mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-01-01 12:25:06 +08:00
Fix network_oft
This commit is contained in:
parent
f92d61497a
commit
735c9e8059
@ -53,12 +53,17 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||||||
self.constraint = None
|
self.constraint = None
|
||||||
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
self.block_size, self.num_blocks = factorization(self.out_dim, self.dim)
|
||||||
|
|
||||||
def calc_updown_kb(self, orig_weight, multiplier):
|
def calc_updown(self, orig_weight):
|
||||||
|
I = torch.eye(self.block_size, device=self.oft_blocks.device)
|
||||||
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||||
oft_blocks = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
|
if self.is_kohya:
|
||||||
|
block_Q = oft_blocks - oft_blocks.transpose(1, 2) # ensure skew-symmetric orthogonal matrix
|
||||||
|
norm_Q = torch.norm(block_Q.flatten())
|
||||||
|
new_norm_Q = torch.clamp(norm_Q, max=self.constraint)
|
||||||
|
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
|
||||||
|
oft_blocks = torch.matmul(I + block_Q, (I - block_Q).float().inverse())
|
||||||
|
|
||||||
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
R = oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
|
||||||
R = R * multiplier + torch.eye(self.block_size, device=orig_weight.device)
|
|
||||||
|
|
||||||
# This errors out for MultiheadAttention, might need to be handled up-stream
|
# This errors out for MultiheadAttention, might need to be handled up-stream
|
||||||
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
merged_weight = rearrange(orig_weight, '(k n) ... -> k n ...', k=self.num_blocks, n=self.block_size)
|
||||||
@ -70,15 +75,10 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||||||
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
|
merged_weight = rearrange(merged_weight, 'k m ... -> (k m) ...')
|
||||||
|
|
||||||
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
updown = merged_weight.to(orig_weight.device, dtype=orig_weight.dtype) - orig_weight
|
||||||
|
print(torch.norm(updown))
|
||||||
output_shape = orig_weight.shape
|
output_shape = orig_weight.shape
|
||||||
return self.finalize_updown(updown, orig_weight, output_shape)
|
return self.finalize_updown(updown, orig_weight, output_shape)
|
||||||
|
|
||||||
def calc_updown(self, orig_weight):
|
|
||||||
# if alpha is a very small number as in coft, calc_scale() will return a almost zero number so we ignore it
|
|
||||||
multiplier = self.multiplier()
|
|
||||||
return self.calc_updown_kb(orig_weight, multiplier)
|
|
||||||
|
|
||||||
# override to remove the multiplier/scale factor; it's already multiplied in get_weight
|
|
||||||
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
|
def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None):
|
||||||
if self.bias is not None:
|
if self.bias is not None:
|
||||||
updown = updown.reshape(self.bias.shape)
|
updown = updown.reshape(self.bias.shape)
|
||||||
@ -94,4 +94,5 @@ class NetworkModuleOFT(network.NetworkModule):
|
|||||||
if ex_bias is not None:
|
if ex_bias is not None:
|
||||||
ex_bias = ex_bias * self.multiplier()
|
ex_bias = ex_bias * self.multiplier()
|
||||||
|
|
||||||
return updown, ex_bias
|
# Ignore calc_scale, which is not used in OFT.
|
||||||
|
return updown * self.multiplier(), ex_bias
|
||||||
|
Loading…
Reference in New Issue
Block a user