Fix network_oft

This commit is contained in:
Kohaku-Blueleaf 2023-12-14 01:38:32 +08:00
parent f92d61497a
commit 735c9e8059

View File

@ -53,12 +53,17 @@ class NetworkModuleOFT(network.NetworkModule):
self.constraint = None self.constraint = None
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim) self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
def calc_updown_kb(self, orig_weight, multiplier): def calc_updown(self, orig_weight):
I = torch.eye(self.block_size, device=self.oft_blocks.device)
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
oft_blocks = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix if self.is_kohya:
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
oft_blocks = torch.matmul(I + block_Q, (I - block_Q).float().inverse())
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device)
# This errors out for MultiheadAttention, might need to be handled up-stream # This errors out for MultiheadAttention, might need to be handled up-stream
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size) merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
@ -70,15 +75,10 @@ class NetworkModuleOFT(network.NetworkModule):
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...') merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
print(torch.norm(updown))
output_shape = orig_weight.shape output_shape = orig_weight.shape
return self.finalize_updown(updown, orig_weight, output_shape) return self.finalize_updown(updown, orig_weight, output_shape)
def calc_updown(self, orig_weight):
# if alpha is a very small number as in coft, calc_scale() will return a almost zero number so we ignore it
multiplier = self.multiplier()
return self.calc_updown_kb(orig_weight, multiplier)
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None): def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
if self.bias is not None: if self.bias is not None:
updown = updown.reshape(self.bias.shape) updown = updown.reshape(self.bias.shape)
@ -94,4 +94,5 @@ class NetworkModuleOFT(network.NetworkModule):
if ex_bias is not None: if ex_bias is not None:
ex_bias = ex_bias * self.multiplier() ex_bias = ex_bias * self.multiplier()
return updown, ex_bias # Ignore calc_scale, which is not used in OFT.
return updown * self.multiplier(), ex_bias