From 79d6e9cd325353b5c6a02f8374494f781760d211 Mon Sep 17 00:00:00 2001 From: AUTOMATIC1111 <16777216c@gmail.com> Date: Sat, 29 Jul 2023 08:38:00 +0300 Subject: [PATCH] some stylistic changes for the sampler code --- modules/sd_samplers_extra.py | 44 ++++++++++++++++++++---------------- 1 file changed, 24 insertions(+), 20 deletions(-) diff --git a/modules/sd_samplers_extra.py b/modules/sd_samplers_extra.py index a1b5dab35..1b981ca80 100644 --- a/modules/sd_samplers_extra.py +++ b/modules/sd_samplers_extra.py @@ -1,17 +1,20 @@ import torch +import tqdm import k_diffusion.sampling + @torch.no_grad() -def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list = None): - """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023)""" - '''Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]}''' - '''If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list''' - from tqdm.auto import trange +def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=None, s_noise=1., restart_list=None): + """Implements restart sampling in Restart Sampling for Improving Generative Processes (2023) + Restart_list format: {min_sigma: [ restart_steps, restart_times, max_sigma]} + If restart_list is None: will choose restart_list automatically, otherwise will use the given restart_list + """ extra_args = {} if extra_args is None else extra_args s_in = x.new_ones([x.shape[0]]) step_id = 0 from k_diffusion.sampling import to_d, get_sigmas_karras - def heun_step(x, old_sigma, new_sigma, second_order = True): + + def heun_step(x, old_sigma, new_sigma, second_order=True): nonlocal step_id denoised = model(x, old_sigma * s_in, **extra_args) d = to_d(x, old_sigma, denoised) @@ -30,6 +33,7 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No x = x + d_prime * dt step_id += 1 return x + steps = sigmas.shape[0] - 1 if restart_list is None: if steps >= 20: @@ -41,11 +45,10 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No sigmas = get_sigmas_karras(steps - restart_steps * restart_times, sigmas[-2].item(), sigmas[0].item(), device=sigmas.device) restart_list = {0.1: [restart_steps + 1, restart_times, 2]} else: - restart_list = dict() - temp_list = dict() - for key, value in restart_list.items(): - temp_list[int(torch.argmin(abs(sigmas - key), dim=0))] = value - restart_list = temp_list + restart_list = {} + + restart_list = {int(torch.argmin(abs(sigmas - key), dim=0)): value for key, value in restart_list.items()} + step_list = [] for i in range(len(sigmas) - 1): step_list.append((sigmas[i], sigmas[i + 1])) @@ -58,13 +61,14 @@ def restart_sampler(model, x, sigmas, extra_args=None, callback=None, disable=No while restart_times > 0: restart_times -= 1 step_list.extend([(old_sigma, new_sigma) for (old_sigma, new_sigma) in zip(sigma_restart[:-1], sigma_restart[1:])]) - last_sigma = None - for i in trange(len(step_list), disable=disable): - if last_sigma is None: - last_sigma = step_list[i][0] - elif last_sigma < step_list[i][0]: - x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (step_list[i][0] ** 2 - last_sigma ** 2) ** 0.5 - x = heun_step(x, step_list[i][0], step_list[i][1]) - last_sigma = step_list[i][1] - return x + last_sigma = None + for old_sigma, new_sigma in tqdm.tqdm(step_list, disable=disable): + if last_sigma is None: + last_sigma = old_sigma + elif last_sigma < old_sigma: + x = x + k_diffusion.sampling.torch.randn_like(x) * s_noise * (old_sigma ** 2 - last_sigma ** 2) ** 0.5 + x = heun_step(x, old_sigma, new_sigma) + last_sigma = new_sigma + + return x