7 @@ def reload_model_weights(sd_model, info=None, force=False):
|
||||
|
||||
if sd_model.sd_checkpoint_info.config != checkpoint_info.config or should_hijack_inpainting(checkpoint_info) != should_hijack_inpainting(sd_model.sd_checkpoint_info):
|
||||
checkpoints_loaded.clear()
|
||||
load_model(checkpoint_info, force=force)
|
||||
load_model(checkpoint_info)
|
||||
return shared.sd_model
|
||||
|
||||
if shared.cmd_opts.lowvram or shared.cmd_opts.medvram:
|
||||
@ -260,7 +265,7 @@ def reload_model_weights(sd_model, info=None, force=False):
|
||||
|
||||
sd_hijack.model_hijack.undo_hijack(sd_model)
|
||||
|
||||
load_model_weights(sd_model, checkpoint_info, force=force)
|
||||
load_model_weights(sd_model, checkpoint_info)
|
||||
|
||||
sd_hijack.model_hijack.hijack(sd_model)
|
||||
script_callbacks.model_loaded_callback(sd_model)
|
||||
|
@ -43,7 +43,7 @@ def refresh_vae_list(vae_path=vae_path, model_path=model_path):
|
||||
vae_dict.update(res)
|
||||
return vae_list
|
||||
|
||||
def load_vae(model, checkpoint_file, vae_file="auto"):
|
||||
def resolve_vae(checkpoint_file, vae_file="auto"):
|
||||
global first_load, vae_dict, vae_list
|
||||
# save_settings = False
|
||||
|
||||
@ -94,6 +94,12 @@ def load_vae(model, checkpoint_file, vae_file="auto"):
|
||||
if vae_file and not os.path.exists(vae_file):
|
||||
vae_file = None
|
||||
|
||||
return vae_file
|
||||
|
||||
def load_vae(model, vae_file):
|
||||
global first_load, vae_dict, vae_list
|
||||
# save_settings = False
|
||||
|
||||
if vae_file:
|
||||
print(f"Loading VAE weights from: {vae_file}")
|
||||
vae_ckpt = torch.load(vae_file, map_location=shared.weight_load_location)
|
||||
|
Loading…
Reference in New Issue
Block a user