diff --git a/extensions-builtin/Lora/network.py b/extensions-builtin/Lora/network.py index 6021fd8de..a62e5eff9 100644 --- a/extensions-builtin/Lora/network.py +++ b/extensions-builtin/Lora/network.py @@ -137,7 +137,7 @@ class NetworkModule: def finalize_updown(self, updown, orig_weight, output_shape, ex_bias=None): if self.bias is not None: updown = updown.reshape(self.bias.shape) - updown += self.bias.to(orig_weight.device, dtype=orig_weight.dtype) + updown += self.bias.to(orig_weight.device, dtype=updown.dtype) updown = updown.reshape(output_shape) if len(output_shape) == 4: diff --git a/extensions-builtin/Lora/network_full.py b/extensions-builtin/Lora/network_full.py index bf6930e96..f221c95f3 100644 --- a/extensions-builtin/Lora/network_full.py +++ b/extensions-builtin/Lora/network_full.py @@ -18,9 +18,9 @@ class NetworkModuleFull(network.NetworkModule): def calc_updown(self, orig_weight): output_shape = self.weight.shape - updown = self.weight.to(orig_weight.device, dtype=orig_weight.dtype) + updown = self.weight.to(orig_weight.device) if self.ex_bias is not None: - ex_bias = self.ex_bias.to(orig_weight.device, dtype=orig_weight.dtype) + ex_bias = self.ex_bias.to(orig_weight.device) else: ex_bias = None diff --git a/extensions-builtin/Lora/network_glora.py b/extensions-builtin/Lora/network_glora.py index 492d48707..efe5c6814 100644 --- a/extensions-builtin/Lora/network_glora.py +++ b/extensions-builtin/Lora/network_glora.py @@ -22,12 +22,12 @@ class NetworkModuleGLora(network.NetworkModule): self.w2b = weights.w["b2.weight"] def calc_updown(self, orig_weight): - w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype) - w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype) - w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) - w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + w1a = self.w1a.to(orig_weight.device) + w1b = self.w1b.to(orig_weight.device) + w2a = self.w2a.to(orig_weight.device) + w2b = self.w2b.to(orig_weight.device) output_shape = [w1a.size(0), w1b.size(1)] - updown = ((w2b @ w1b) + ((orig_weight @ w2a) @ w1a)) + updown = ((w2b @ w1b) + ((orig_weight.to(dtype = w1a.dtype) @ w2a) @ w1a)) return self.finalize_updown(updown, orig_weight, output_shape) diff --git a/extensions-builtin/Lora/network_hada.py b/extensions-builtin/Lora/network_hada.py index 5fcb0695f..d95a0fd18 100644 --- a/extensions-builtin/Lora/network_hada.py +++ b/extensions-builtin/Lora/network_hada.py @@ -27,16 +27,16 @@ class NetworkModuleHada(network.NetworkModule): self.t2 = weights.w.get("hada_t2") def calc_updown(self, orig_weight): - w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype) - w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype) - w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) - w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + w1a = self.w1a.to(orig_weight.device) + w1b = self.w1b.to(orig_weight.device) + w2a = self.w2a.to(orig_weight.device) + w2b = self.w2b.to(orig_weight.device) output_shape = [w1a.size(0), w1b.size(1)] if self.t1 is not None: output_shape = [w1a.size(1), w1b.size(1)] - t1 = self.t1.to(orig_weight.device, dtype=orig_weight.dtype) + t1 = self.t1.to(orig_weight.device) updown1 = lyco_helpers.make_weight_cp(t1, w1a, w1b) output_shape += t1.shape[2:] else: @@ -45,7 +45,7 @@ class NetworkModuleHada(network.NetworkModule): updown1 = lyco_helpers.rebuild_conventional(w1a, w1b, output_shape) if self.t2 is not None: - t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype) + t2 = self.t2.to(orig_weight.device) updown2 = lyco_helpers.make_weight_cp(t2, w2a, w2b) else: updown2 = lyco_helpers.rebuild_conventional(w2a, w2b, output_shape) diff --git a/extensions-builtin/Lora/network_ia3.py b/extensions-builtin/Lora/network_ia3.py index 7edc42497..96faeaf3e 100644 --- a/extensions-builtin/Lora/network_ia3.py +++ b/extensions-builtin/Lora/network_ia3.py @@ -17,7 +17,7 @@ class NetworkModuleIa3(network.NetworkModule): self.on_input = weights.w["on_input"].item() def calc_updown(self, orig_weight): - w = self.w.to(orig_weight.device, dtype=orig_weight.dtype) + w = self.w.to(orig_weight.device) output_shape = [w.size(0), orig_weight.size(1)] if self.on_input: diff --git a/extensions-builtin/Lora/network_lokr.py b/extensions-builtin/Lora/network_lokr.py index 340acdab3..fcdaeafd8 100644 --- a/extensions-builtin/Lora/network_lokr.py +++ b/extensions-builtin/Lora/network_lokr.py @@ -37,22 +37,22 @@ class NetworkModuleLokr(network.NetworkModule): def calc_updown(self, orig_weight): if self.w1 is not None: - w1 = self.w1.to(orig_weight.device, dtype=orig_weight.dtype) + w1 = self.w1.to(orig_weight.device) else: - w1a = self.w1a.to(orig_weight.device, dtype=orig_weight.dtype) - w1b = self.w1b.to(orig_weight.device, dtype=orig_weight.dtype) + w1a = self.w1a.to(orig_weight.device) + w1b = self.w1b.to(orig_weight.device) w1 = w1a @ w1b if self.w2 is not None: - w2 = self.w2.to(orig_weight.device, dtype=orig_weight.dtype) + w2 = self.w2.to(orig_weight.device) elif self.t2 is None: - w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) - w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + w2a = self.w2a.to(orig_weight.device) + w2b = self.w2b.to(orig_weight.device) w2 = w2a @ w2b else: - t2 = self.t2.to(orig_weight.device, dtype=orig_weight.dtype) - w2a = self.w2a.to(orig_weight.device, dtype=orig_weight.dtype) - w2b = self.w2b.to(orig_weight.device, dtype=orig_weight.dtype) + t2 = self.t2.to(orig_weight.device) + w2a = self.w2a.to(orig_weight.device) + w2b = self.w2b.to(orig_weight.device) w2 = lyco_helpers.make_weight_cp(t2, w2a, w2b) output_shape = [w1.size(0) * w2.size(0), w1.size(1) * w2.size(1)] diff --git a/extensions-builtin/Lora/network_lora.py b/extensions-builtin/Lora/network_lora.py index 26c0a72c2..4cc402951 100644 --- a/extensions-builtin/Lora/network_lora.py +++ b/extensions-builtin/Lora/network_lora.py @@ -61,13 +61,13 @@ class NetworkModuleLora(network.NetworkModule): return module def calc_updown(self, orig_weight): - up = self.up_model.weight.to(orig_weight.device, dtype=orig_weight.dtype) - down = self.down_model.weight.to(orig_weight.device, dtype=orig_weight.dtype) + up = self.up_model.weight.to(orig_weight.device) + down = self.down_model.weight.to(orig_weight.device) output_shape = [up.size(0), down.size(1)] if self.mid_model is not None: # cp-decomposition - mid = self.mid_model.weight.to(orig_weight.device, dtype=orig_weight.dtype) + mid = self.mid_model.weight.to(orig_weight.device) updown = lyco_helpers.rebuild_cp_decomposition(up, down, mid) output_shape += mid.shape[2:] else: diff --git a/extensions-builtin/Lora/network_norm.py b/extensions-builtin/Lora/network_norm.py index ce4501580..d25afcbb9 100644 --- a/extensions-builtin/Lora/network_norm.py +++ b/extensions-builtin/Lora/network_norm.py @@ -18,10 +18,10 @@ class NetworkModuleNorm(network.NetworkModule): def calc_updown(self, orig_weight): output_shape = self.w_norm.shape - updown = self.w_norm.to(orig_weight.device, dtype=orig_weight.dtype) + updown = self.w_norm.to(orig_weight.device) if self.b_norm is not None: - ex_bias = self.b_norm.to(orig_weight.device, dtype=orig_weight.dtype) + ex_bias = self.b_norm.to(orig_weight.device) else: ex_bias = None diff --git a/extensions-builtin/Lora/networks.py b/extensions-builtin/Lora/networks.py index 60d8dec4c..8ea4ea609 100644 --- a/extensions-builtin/Lora/networks.py +++ b/extensions-builtin/Lora/networks.py @@ -381,12 +381,12 @@ def network_apply_weights(self: Union[torch.nn.Conv2d, torch.nn.Linear, torch.nn # inpainting model. zero pad updown to make channel[1] 4 to 9 updown = torch.nn.functional.pad(updown, (0, 0, 0, 0, 0, 5)) - self.weight += updown + self.weight.copy_((self.weight.to(dtype=updown.dtype) + updown).to(dtype=self.weight.dtype)) if ex_bias is not None and hasattr(self, 'bias'): if self.bias is None: - self.bias = torch.nn.Parameter(ex_bias) + self.bias = torch.nn.Parameter(ex_bias).to(self.weight.dtype) else: - self.bias += ex_bias + self.bias.copy_((self.bias.to(dtype=ex_bias.dtype) + ex_bias).to(dtype=self.bias.dtype)) except RuntimeError as e: logging.debug(f"Network {net.name} layer {network_layer_name}: {e}") extra_network_lora.errors[net.name] = extra_network_lora.errors.get(net.name, 0) + 1 diff --git a/modules/cmd_args.py b/modules/cmd_args.py index 4e602a842..0f14c71e4 100644 --- a/modules/cmd_args.py +++ b/modules/cmd_args.py @@ -118,3 +118,4 @@ parser.add_argument('--timeout-keep-alive', type=int, default=30, help='set time parser.add_argument("--disable-all-extensions", action='store_true', help="prevent all extensions from running regardless of any other settings", default=False) parser.add_argument("--disable-extra-extensions", action='store_true', help="prevent all extensions except built-in from running regardless of any other settings", default=False) parser.add_argument("--skip-load-model-at-start", action='store_true', help="if load a model at web start, only take effect when --nowebui", ) +parser.add_argument("--opt-unet-fp8-storage", action='store_true', help="use fp8 for SD UNet to save vram", default=False) diff --git a/modules/sd_models.py b/modules/sd_models.py index 3b6cdea18..3b8ff8209 100644 --- a/modules/sd_models.py +++ b/modules/sd_models.py @@ -391,6 +391,9 @@ def load_model_weights(model, checkpoint_info: CheckpointInfo, state_dict, timer devices.dtype_unet = torch.float16 timer.record("apply half()") + if shared.cmd_opts.opt_unet_fp8_storage: + model.model.diffusion_model = model.model.diffusion_model.to(torch.float8_e4m3fn) + timer.record("apply fp8 unet") devices.unet_needs_upcast = shared.cmd_opts.upcast_sampling and devices.dtype == torch.float16 and devices.dtype_unet == torch.float16