fix: return orig weights during updown, merge weights before forward

This commit is contained in:
v0xie 2023-10-21 14:42:24 -07:00
parent 2d8c894b27
commit 7683547728

View File

@ -1,5 +1,6 @@
import torch import torch
import network import network
from modules import devices
class ModuleTypeOFT(network.ModuleType): class ModuleTypeOFT(network.ModuleType):
@ -29,23 +30,56 @@ class NetworkModuleOFT(network.NetworkModule):
self.block_size = self.out_dim // self.num_blocks self.block_size = self.out_dim // self.num_blocks
self.org_module: list[torch.Module] = [self.sd_module] self.org_module: list[torch.Module] = [self.sd_module]
self.org_weight = self.org_module[0].weight.to(self.org_module[0].weight.device, copy=True)
#self.org_weight = self.org_module[0].weight.to(devices.cpu, copy=True)
self.R = self.get_weight(self.oft_blocks) self.R = self.get_weight(self.oft_blocks)
self.merged_weight = self.merge_weight()
self.apply_to() self.apply_to()
self.merged = False
def merge_weight(self):
org_sd = self.org_module[0].state_dict()
R = self.R.to(self.org_weight.device, dtype=self.org_weight.dtype)
if self.org_weight.dim() == 4:
weight = torch.einsum("oihw, op -> pihw", self.org_weight, R)
else:
weight = torch.einsum("oi, op -> pi", self.org_weight, R)
org_sd['weight'] = weight
# replace weight
#self.org_module[0].load_state_dict(org_sd)
return weight
pass
def replace_weight(self, new_weight):
org_sd = self.org_module[0].state_dict()
org_sd['weight'] = new_weight
self.org_module[0].load_state_dict(org_sd)
self.merged = True
def restore_weight(self):
org_sd = self.org_module[0].state_dict()
org_sd['weight'] = self.org_weight
self.org_module[0].load_state_dict(org_sd)
self.merged = False
# replace forward method of original linear rather than replacing the module # replace forward method of original linear rather than replacing the module
# how do we revert this to unload the weights? # how do we revert this to unload the weights?
def apply_to(self): def apply_to(self):
self.org_forward = self.org_module[0].forward self.org_forward = self.org_module[0].forward
#self.org_module[0].forward = self.forward #self.org_module[0].forward = self.forward
self.org_module[0].register_forward_pre_hook(self.pre_forward_hook)
self.org_module[0].register_forward_hook(self.forward_hook) self.org_module[0].register_forward_hook(self.forward_hook)
def get_weight(self, oft_blocks, multiplier=None): def get_weight(self, oft_blocks, multiplier=None):
self.constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype) constraint = self.constraint.to(oft_blocks.device, dtype=oft_blocks.dtype)
block_Q = oft_blocks - oft_blocks.transpose(1, 2) block_Q = oft_blocks - oft_blocks.transpose(1, 2)
norm_Q = torch.norm(block_Q.flatten()) norm_Q = torch.norm(block_Q.flatten())
new_norm_Q = torch.clamp(norm_Q, max=self.constraint) new_norm_Q = torch.clamp(norm_Q, max=constraint)
block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8)) block_Q = block_Q * ((new_norm_Q + 1e-8) / (norm_Q + 1e-8))
m_I = torch.eye(self.block_size, device=self.oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1) m_I = torch.eye(self.block_size, device=oft_blocks.device).unsqueeze(0).repeat(self.num_blocks, 1, 1)
block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse()) block_R = torch.matmul(m_I + block_Q, (m_I - block_Q).inverse())
#block_R_weighted = multiplier * block_R + (1 - multiplier) * I #block_R_weighted = multiplier * block_R + (1 - multiplier) * I
#R = torch.block_diag(*block_R_weighted) #R = torch.block_diag(*block_R_weighted)
@ -54,33 +88,47 @@ class NetworkModuleOFT(network.NetworkModule):
return R return R
def calc_updown(self, orig_weight): def calc_updown(self, orig_weight):
oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype) #oft_blocks = self.oft_blocks.to(orig_weight.device, dtype=orig_weight.dtype)
R = self.get_weight(oft_blocks) #R = self.R.to(orig_weight.device, dtype=orig_weight.dtype)
self.R = R ##self.R = R
# if orig_weight.dim() == 4: #if orig_weight.dim() == 4:
# weight = torch.einsum("oihw, op -> pihw", orig_weight, R) # weight = torch.einsum("oihw, op -> pihw", orig_weight, R)
# else: #else:
# weight = torch.einsum("oi, op -> pi", orig_weight, R) # weight = torch.einsum("oi, op -> pi", orig_weight, R)
updown = orig_weight @ R #updown = orig_weight @ R
output_shape = self.oft_blocks.shape #updown = weight
updown = torch.zeros_like(orig_weight, device=orig_weight.device, dtype=orig_weight.dtype)
#updown = orig_weight
output_shape = orig_weight.shape
#orig_weight = self.merged_weight.to(orig_weight.device, dtype=orig_weight.dtype)
#output_shape = self.oft_blocks.shape
return self.finalize_updown(updown, orig_weight, output_shape) return self.finalize_updown(updown, orig_weight, output_shape)
def forward_hook(self, module, args, output): def pre_forward_hook(self, module, input):
#print(f'Forward hook in {self.network_key} called') if not self.merged:
x = output self.replace_weight(self.merged_weight)
R = self.R.to(x.device, dtype=x.dtype)
if x.dim() == 4:
x = x.permute(0, 2, 3, 1) def forward_hook(self, module, args, output):
x = torch.matmul(x, R) if self.merged:
x = x.permute(0, 3, 1, 2) pass
else: #self.restore_weight()
x = torch.matmul(x, R) #print(f'Forward hook in {self.network_key} called')
return x
#x = output
#R = self.R.to(x.device, dtype=x.dtype)
#if x.dim() == 4:
# x = x.permute(0, 2, 3, 1)
# x = torch.matmul(x, R)
# x = x.permute(0, 3, 1, 2)
#else:
# x = torch.matmul(x, R)
#return x
# def forward(self, x, y=None): # def forward(self, x, y=None):
# x = self.org_forward(x) # x = self.org_forward(x)