mirror of
https://github.com/AUTOMATIC1111/stable-diffusion-webui.git
synced 2025-04-04 19:49:01 +08:00
add TAESD for i2i and t2i
This commit is contained in:
parent
3f9e09a615
commit
75336dfc84
@ -573,9 +573,10 @@ def decode_latent_batch(model, batch, target_device=None, check_for_nans=False):
|
||||
|
||||
|
||||
def decode_first_stage(model, x):
|
||||
x = model.decode_first_stage(x.to(devices.dtype_vae))
|
||||
|
||||
return x
|
||||
from modules.sd_samplers_common import samples_to_images_tensor, approximation_indexes
|
||||
x = x.to(devices.dtype_vae)
|
||||
approx_index = approximation_indexes.get(opts.sd_vae_decode_method, 0)
|
||||
return samples_to_images_tensor(x, approx_index, model)
|
||||
|
||||
|
||||
def get_fixed_seed(seed):
|
||||
@ -1344,10 +1345,8 @@ class StableDiffusionProcessingImg2Img(StableDiffusionProcessing):
|
||||
raise RuntimeError(f"bad number of images passed: {len(imgs)}; expecting {self.batch_size} or less")
|
||||
|
||||
image = torch.from_numpy(batch_images)
|
||||
image = 2. * image - 1.
|
||||
image = image.to(shared.device, dtype=devices.dtype_vae)
|
||||
|
||||
self.init_latent = self.sd_model.get_first_stage_encoding(self.sd_model.encode_first_stage(image))
|
||||
from modules.sd_samplers_common import images_tensor_to_samples, approximation_indexes
|
||||
self.init_latent = images_tensor_to_samples(image, approximation_indexes.get(opts.sd_vae_encode_method), self.sd_model)
|
||||
devices.torch_gc()
|
||||
|
||||
if self.resize_mode == 3:
|
||||
|
@ -23,19 +23,29 @@ def setup_img2img_steps(p, steps=None):
|
||||
approximation_indexes = {"Full": 0, "Approx NN": 1, "Approx cheap": 2, "TAESD": 3}
|
||||
|
||||
|
||||
def single_sample_to_image(sample, approximation=None):
|
||||
def samples_to_images_tensor(sample, approximation=None, model=None):
|
||||
'''latents -> images [-1, 1]'''
|
||||
if approximation is None:
|
||||
approximation = approximation_indexes.get(opts.show_progress_type, 0)
|
||||
|
||||
if approximation == 2:
|
||||
x_sample = sd_vae_approx.cheap_approximation(sample) * 0.5 + 0.5
|
||||
x_sample = sd_vae_approx.cheap_approximation(sample)
|
||||
elif approximation == 1:
|
||||
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach() * 0.5 + 0.5
|
||||
x_sample = sd_vae_approx.model()(sample.to(devices.device, devices.dtype)).detach()
|
||||
elif approximation == 3:
|
||||
x_sample = sample * 1.5
|
||||
x_sample = sd_vae_taesd.model()(x_sample.to(devices.device, devices.dtype).unsqueeze(0))[0].detach()
|
||||
x_sample = sd_vae_taesd.decoder_model()(x_sample.to(devices.device, devices.dtype)).detach()
|
||||
x_sample = x_sample * 2 - 1
|
||||
else:
|
||||
x_sample = processing.decode_first_stage(shared.sd_model, sample.unsqueeze(0))[0] * 0.5 + 0.5
|
||||
if model is None:
|
||||
model = shared.sd_model
|
||||
x_sample = model.decode_first_stage(sample)
|
||||
|
||||
return x_sample
|
||||
|
||||
|
||||
def single_sample_to_image(sample, approximation=None):
|
||||
x_sample = samples_to_images_tensor(sample.unsqueeze(0), approximation)[0] * 0.5 + 0.5
|
||||
|
||||
x_sample = torch.clamp(x_sample, min=0.0, max=1.0)
|
||||
x_sample = 255. * np.moveaxis(x_sample.cpu().numpy(), 0, 2)
|
||||
@ -52,6 +62,24 @@ def samples_to_image_grid(samples, approximation=None):
|
||||
return images.image_grid([single_sample_to_image(sample, approximation) for sample in samples])
|
||||
|
||||
|
||||
def images_tensor_to_samples(image, approximation=None, model=None):
|
||||
'''image[0, 1] -> latent'''
|
||||
if approximation is None:
|
||||
approximation = approximation_indexes.get(opts.sd_vae_encode_method, 0)
|
||||
|
||||
if approximation == 3:
|
||||
image = image.to(devices.device, devices.dtype)
|
||||
x_latent = sd_vae_taesd.encoder_model()(image) / 1.5
|
||||
else:
|
||||
if model is None:
|
||||
model = shared.sd_model
|
||||
image = image.to(shared.device, dtype=devices.dtype_vae)
|
||||
image = image * 2 - 1
|
||||
x_latent = model.get_first_stage_encoding(model.encode_first_stage(image))
|
||||
|
||||
return x_latent
|
||||
|
||||
|
||||
def store_latent(decoded):
|
||||
state.current_latent = decoded
|
||||
|
||||
|
@ -81,6 +81,6 @@ def cheap_approximation(sample):
|
||||
|
||||
coefs = torch.tensor(coeffs).to(sample.device)
|
||||
|
||||
x_sample = torch.einsum("lxy,lr -> rxy", sample, coefs)
|
||||
x_sample = torch.einsum("...lxy,lr -> ...rxy", sample, coefs)
|
||||
|
||||
return x_sample
|
||||
|
@ -44,7 +44,17 @@ def decoder():
|
||||
)
|
||||
|
||||
|
||||
class TAESD(nn.Module):
|
||||
def encoder():
|
||||
return nn.Sequential(
|
||||
conv(3, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
||||
conv(64, 64, stride=2, bias=False), Block(64, 64), Block(64, 64), Block(64, 64),
|
||||
conv(64, 4),
|
||||
)
|
||||
|
||||
|
||||
class TAESDDecoder(nn.Module):
|
||||
latent_magnitude = 3
|
||||
latent_shift = 0.5
|
||||
|
||||
@ -55,21 +65,28 @@ class TAESD(nn.Module):
|
||||
self.decoder.load_state_dict(
|
||||
torch.load(decoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
|
||||
|
||||
@staticmethod
|
||||
def unscale_latents(x):
|
||||
"""[0, 1] -> raw latents"""
|
||||
return x.sub(TAESD.latent_shift).mul(2 * TAESD.latent_magnitude)
|
||||
|
||||
class TAESDEncoder(nn.Module):
|
||||
latent_magnitude = 3
|
||||
latent_shift = 0.5
|
||||
|
||||
def __init__(self, encoder_path="taesd_encoder.pth"):
|
||||
"""Initialize pretrained TAESD on the given device from the given checkpoints."""
|
||||
super().__init__()
|
||||
self.encoder = encoder()
|
||||
self.encoder.load_state_dict(
|
||||
torch.load(encoder_path, map_location='cpu' if devices.device.type != 'cuda' else None))
|
||||
|
||||
|
||||
def download_model(model_path, model_url):
|
||||
if not os.path.exists(model_path):
|
||||
os.makedirs(os.path.dirname(model_path), exist_ok=True)
|
||||
|
||||
print(f'Downloading TAESD decoder to: {model_path}')
|
||||
print(f'Downloading TAESD model to: {model_path}')
|
||||
torch.hub.download_url_to_file(model_url, model_path)
|
||||
|
||||
|
||||
def model():
|
||||
def decoder_model():
|
||||
model_name = "taesdxl_decoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_decoder.pth"
|
||||
loaded_model = sd_vae_taesd_models.get(model_name)
|
||||
|
||||
@ -78,7 +95,7 @@ def model():
|
||||
download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)
|
||||
|
||||
if os.path.exists(model_path):
|
||||
loaded_model = TAESD(model_path)
|
||||
loaded_model = TAESDDecoder(model_path)
|
||||
loaded_model.eval()
|
||||
loaded_model.to(devices.device, devices.dtype)
|
||||
sd_vae_taesd_models[model_name] = loaded_model
|
||||
@ -86,3 +103,22 @@ def model():
|
||||
raise FileNotFoundError('TAESD model not found')
|
||||
|
||||
return loaded_model.decoder
|
||||
|
||||
|
||||
def encoder_model():
|
||||
model_name = "taesdxl_encoder.pth" if getattr(shared.sd_model, 'is_sdxl', False) else "taesd_encoder.pth"
|
||||
loaded_model = sd_vae_taesd_models.get(model_name)
|
||||
|
||||
if loaded_model is None:
|
||||
model_path = os.path.join(paths_internal.models_path, "VAE-taesd", model_name)
|
||||
download_model(model_path, 'https://github.com/madebyollin/taesd/raw/main/' + model_name)
|
||||
|
||||
if os.path.exists(model_path):
|
||||
loaded_model = TAESDEncoder(model_path)
|
||||
loaded_model.eval()
|
||||
loaded_model.to(devices.device, devices.dtype)
|
||||
sd_vae_taesd_models[model_name] = loaded_model
|
||||
else:
|
||||
raise FileNotFoundError('TAESD model not found')
|
||||
|
||||
return loaded_model.encoder
|
||||
|
@ -430,6 +430,8 @@ options_templates.update(options_section(('sd', "Stable Diffusion"), {
|
||||
"upcast_attn": OptionInfo(False, "Upcast cross attention layer to float32"),
|
||||
"auto_vae_precision": OptionInfo(True, "Automaticlly revert VAE to 32-bit floats").info("triggers when a tensor with NaNs is produced in VAE; disabling the option in this case will result in a black square image"),
|
||||
"randn_source": OptionInfo("GPU", "Random number generator source.", gr.Radio, {"choices": ["GPU", "CPU", "NV"]}).info("changes seeds drastically; use CPU to produce the same picture across different videocard vendors; use NV to produce same picture as on NVidia videocards"),
|
||||
"sd_vae_encode_method": OptionInfo("Full", "VAE type for encode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to encode image to latent (use in img2img or inpaint mask)"),
|
||||
"sd_vae_decode_method": OptionInfo("Full", "VAE type for decode", gr.Radio, {"choices": ["Full", "TAESD"]}).info("method to decode latent to image"),
|
||||
}))
|
||||
|
||||
options_templates.update(options_section(('sdxl', "Stable Diffusion XL"), {
|
||||
|
Loading…
x
Reference in New Issue
Block a user